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Schaefer fixed point theorem. Application for the beam equation is also discussed to illustrate the

theory.

Key Words. Existence of solutions, Second order, Stochastic evolution equation, Nonlocal condi-

tion, Schaefer’s theorem

2000 AMS Subject Classification. 34F05, 49K24, 60G12.

1. INTRODUCTION

Byszewski [13] introduced nonlocal initial conditions into the initial-value problems

and argued that the corresponding models more accurately describe the phenomena

since more information was taken into account at the onset of the experiment, thereby

reducing the ill effects incurred by a single (possibly erroneous) initial measurement.

In the deterministic cases Byszewski [10] has studied the existence and uniqueness of

mild, strong and classical solutions of the following nonlocal Cauchy problem:

dx(t)

dt
+ Ax(t) = f(t, x(t)), t ∈ (0, a]

x(t0) + g(t1, t2, · · ·, tp, x(·)) = x0

where 0 ≤ t0 < t1 < ... < tp ≤ a, a > 0,−A is the infinitesimal generator of a C0-

semigroup in a Banach space X, x0 ∈ X and f : [0, a] × X → X, g : [0, a]p × X → X

are given functions. He has also investigated the same type of problem for differ-

ent kinds of evolution equations in Banach spaces [11, 12]. Since then, many authors

have continued this work in several directions including nonlocal condition and estab-

lished existence theories for various functional differential equations. The elaborate

discussions of Cauchy problems with nonlocal conditions the reader may refer the

latest papers, for the deterministic cases [8] and for the stochastic evolution equa-

tions [2, 19] and the references contained therein. Concrete nonlocal parabolic and
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elliptic partial (integro-) differential equations arising in the mathematical modeling

of various physical, biological, and ecological phenomena as well as a discussion of the

advantages of replacing the classical initial condition with a more general functional

can be found in [10, 11].

In many cases it is advantageous to treat the second order abstract differential equa-

tions directly rather than converting them into first order systems. The deterministic

version of second order systems have been thoroughly investigated by several authors

(see [6, 30, 39, 40]) while the stochastic version has been in growing state. In fact,

abstract second-order stochastic evolution equations have been discussed recently in

[21, 23, 24] also second order stochastic inclusions has been studied in [27].

Random differential and integral equations play an important role in characterizing

many social, physical, biological and engineering problems (see [14, 17, 41]). Stochas-

tic differential equations are important from the viewpoint of applications since they

incorporate (natural) randomness into the mathematical description of the phenom-

ena, and, therefore, provide a more accurate description of it. Numerous papers and

books devoted to the formulation of theory of such equations have been written during

the past two decades (for example see [22, 36]).

The physical motivation for the study of second order stochastic equation is given.

Fitzgibbon [16] used the second order abstract differential equations for establishing

the boundedness of solutions of the following partial differential equations governing

the dynamical buckling of a hinged extensible beam which is stretched or compressed

by an axial force

∂2z

∂t2
+ κ

∂4z

∂x4
−
(

α + β

∫ L

0

∣

∣

∣

∣

∂z(x, s)

∂s

∣

∣

∣

∣

2

ds

)

∂2z

∂x2
+ f(

∂z)

∂t
) = 0,

where z(x, t) is the deflection of the beam at point x at time t, f is a nondecreasing

numerical function, L is the length of the beam and α, β, κ > 0 are given parameters.

The nonlinear friction force f(∂z
∂t

) is the dissipative term. When f = 0, this equation

reduced to the equation introduced in [42] as a model for the transverse motion of

an extensible beam whose ends are held a fixed distance apart. Several authors (see

[15, 25, 28, 31, 32, 33]) used various approaches to study the estimate of weak and

classical solutions of the above equation as well as the asymptotic behaviour of these

solutions. These equations take the abstract form as

z′′ + A2z + M(‖A 1

2 z‖2
H)Az + f(z′) = 0

where A is a linear operator in a Hilbert space H, M and f are real functions.

Existence of solutions of this kind and more general equations are discussed in [4, 5,

6, 7, 16, 29, 33].
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Recently Balachandran et. al [1] studied another type of abstract equation modelled

as

z′′ = Az + f(t, z, z′)

in which the nonlinear damping term f(t, z, z′) accounts for the affects of axial force

taking into account the fact that, during vibration, the elements of a beam perform

not only a translatory motion, but also rotate [26, 38] which generalizes the model

discussed in [33].

All results in the aforementioned papers were established for the deterministic case

(without accounting for noise). As pointed out in Kannan and Bharucha-Reid [18], if

experimentally there is variance in measurements, then it is advantageous to study a

stochastic version of the model to better understand the effects of so-called noise on

the behavior of the phenomenon.

