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ABSTRACT. Sufficient conditions for controllability of nonlinear integrodifferential systems in a

separable Banach space with nonlocal conditions are established. The results are obtained using a

compactness type hypothesis involving the Hausdorff-measure of noncompactness, Kakutani’s fixed-

point theorem and Schauder’s fixed-point theorem.

1. INTRODUCTION

The problem of controllability of linear and nonlinear systems represented by or-

dinary differential equations in finite-dimensional space has been extensively studied.

The first works on the controllability of infinite-dimensional control systems are due

to Fattorini (Refs. 1-2). Fattorini considered systems defined in a Hilbert space,

with the linear operator being self-adjoint, densely defined and generator of a C0-

semigroup. His analysis was based the so-called ordered representation theory of a

Hilbert space for self-adjoint operators. Soon thereafter appeared several papers on

the controllability of linear systems with bounded operators. The most detailed study

was conducted by Triggiani (Refs. 3-5). Naito published a series of papers dealing

with the controllability of semilinear and Volterra equations (see Refs. 6-9). Here

we focus on some works on the controllability of infinite-dimensional control systems

proposed Quinn-Carmichael (Ref. 10), Benchohra-Ntouyas (Ref. 11-12), Han-Park

(Ref. 13), their approaches were mainly based on variety of fixed-point theory. Our

study is also in this direction. On the other hand the nonlocal condition, as gen-

eralization of the classical initial condition, was motivated by physical problems.

The pioneering work on nonlocal conditions was due to Byszewski (Ref. 14). In

the few past years, several papers have been devoted to study the existence of so-

lutions for differential equations with nonlocal conditions. Among others, we refer

to the papers by Balachandran-Chandrasekaran (Ref. 15-16), Balachandran-Ilamaran

(Ref. 17), Ntouyas-Tsamatos (Refs. 18-19) and Ntouyas (Ref. 20). The purpose of

this paper is to examine the controllability of nonlinear integrodifferential inclusion
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systems in Banach Space with nonlocal conditions. Using a compactness type hypoth-

esis involving the Hausdorff-measure of noncompactness , the Kakutani’s fixed-point

theorem and Schauder’s fixed-point theorem, we establish two controllability results

which involve convex-valued fields and the other nonconvex valued ones. As a especial

case of this paper, Li and Xue [21] studied the controllability of evolution inclusions

with nonlocal conditions.

2. PRELIMINARIES AND BASIC HYPOTHESES

Let X be a Banach space and T = [0, b] (0 < b <∞). we shall use the notations

Pf (X) = {B ⊆ X : nonempty, closed}

Pk(X) = {B ⊆ X : nonempty, compact}

Pb(X) = {B ⊆ X : nonempty, bounded}

Pfc(X) = {B ⊆ X : nonempty, closed, convex }

Pkc(X) = {B ⊆ X : nonempty, compact,convex }

Pwkc(X) = {B ⊆ X : nonempty, w-compact, convex}

A multifunction F : T → Pf (X) is said to be measurable, if for every z ∈ X the

function t → d(z, F (t)) = inf{||z − x|| : x ∈ F (t)} is measurable. This is equivalent

to saying that GrF = {(t, x) ∈ T × X : x ∈ F (t)} ∈ Σ × B(X) with Σ being the

Lebesgue σ-field of T and being B(X) the Borel σ-field of X (graph measurability),

or that there exists a sequence fn : T → X, n ≥ 1 of measurable functions such

that F (t) = {fn(t) : n ≥ 1} for all t ∈ T . A graph measurable multifunction F :

T × X × X → Pk(X) has the property that if x : T → X and y : T → X are

measurable, then t → F (t, x(t), y(t)) is graph measurable, i.e. GrF (·, x(·), y(·)) ∈

Σ×B(X)×B(X)×B(X). So By Aumann’s selection theorem we can find a measurable

function g : T → X such that g(t) ∈ F (t, x(t), y(t)) a.e. on T . We denote by S1
F the

set of all selectors of F (·) that belong to the Lebesgue-Bochner space L1(T,X), i.e.,

S1
F = {f(·) ∈ L1(T,X) : f(t) ∈ F (t) a.e. on T}. It is easy to see that this is closed

and it is nonempty if and only if inf[||x|| : x ∈ F (t)] ∈ L1(T,R). Using this set we

can define an integral for multifunctions, i.e.,
∫

T

F (t)dt =

{
∫

T

f(t)dt : f(·) ∈ S1
F

}

,

where the vector valued integral is in the sense of Bochner. We say that F (·) is

integrably bounded if and only if F (·) is measurable and |F (·)| ∈ L1(T,R), where

|F (t)| = sup[||x|| : x ∈ F (t)]. Finally the set S1
F is decomposable in the sense that if

(f1, f2, A) ∈ S1
F × S1

F × Σ, then f1χA + f2χAc ∈ S1
F .