Hence for the more realistic abstract model of the above equation it is neces-

sary to represent certain interval structural damping behaviour in the damping term

f(t, z, z′), tension of the beam. This can be treated by introducing noise (one more

term) that represents the change in tension of the beam. This is precisely the principal

goal of the present manuscript to consider the abstract form as

dz′ = [Az + f(t, z, z′)]dt + g(t, z, z′)dw(t).

The results presented in the manuscript constitute a continuation and generaliza-

tion of existence results from [2, 3, 9, 19, 37] to the second order semilinear stochastic

delay evolution in Hilbert spaces with nonlocal conditions in two ways. For one,

we study the second order nonlinear stochastic evolution equation using fundamen-

tal solution developed by Kozak [20] instead of cosine and sine family of operators

discussed mostly in all the literatures; to the authors knowledge, this approach has

not yet been treated in the study of such second order stochastic problems. And

two, our result contribute a stochastic variant of the results concerning the existence

of mild solutions in [1] this enables one to introduce noise into the concrete models

that one subsumed as a special cases of the abstract evolution system being studied

thereby allowing for a more accurate description of the phenomenon also coupling the

existence results with a nonlocal initial condition strengthens the model even further.

The main aim of this paper is to establish the existence of solutions of the following

second order nonlinear stochastic evolution equation with nonlocal condition

dx′(t) = [A(t)x(t) + f(t, x(t), x′(t))]dt + g(t, x(t), x′(t))dw(t), t ∈ J = [0, T ],

x(0) +h(x) = x0, x′(0) = y0,
(1)

where A(t) is a closed densely defined operator defined on a separable Hilbert space

H with inner product (·, ·) and norm ‖ · ‖. Let K be another separable Hilbert space

with inner product (·, ·)K and norm ‖ · ‖K. Suppose {w(t)}t≥0 is a given K–valued
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Brownian motion or Wiener process with a finite trace nuclear covariance operator

Q ≥ 0. We are also employing the same notation ‖ · ‖ for the norm BL(K, H), where

BL(K, H) denotes the space of all bounded linear operators from K into H. Further,

f : J × H × H → H and g : J × H × H → LQ(K, H) are measurable mappings in

H-norm and LQ(K, H)-norm respectively. Here LQ(K, H) denotes the space of all

Q-Hilbert-Schmidt operators from K into H which is going to be defined below and

h : C(J, H) → H is a given continuous function.

2. PRELIMINARIES

Let (Ω, F, P ) be a complete probability space furnished with complete family of

right continuous increasing sub σ-algebras {Ft, t ∈ J} satisfying Ft ⊂ F. An H-

valued random variable is an F-measurable function x(t) : Ω → H and a collection

of random variables S = {x(t, w) : Ω → H|t ∈ J} is called a stochastic process.

Usually we suppress the dependence on w ∈ Ω and write x(t) instead of x(t, w) and

x(t) : J → H in the place of S. Let βn(t) (n = 1, 2, . . .) be a sequence of real-valued

one-dimensional standard Brownian motions mutually independent over (Ω, F, P ).

Set w(t) =
∑∞

n=1

√
λnβn(t)ζn, t ≥ 0, where λn ≥ 0, (n = 1, 2, . . .) are nonnegative real

numbers and {ζn} (n = 1, 2, . . .) is complete orthonormal basis in K. Let Q ∈ BL(K)

be an operator defined by Qζn = λnζn with finite Tr Q =
∑∞

n=1 λn < ∞, (Tr denotes

the trace of the operator). Then the above K-valued stochastic process w(t) is called

a Q-Wiener process. We assume that Ft = σ(w(s) : 0 ≤ s ≤ t) is the σ-algebra

generated by w and FT = F. Let ϕ ∈ L(K, H) and define

‖ϕ‖2
Q = Tr(ϕQϕ∗) =

∞
∑

n=1

‖
√

λnϕζn‖2.

If ‖ϕ‖Q < ∞, then ϕ is called a Q-Hilbert-Schmidt operator. Let LQ(K, H) denote

the space of all Q-Hilbert-Schmidt operators ϕ : K → H. The completion LQ(K, H)

of BL(K, H) with respect to the topology induced by the norm ‖ · ‖Q where ‖ϕ‖2
Q =

〈〈ϕ, ϕ〉〉 is a Hilbert space with the above norm topology.

The collection of all strongly-measurable, square-integrable H-valued random vari-

ables, denoted by L2(Ω, F, P ; H) ≡ L2(Ω; H), is a Banach space equipped with

norm ‖x(·)‖L2
=
(

E‖x(·; w)‖2
H

)
1

2 , where the expectation, E is defined by E(h) =
∫

Ω
h(w)dP . Let Z = C1(J, L2(Ω; H)) be the Banach space of all continuously dif-

ferentiable maps from J into L2(Ω; H) satisfying the condition E‖x(t)‖2 < ∞ and

E‖x′(t)‖2 < ∞ and let ‖ · ‖Z be a norm in Z defined by

‖x‖Z = max{‖x‖0, ‖x‖1},

where ‖x‖0 =
(

supt∈J ‖x(t)‖2
L2

)
1

2 and ‖x‖1 =
(

supt∈J ‖x′(t)‖2
L2

)
1

2 . It is easy to verify

that Z furnished with the norm topology as defined above, is a Banach space. An

important subspace is given by L0
2(Ω, H) = {ξ ∈ L2(Ω, H) : ξ is F0-measurable}.
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Let H be a real separable Hilbert space and, for each t ∈ J , let A(t) : H → H

be a closed densely defined operator. The fundamental solution for the second order

evolution equation

x′′(t) = A(t)x(t)(2)

developed by Kozak [20] is as follows. Let us assume that the domain of A(t) does

not depend on t ∈ J and denote it by D(A) (for each t ∈ J, D(A(t)) = D(A)).

Definition 2.1. [20] A family S of bounded linear operators S(t, s) : H → H,

t, s ∈ J , is called a fundamental solution of a second order equation if:

[Z1]: For each x ∈ H the mapping J × J 3 (t, s) → S(t, s)x ∈ H

is of class C1 and

(i) for each t ∈ J , S(t, t) = 0,

(ii) for all t, s ∈ J , and for each x ∈ H,

∂

∂t
S(t, s)

∣

∣

∣

∣

t=s

x = x,
∂

∂s
S(t, s)

∣

∣

∣

∣

t=s

x = −x.

[Z2]: For all t, s ∈ J , if x ∈ D(A), then S(t, s)x ∈ D(A), the mapping

J × J 3 (t, s) → S(t, s)x ∈ H is of class C2 and

(i)
∂2

∂t2
S(t, s)x = A(t)S(t, s)x,

(ii)
∂2

∂s2
S(t, s)x = S(t, s)A(s)x,

(iii)
∂

∂s

∂

∂t
S(t, s)

∣

∣

∣

∣

t=s

x = 0.

[Z3]: For all t, s ∈ J , if x ∈ D(A), then
∂

∂s
S(t, s)x ∈ D(A), there exist

∂2

∂t2
∂

∂s
S(t, s)x,

∂2

∂s2

∂

∂t
S(t, s)x and

(i)
∂2

∂t2
∂

∂s
S(t, s)x =A(t)

∂

∂s
S(t, s)x,

(ii)
∂2

∂s2

∂

∂t
S(t, s)x =

∂

∂t
S(t, s)A(s)x,

and the mapping J × J 3 (t, s) → A(t)
∂

∂s
S(t, s)x is continuous.

Similar to Pazy [34] we shall define the following solution.

Definition 2.2. A Ft-adapted continuous stochastic process x(t) : J → H is called

a mild solution of the problem (1) if the following hold:

(i) x0, y0 satisfying ‖x0‖2 < ∞, ‖y0‖2 < ∞ such that x0, y0 ∈ L0
2(Ω, H),

(ii) the following equation satisfied for all continuous function h : C(J, H) →
L0

2(Ω, H) and a. e. t ∈ J

x(t) = − ∂

∂s
S(t, s)

∣

∣

∣

∣

s=0

[x0 − h(x)] + S(t, 0)y0 +

∫ t

0

S(t, s)f(s, x(s), x′(s))ds
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+

∫ t

0

S(t, s)g(s, x(s), x′(s))dw(s).(3)

To establish our main theorem we need the following assumptions.

(H1): x(t) ∈ D(A(t)), for each t ∈ J .

(H2): There exists a fundamental solution S(t, s) of (2).

(H3): S(t, s) is compact for each t, s ∈ J and there exist positive constants M, M ∗

and N, N∗ such that

M = sup{‖S(t, s)‖2 : t, s ∈ J}, M∗ = sup{‖ ∂
∂s

S(t, s)‖2 : t, s ∈ J},

and N = sup{‖ ∂
∂t

S(t, s)‖2 : t, s ∈ J}, N∗ = sup{‖ ∂
∂t

∂
∂s

S(t, s)‖2 : t, s ∈ J}
respectively.