Let Y , Z be Hausdorff topological spaces and let G : Y → 2Z \ {∅}. We say

that G(·) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)), if for
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all C ⊆ Z nonempty closed, G−(C) = {y ∈ Y : G(y) ∩ C 6= ∅} (resp. G+(C) =

{y ∈ Y : G(y) ⊆ C} ) is closed in Y . If Y, Z are both metric spaces, then the

above definition of lower semicontinuity is equivalent to saying that for all z ∈ Z,

y → dZ(z, G(y)) = inf[dZ(z, v) : v ∈ G(y)] is upper semicontinuity as R+-valued

function. Also if G(·) is closed valued and G(Y ) is compact, then the above definition

of upper semicontinuity is equivalent to saying that G(·) has a closed graph in Y ×Z.

In the sequel, X denotes a separable Banach space. The Hausdorff-measure of

noncompactness β : Pb(X) → R+ is defined by

β(A) = inf{r > 0 : A ⊂

n(r)
⋃

i=1

B(xr
i , r) forxr

i ∈ X}.

For convenience we recall some properties of β (see Ref. 22). L(X) denotes the Banach

space of bounded linear operators from X into itself with the usual operator norm.

C(T,X) denotes the Banach space of continuous functions from T into X with the

usual supremum norm.

Proposition 2.1 Let A, B ∈ Pb(X), λ ∈ R, then

(i) β(A) = 0 ⇔ A is relatively compact;

(ii) A ⊂ B ⇒ β(A) ≤ β(B);

(iii) β(con(A)) = β(A);

(iv) β(A) = β(A);

(v) β(A+B) ≤ β(A) + β(B);

(vi) β(λA) = |λ|β(A).

(vii) if U ∈ L(X), then β(UA) ≤ ||U ||Lβ(A).

(viii) if A ∈ Pb(C(T,X)) is equicontinuous, then

βC(A) = supt∈Tβ(A(t)),

where βC(·) is the Hausdorff measure of noncompactness in C(T,X).

We will also need the following property and lemma.

Proposition 2.2 [Ref. 23] If multifunction F : T → Pb(X) is measurable and

integrably bounded, then β(F (t)) is integrable and for every measurable set I ⊆ T

β(

∫

I

F (s)ds) ≤

∫

I

β(F (s))ds.

Lemma 2.1 [Ref. 24] Let{An : n ≥ 1} ⊂ Pfb(X) and An+1 ⊂ An for n ≥ 1. If

β(An) → 0(n→ ∞),the A =
⋂∞

n=1An is a nonempty, compact subset of X.

Consider the nonlinear integrodifferential system

x′(t) −A(t)x(t) ∈ F (t, x(t), V (x)(t)) + (Bu)(t) a.e. onT

x(0) +M(x) = x0,(1)

where {A(t)}t∈T is a family of linear operators that generate an evolution operator

U : ∆ = {(t, s) ∈ T × T : 0 ≤ s ≤ t ≤ b} → L(X). F : T × X × X → 2X \ ∅ is a
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multifunction,V : C(T,X) → C(T,X) is the Volterra integral operator corresponding

to the kernel K(t, s), i.e. V (x)(t) =
∫ t

0
K(t, s)x(s)ds,where K : ∆ = {(t, s) ∈ T × T :

0 ≤ s ≤ t ≤ b} → L(X) is a strongly continuous kernel; i.e. it is continuous from

∆ into L(X). Also, the control function u(·) is given in L2(T, U) and B is a linear

operator from U to X, where U is a separable Banach space and L2(T, U) is a Banach

space of admissible control function with norm ||u||L2 =
(

∫ b

0
||u(t)||2dt

)
1

2

.

Definition 2.1 A function x(·) ∈ C(T,X) such that

x(t) = U(t, 0)x(0) +

∫ t

0

U(t, s)(f +Bu)(s)ds, t ∈ T

with f ∈ S1
F (·,x(·),V (x)(·)) and x(0) +M(x) = x0 is called a mild solution of (1).

Definition 2.2 The system (1) is said to be nonlocally controllable on T if, for

every x0, x1 ∈ X, there exists a control u ∈ L2(T, U) such that the mild solution x(·)

of (1) satisfies x(b) +M(x) = x1.