(H4): h : C(J, H) → L0
2(Ω, H) is continuous and satisfying the following Lipschitz

condition

E‖h(x) − h(y)‖2 ≤ MhE‖x − y‖2, for x, y ∈ C(J, H)

and the set {
(

x0 − h(x)
)

: x ∈ Z, ‖x‖Z ≤ k} is precompact in L0
2(Ω, H) where

Mh is a positive constant satisfying 5(M ∗ + N∗)Mh < 1.

(H5): f(t, ·, ·) : H ×H → H and g(t, ·, ·) : H ×H → BL(K, H) are continuous for

each t ∈ J and the functions f(·, x, y) : J → H, g(·, x, y) : J → BL(K, H) are

strongly measurable functions for each (x, y) ∈ H × H.

(H6): For every positive constant k there exists αk ∈ L1(J) such that

sup
‖x‖, ‖y‖≤k

E‖f(t, x, y)‖2
∨

sup
‖x‖, ‖y‖≤k

E‖g(t, x, y)‖2
Q ≤ αk(t) for a.a t ∈ J.

(H7): f : J ×H ×H → H, g : J ×H ×H → BL(K, H) are continuous and there

exists an integrable function m : J → [0,∞) such that

E‖f(t, x, y)‖2
∨

E‖g(t, x, y)‖2
Q ≤ m(t)f(E‖x‖2 + E‖y‖2), t ∈ J, x, y ∈ H,

where f : [0,∞) → (0,∞) is a continuous nondecreasing function and

5
(

T + TrQ
)

(M

k1
+

N

k2

)

∫ T

0

m(s)ds <

∫ ∞

c

ds

f(s)
,

where c = 5(M∗

k1

+ N∗

k2

)‖x0‖2
Z + 5(M

k1

+ N
k2

)‖y0‖2
Z .

Lemma 2.3 (Schaefer’s Theorem [35]). Let X be a normed linear space. Let Φ :

X → X be a completely continuous operator, that is, it is continuous and the image

of any bounded set is contained in a compact set, and let

ζ(Φ) = {x ∈ X : x = λΦx for some 0 < λ < 1}.

Then either ζ(Φ) is unbounded or Φ has a fixed point.
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3. MAIN RESULT

Theorem 3.1. If the assumptions (H1)− (H7) hold, then the problem (1) has a mild

solution on J .

Proof. In order to establish the existence of a mild solution to the problem (1), we

have to apply the Lemma 2.3. First we obtain a priori bounds for the mild solution

of the following equation

dx′(t) = [A(t)x(t) + λf(t, x(t), x′(t))]dt + λg(t, x(t), x′(t))dw(t),

t ∈ J, λ ∈ (0, 1)

x(0) +λh(x) = λx0, x′(0) = λy0,

(4)

Let x be a mild solution of the problem (4). Then from

x(t) = −λ
∂

∂s
S(t, s)

∣

∣

∣

∣

s=0

[x0 − h(x)] + λS(t, 0)y0 + λ

∫ t

0

S(t, s)f(s, x(s), x′(s))ds

+λ

∫ t

0

S(t, s)g(s, x(s), x′(s))dw(s), t ∈ J,(5)

we have

E‖x(t)‖2 ≤ 5
{

M∗[E‖x0‖2 + E‖h(x)‖2] + ME‖y0‖2 + MT

∫ t

0

m(s)f(E‖x(s)‖2

+E‖x′(s)‖2)ds + MTrQ

∫ t

0

m(s)f(E‖x(s)‖2 + E‖x′(s)‖2)ds
}

.

Thus we have

‖x(t)‖2
Z ≤ 5

{

M∗[‖x0‖2
Z + Mh‖x‖2

Z ] + M‖y0‖2
Z + MT

∫ t

0

m(s)f(‖x(s)‖2
Z

+‖x′(s)‖2
Z)ds + MTrQ

∫ t

0

m(s)f(‖x(s)‖2
Z + ‖x′(s)‖2

Z)ds
}

≤ 5

k1

{

M∗‖x0‖2
Z + M‖y0‖2

Z + MT

∫ t

0

m(s)f(‖x(s)‖2
Z + ‖x′(s)‖2

Z)ds

+MTrQ

∫ t

0

m(s)f(‖x(s)‖2
Z + ‖x′(s)‖2

Z)ds
}

,

where k1 = 1− 5M∗Mh. Denoting by v(t) the right-hand side of the above inequality

we have

‖x(t)‖2
Z ≤ v(t), t ∈ J,

v(0) =
5

k1
[M∗‖x0‖2

Z + M‖y0‖2
Z],

v′(t) =
5

k1

(

T + TrQ
)

Mm(t)f(‖x(t)‖2
Z + ‖x′(t)‖2

Z), t ∈ J.
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For t ∈ J , from (5)

x′(t) = −λ
∂

∂t

∂

∂s
S(t, s)

∣

∣

∣

∣

s=0

[x0 − h(x)] + λ
∂

∂t
S(t, 0)y0

+λ

∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds + λ

∫ t

0

∂

∂t
S(t, s)g(s, x(s), x′(s))dw(s)

and we have

E‖x′(t)‖2 ≤ 5
{

N∗[E‖x0‖2 + E‖h(x)‖2] + NE‖y0‖2 + NT

∫ t

0

m(s)f(E‖x(s)‖2

+E‖x′(s)‖2)ds + NTrQ

∫ t

0

m(s)f(E‖x(s)‖2 + E‖x′(s)‖2)ds
}

.

Thus

‖x′(t)‖2
Z ≤ 5

{

N∗[‖x0‖2
Z + Mh‖x‖2

Z] + N‖y0‖2
Z + NT

∫ t

0

m(s)f(‖x(s)‖2
Z

+‖x′(s)‖2
Z)ds + NTrQ

∫ t

0

m(s)f(‖x(s)‖2
Z + ‖x′(s)‖2

Z)ds
}

≤ 5

k2

{

N∗‖x0‖2
Z + N‖y0‖2

Z + NT

∫ t

0

m(s)f(‖x(s)‖2
Z + ‖x′(s)‖2

Z)ds

+NTrQ

∫ t

0

m(s)f(‖x(s)‖2
Z + ‖x′(s)‖2

Z)ds
}

,

where k2 = 1− 5N∗Mh. Denoting by r(t) the right-hand side of the above inequality

we have

‖x′(t)‖2
Z ≤ r(t), t ∈ J,

r(0) =
5

k2

[N∗‖x0‖2
Z + N‖y0‖2

Z ],

r′(t) =
5

k2

(

T + TrQ
)

Nm(t)f(‖x(t)‖2
Z + ‖x′(t)‖2

Z), t ∈ J.

Let w(t) = v(t) + r(t), t ∈ J.

Then w(0) = v(0) + r(0) = c, and

w′(t) = v′(t) + r′(t)

≤ 5
(

T + TrQ
)

(M

k1
+

N

k2

)

m(t)f(w(t)).

This gives
∫ w(t)

w(0)

ds

f(s)
≤ 5

(

T + TrQ
)

(M

k1

+
N

k2

)

∫ t

0

m(s)ds

≤ 5
(

T + TrQ
)

(M

k1

+
N

k2

)

∫ T

0

m(s)ds <

∫ ∞

c

ds

f(s)
.
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This inequality implies that there is a constant k such that

w(t) = v(t) + r(t) ≤ k, t ∈ J.

Thus ‖x(t)‖2 ≤ k, ‖x′(t)‖2 ≤ k, t ∈ J, and hence

‖x‖Z ≤ k,

where k depends only on T and on the functions m and f.

Now we shall prove that the operator Φ : Z → Z defined by

(Φx)(t) = − ∂

∂s
S(t, s)

∣

∣

∣

∣

s=0

[x0 − h(x)] + S(t, 0)y0 +

∫ t

0

S(t, s)f(s, x(s), x′(s))ds

+

∫ t

0

S(t, s)g(s, x(s), x′(s))dw(s), t ∈ J

is a completely continuous operator.

Let Bq = {x ∈ Z : ‖x‖Z ≤ q} for some q ≥ 1. We first show that Φ maps Bq into

an equicontinuous family. Let x ∈ Bq and t1, t2 ∈ J . Then if 0 < t1 < t2 ≤ T ,

E‖(Φx)(t1) − (Φx)(t2)‖2

≤ 6
{

E

∥

∥

∥

∥

∂

∂s
[S(t1, s) − S(t2, s)]

∣

∣

∣

∣

s=0

[x0 − h(x)]

∥

∥

∥

∥

2

+ E‖[S(t1, 0) − S(t2, 0)]y0‖2

+ T

∫ t1

0

‖S(t1, s) − S(t2, s)‖2αk(s)ds + (t2 − t1)