For the proof of the main results in Section 3, we shall need the following hypothe-

ses:

H(1): {A(t)} is a family of linear, densely defined operators that generate a strongly

continuous evolution operator U : ∆ = {(t, s) ∈ T × T : 0 ≤ s ≤ t ≤ b} → L(X).

H(2): F : T × X × X → Pkc(X) is a multifunction such that: (i) (t, x, y) →

F (t, x, y) is graph measurable; (ii) for every t ∈ T , (x, y) → F (t, x, y) is u.s.c. from

X×X into Xw, where Xw denotes the Banach space X with the weak topology ; (iii)

|F (t, x)| = sup{||v|| : v ∈ F (t, x, y), ||x|| ≤ n, ||y|| ≤ m} ≤ ϕn(t) + ψm(t) a.e, with

ϕn(·), ψm(·) ∈ L1(T,R) and

lim
1

n

∫ b

0

ϕn(s)ds = lim
1

m

∫ b

0

ψm(s)ds = 0.

H(3): for A1, A2 ∈ Pb(X), β(F (t, A1, A2)) ≤ k(t)(β(A1) + β(A2)) with k(·) ∈

L1(T,R).

H(4): bounded linear operator B : U → X is compact and ||B||L ≤ M1. M :

C(T,X) → X is a compact operator such that

lim
||y||→∞

||M(y)||

||y||
= 0.

H(5): the linear operator W : L2(T, U) → X, defined by

Wu =

∫ b

0

U(b, s)Bu(s)ds,

has an invertible operator W−1 which takes values in L2(T, U) \ kerW and there

exist positive constant M2 such that ||W−1|| ≤ M2. For A ∈ Pfb(X), |W−1A|(t) =

sup{||f(t)|| : f ∈ W−1(A)} ≤ φn(t) a.e. on T with φn(·) ∈ L1(T,R) and |A| =

sup{||x|| : x ∈ A} ≤ n.
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3. MAIN RESULTS

Theorem 3.1 If hypotheses H(1)-H(5) hold, the problem (1) is nonlocally control-

lable on T .

Proof Using hypothesis H(5) for an arbitrary function y(·) ∈ C(T,X), define the

control

uf(t) = W−1

[

x1 −M(y) − U(b, 0)(x0 −M(y)) −

∫ b

0

U(b, s)f(s)ds

]

(t),

where f(·) ∈ S1
F (·,y(·),V (y)(·)). We shall show that, when using this control, the multi-

function R : C(T,X) → 2C(T,X), defined by

R(y) =
{

x ∈ C(T,X) : x(t) = U(t, 0)(x0 −M(y)) + γ(f +Buf)(t), f ∈ S1
F (·,y(·),V (y(·))

}

,

where γ(f +Buf) ∈ C(T,X) is defined by

γ(f +Buf)(t) =

∫ t

0

U(t, s)(f +Buf)(s)ds,

has a fixed point. This fixed point is then a solution of the system (1). Clearly,

x1 −M(y) ∈ (R(y))(b).

Step 1 We claim that R(·) has nonempty, closed, convex valued.

Let y(·) ∈ C(T,X). From H(2)(i), (t, x, y) → F (t, x, y) is graph measurable, then

t → F (t, y(t), V (y)(t)) is graph measurable. So By Aumann’s selection theorem we

can find a measurable function f : T → X such that f(t) ∈ F (t, y(t), V (y)(t)) a.e.

on T ; i.e. f ∈ S1
F (·,y(·),V (y)(·)). Therefore for y ∈ C(T,X), R(y) 6= ∅. Clearly R(·) is

convex valued and because of Proposition 3.1 of Papageorgiou (Ref. 25) S1
F (·,y(·)) ∈

Pwkc(L
1(T,X)) for every y ∈ C(T,X), we also deduce that R(·) is closed valued, then

R : C(T,X) → Pfc(C(T,X)).

Step 2 There exists a positive integer n0 ≥ 1 such that R(Bn0
) ⊆ Bn0

, where

Bn0
= {y ∈ C(T,X) : ||y||C ≤ n0}.