∫ t2

t1

‖S(t2, s)‖2αk(s)ds

+ TrQ

∫ t1

0

‖S(t1, s) − S(t2, s)‖2αk(s)ds + TrQ

∫ t2

t1

‖S(t2, s)‖2αk(s)ds
}

→ 0 as t1 → t2

and similarly

E‖(Φx)′(t1) − (Φx)′(t2)‖

≤ 6
{

E

∥

∥

∥

∥

∂

∂s
[

∂

∂t1
S(t1, s) −

∂

∂t2
S(t2, s)]

∣

∣

∣

∣

s=0

[x0 − h(x)]

∥

∥

∥

∥

2

+‖[ ∂

∂t1
S(t1, 0) − ∂

∂t2
S(t2, 0)]‖2E‖y0‖2

+ T

∫ t1

0

‖[ ∂

∂t1
S(t1, s) −

∂

∂t2
S(t2, s)]‖2αk(s)ds

+ (t2 − t1)

∫ t2

t1

‖ ∂

∂t2
S(t2, s)‖2αk(s)ds

+ TrQ

∫ t1

0

‖[ ∂

∂t1
S(t1, s) −

∂

∂t2
S(t2, s)]‖2αk(s)ds
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+ TrQ

∫ t2

t1

‖ ∂

∂t2
S(t2, s)‖2αk(s)ds

}

→ 0 as t1 → t2.

Thus Φ maps Bq into an equicontinuous family of functions. It is easy to see that the

family ΦBq is uniformly bounded.

Next we show that ΦBq is compact. Since we have shown ΦBq is an equicontinuous

collection, it suffices by the Arzela-Ascoli theorem to show that Φ maps Bq into a

precompact set in H.

Let 0 < t ≤ T be fixed and ε a real number satisfying 0 < ε < t. For x ∈ Bq we define

(Φεx)(t) = − ∂

∂s
S(t, s)

∣

∣

∣

∣

s=0

[x0 − h(x)] + S(t, 0)y0 +

∫ t−ε

0

S(t, s)f(s, x(s), x′(s))ds

+

∫ t−ε

0

S(t, s)g(s, x(s), x′(s))dw(s), t ∈ J.

Since S(t, s) is a compact operator, the set Yε(t) = {(Φεx)(t) : x ∈ Bq} is precompact

in H for every ε, 0 < ε < t. Moreover for every x ∈ Bq we have

E‖(Φx)(t) − (Φεx)(t)‖2 ≤ 2ε

∫ t

t−ε

‖S(t, s)‖2E‖f(s, x(s), x′(s))‖2ds

+2TrQ

∫ t

t−ε

‖S(t, s)‖2E‖g(s, x(s), x′(s))‖2
Qds

≤ 2ε

∫ t

t−ε

‖S(t, s)‖2αk(s)ds + 2TrQ

∫ t

t−ε

‖S(t, s)‖2αk(s)ds

→ 0 as ε → 0

and

E‖(Φx)′(t) − (Φεx)′(t)‖2 ≤ 2ε

∫ t

t−ε

E‖ ∂

∂t
S(t, s)f(s, x(s), x′(s))‖2ds

+2TrQ

∫ t

t−ε

E‖ ∂

∂t
S(t, s)g(s, x(s), x′(s))‖2

Qds

≤ 2ε

∫ t

t−ε

‖ ∂

∂t
S(t, s)‖2αk(s)ds

+2TrQ

∫ t

t−ε

‖ ∂

∂t
S(t, s)‖2αk(s)ds → 0 as ε → 0.

Therefore there are precompact sets arbitrarily close to the set {(Φx)(t) : x ∈ Bq}.
Hence the set {(Φx)(t) : x ∈ Bq} is precompact in H.

It remains to show that Φ : Z → Z is continuous. Let {xn}∞0 ⊆ Z with xn → x in

Z. Then there is an integer ν such that E‖xn(t)‖2 ≤ ν, E‖x′
n(t)‖2 ≤ ν for all n and

t ∈ J , so E‖x(t)‖2 ≤ ν, E‖x′(t)‖2 ≤ ν and x, x′ ∈ Bν. By (H5)

f(s, xn(s), xn
′(s)) → f(s, x(s), x′(s))
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and

g(s, xn(s), xn
′(s)) → g(s, x(s), x′(s))

for each t ∈ J . Further

E‖f(s, xn(s), xn
′(s)) − f(s, x(s), x′(s))‖2 ≤ 2αν(s),

and

E‖g(s, xn(s), xn
′(s)) − g(s, x(s), x′(s))‖2 ≤ 2αν(s),

we have by dominated convergence theorem

E‖Φxn − Φx‖2

= 3 sup
t∈J

{

E

∥

∥

∥

∥

∂

∂s
S(t, s)|s=0h(xn) − ∂

∂s
S(t, s)|s=0h(x)

∥

∥

∥

∥

2

+E

∥

∥

∥

∥

∫ t

0

S(t, s)f(s, xn(s), x′
n(s))ds −

∫ t

0

S(t, s)f(s, x(s), x′(s))ds

∥

∥

∥

∥

2

+E

∥

∥

∥

∥

∫ t

0

S(t, s)g(s, xn(s), x
′
n(s))dw(s) −

∫ t

0

S(t, s)g(s, x(s), x′(s))dw(s)

∥

∥

∥

∥

2
}

≤ 3
{

M∗E‖h(xn) − h(x)‖2 + T

∫ t

0

E‖S(t, s)[f(s, xn(s), x
′
n(s)) − f(s, x(s), x′(s))]‖2ds

+TrQ

∫ t

0

E‖S(t, s)[g(s, xn(s), x
′
n(s)) − g(s, x(s), x′(s))]‖2

Qds
}

→ 0 as n → ∞

and

E‖(Φxn)′ − (Φx)′‖2

= 3 sup
t∈J

{

E

∥

∥

∥

∥

∂

∂s
[
∂

∂t
S(t, s)]|s=0h(xn) − ∂

∂s
[
∂

∂t
S(t, s)]|s=0h(x)

∥

∥

∥

∥

2

+E

∥

∥

∥

∥

∫ t

0

∂

∂t
S(t, s)f(s, xn(s), x′

n(s))ds −
∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds

∥

∥

∥

∥

2

+E

∥

∥

∥

∥

∫ t

0

∂

∂t
S(t, s)g(s, xn(s), x

′
n(s))dw(s) −

∫ t

0

∂

∂t
S(t, s)g(s, x(s), x′(s))dw(s)

∥

∥

∥

∥

2
}

≤ 3
{

N∗E‖h(xn) − h(x)‖2

+T

∫ t

0

E‖ ∂

∂t
S(t, s)[f(s, xn(s), x

′
n(s)) − f(s, x(s), x′(s))]‖2ds

+TrQ

∫ t

0

E‖ ∂

∂t
S(t, s)[g(s, xn(s), x

′
n(s)) − g(s, x(s), x′(s))]‖2

Qds
}

→ 0 as n → ∞.

Thus Φ is continuous. This completes the proof that Φ is completely continuous.
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We have already proved that the set ζ(Φ) = {x ∈ Z : x = λΦx, λ ∈ (0, 1)} is

bounded. Hence by the Schaefer fixed point theorem the operator Φ has a fixed point

in Z. This means that any fixed point of Φ is a mild solution of (1) on J satisfying

(Φx)(t) = x(t). Thus the initial value problem (1) has at least one mild solution on

J .

4. STOCHASTIC INTEGRODIFFERENTIAL EQUATION

The derived theory is also easily can be applied to the following general second-

order stochastic integrodifferential equation with nonlocal condition of the form

dx′(t) =
[

A(t)x(t) + f
(

t, x(t),
∫ t

0
η1(t, s)µ(s, x(s), x′(s))ds, x′(t)

)]

dt

+g
(

t, x(t),
∫ t

0
η2(t, s)µ(s, x(s), x′(s))ds, x′(t)

)

dw(t), t ∈ J

x(0) + h(x) = x0, x′(0) = y0

(6)

where A(t), h are as in the previous section and f : J × H × H × H → H, g :

J ×H ×H ×H → BL(K, H), ηi : J × J → R, for i = 1, 2, µ : J ×H ×H → H are

given functions. If x(t) is a solution of the problem (6) then for t ∈ J

x(t) = − ∂

∂s
S(t, s)

∣

∣

∣

∣

s=0

[x0 − h(x)] + S(t, 0)y0

+

∫ t

0

S(t, s)f(s, x(s),

∫ s

0

η1(s, τ)µ(τ, x(τ), x′(τ))dτ, x′(s))ds

+

∫ t

0

S(t, s)g(s, x(s),

∫ s

0

η2(s, τ)µ(τ, x(τ), x′(τ))dτ, x′(s))dw(s).(7)

The above equation (7) is more general than equation (6) and every solution of this

is called mild solution of (6).

Assume the following conditions:

(C1): f(t, ·, ·, ·) : H × H × H → H and g(t, ·, ·, ·) : H × H × H → BL(K, H) are

continuous for each t ∈ J and the functions f(·, x, y, z) : J → H, g(·, x, y, z) :

J → BL(K, H) are strongly measurable functions for each (x, y, z) ∈ H×H×H.

(C2): For every positive constant k there exists αk ∈ L1(J) such that

sup
‖x‖,‖y‖,‖z‖≤k

E‖f(t, x, y, z)‖2
∨

E‖g(t, x, y, z)‖2 ≤ αk(t) for a.a t ∈ J.

(C3): µ : J × H × H → H is continuous and there exists an integrable function

m : J → [0,∞) such that

E‖µ(t, x, y)‖2 ≤ m(t)f(E‖x‖2 + E‖y‖2), t ∈ J, x, y ∈ H,

where f : [0,∞) → (0,∞) is a continuous nondecreasing function.
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(C4): f : J×H×H×H → H, g : J×H×H×H → BL(K, H) are continuous and

there exists an integrable function p : J → [0,∞) such that t ∈ J, x, y, z ∈ H,

E‖f(t, x, y, z)‖2
∨

E‖g(t, x, y, z)‖2 ≤ p(t)f0(E‖x‖2 + E‖y‖2 + E‖z‖2),

where f0 : [0,∞) → (0,∞) is a continuous nondecreasing function.

(C5): ηi : J ×J → R, (i = 1, 2) are measurable and there exists a constant L such

that

|ηi(t, s)|2 ≤ L, for t ≥ s ≥ 0.

Theorem 4.1. If the assumptions (H1) − (H4) and (C1) − (C5) hold and if

∫ T

0

m̃(s)ds <

∫ ∞

c

ds

f(s) + f0(s)
,

where m̃(t) = max{5(T +TrQ)(M
k1

+ N
k2

)p(t), Lm(t)}, then the problem (6) has at least

one mild solution on J .

Moreover using the same method as in Theorem 3.1 we can easily prove that the

problem (6) has at least one mild solution on J .

5. EXAMPLE

Let D be a bounded domain in RN with smooth boundary ∂D and consider the

stochastic partial differential equation

∂
(∂x(t, z)

∂t

)

= [
∂2x(t, z)

∂z2
+ f
(

t, x(t, z),
∂x(t, z)

∂t

)

]∂t

+g
(

t, x(t, z),
∂x(t, z)

∂t

)

dβ(t), a.e. (0, T ) × D

x(0, z) =

n
∑

i=1

ξi(z)x(ti, z), a.e. on D

∂

∂t
x(0, z) = ξ0(z), a.e. on D

x(t, z) = 0, a.e. on (0, T ) × ∂D(8)

where 0 ≤ t1 < t2 < · · · < tn ≤ T are given and β(t) is a L2(D)-valued Brownian

motion (see [14]). We consider (8) under the following conditions:

(C6): f(t, ·, ·) : R × R → R and g(t, ·, ·) : R × R → BL(L2(D)) are continuous for

each t ∈ J and the functions f(·, x, y) : J → H, g(·, x, y) : J → BL(L2(D)) are

strongly measurable functions for each (x, y) ∈ R × R.

(C7): For every positive constant k there exists αk ∈ L1(J) such that

sup
‖x‖, ‖y‖≤k

E‖f(t, x, y)‖2
∨

sup
‖x‖, ‖y‖≤k

E‖g(t, x, y)‖2
Q ≤ αk(t) for a.a t ∈ J.



726 P. BALASUBRAMANIAM AND J. Y. PARK

(C8): f : J × R × R → R, g : J × R × R → BL(L2(D)) are continuous and there

exists an integrable function m : J → [0,∞) such that

E‖f(t, x, y)‖2
∨

E‖g(t, x, y)‖2
Q ≤ m(t)f(E‖x‖2 + E‖y‖2), t ∈ J, x, y ∈ R,

(C9): ξi ∈ L0
2(Ω, L2(D)), i = 0, 1, 2 · ··, n.

The third right hand side term in the first equation of (8) represents certain change

in tension of the beam. This example introduces the noise in the model governing

the displacement of the beam. Let H = K = L2(D) and let A : H → H be defined

by

Ay = y′′, y ∈ D(A) = H2(D) ∪ H0
1 (D).

It is easily shown that A generates a fundamental solution S(t), t ∈ R. Also the

nonlocal condition satisfies the Lipschitz condition as

‖h(x)(·) − h(y)(·)‖2
L2(D) ≤

n
∑

i=1

‖ξi(·)‖2‖x(ti, ·) − y(ti, ·)‖2

where Mh =
∑n

i=1 ‖ξi(·)‖2. Then, (8) is the abstract formulation of (1), existence

solution follows immediately from Theorem 3.1.
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