Suppose not. Then we can find yn ∈ C(T,X), xn ∈ R(yn) such that ||yn||C ≤ n

and ||xn||C > n. Then we have for every n ≥ 1,

xn(t) = U(t, 0)(x0 −M(yn)) + γ(fn +Bufn
)(t)

for some fn ∈ S1
F (·,yn(·),V (yn)(·)). So we get

n < ||xn||C ≤ M3(||x0|| + ||M(yn)||) + ||γ(fn)||C + ||γ(Bufn
||C(2)

where M3 > 0 is such that ||U(t, s)||L ≤M3. Note that

||V (yn)||C = max
t∈[0,b]

||

∫ t

0

K(t, s)yn(s)ds|| ≤ Lbn,

where ||K(s, t)|| ≤ L, for all (S, t) ∈ ∆. Let m = [Lbn] + 1, then

||γ(fn)||C = sup
t∈[0,b]

||γ(fn)(t)|| ≤ sup
t∈[0,b]

∫ t

0

||U(t, s)||L · ||fn(s)||ds
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≤ M3

∫ b

0

[ϕn(s) + ψm(s)]ds,(3)

||γ(Bufn)||C ≤ sup
t∈[0,b]

∫ t

0

||U(t, s)||L · ||B||L · ||ufn
(s)||ds ≤M2M3b

1

2 ||ufn
||L2(4)

and

||ufn
||L2 = ||W−1 [x1 −M(yn) − U(b, 0)(x0 −M(yn)) − γ(fn)(b)] ||

≤ M1

[

||x1|| +M3||x0|| + (1 +M3)||M(yn)|| +M3

∫ b

0

[ϕn(s) + ψm(s)]ds

]

(5)

Hence by (2)-(5) we have

n < (M3 +M1M2M
2
3 b

1

2 )||x0|| +M1M2M3b
1

2 ||x1||

+ (1 +M1M2b
1

2 +M1M2M3b
1

2 )M3||M(yn)||

+ (M3 +M1M2M
2
3 b

1

2 )

∫ b

0

[ϕn(s) + ψm(s)]ds

⇒ 1 <
1

n

[

C1 + C2||M(yn)|| + C3

∫ b

0

[ϕn(s) + ψm(s)]ds

]

(6)

where C1 = (M3 + M1M2M
2
3 b

1

2 )||x0|| + M1M2M3b
1

2 ||x1||, C2 = (1 + M1M2b
1

2 +

M1M2M3b
1

2 )M3 and C3 = M3 + M1M2M
2
3 b

1

2 . Observe that H(2)(iii)and H(4). So

by passing to the limit as n → ∞ in inequality (6), we get 1 ≤ 0, a contradiction.

Thus we conclude that there exists n0 ≥ 1 such that R(Bn0
) ⊆ Bn0

.

Step 3 R(Bn0
) is equicontinuous.

To this end, let x ∈ R(Bn0
) and t2, t1 ∈ T , t2 > t1 > 0, m0 = [Lbn0] + 1. We have

for some y ∈ Bn0
, f ∈ S1

F (·,y(·),V (y)(·)) and any ε > 0 such that t1 − ε > 0,

||x(t2) − x(t1)|| = ||γ(f +Buf)(t2) − γ(f +Buf)(t1)||

= ||

∫ t2

0

U(t2, s)[f(s) + (Buf)(s)]ds−

∫ t1

0

U(t1, s)[f(s) + (Buf)(s)]ds||

≤

∫ t2

t1

||U(t2, s)||L · ||f(s) + (Buf)(s)||ds

+

∫ t1

0

||U(t2, s) − U(t1, s)||L · ||f(s) + (Buf)(s)||ds

≤ M3

∫ t2

t1

[ϕn0
(s) + ψm0

(s) +M2||uf(s)||]ds

+

∫ t1

t1−ε

||U(t2, s) − U(t1, s)||L · ||f(s) + (Buf)(s)||ds

+

∫ t1−ε

0

||U(t2, s) − U(t1, s)||L · ||f(s) + (Buf)(s)||ds

≤ M3

∫ t2

t1

[ϕn0
(s) + ψm0

(s) +M2||uf(s)||]ds
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+ 2M3

∫ t1

t1−ε

[ϕn0
(s) + ψm0

(s) +M2||uf(s)||]ds

+

∫ t1−ε

0

||U(t2, s) − U(t1, s)||L[ϕn0
(s) + ψm0

(s) +M2||uf(s)||]ds

≤ M3

∫ t2

t1

[ϕn0
(s) + ψm0

(s)]ds+ 2M3

∫ t1

t1−ε

[ϕn0
(s) + ψm0

(s)]ds

+

∫ t1−ε

0

||U(t2, s) − U(t1, s)||L[ϕn0
(s) + ψm0

(s)]ds

+

(
∫ t1−ε

0

||U(t2, s) − U(t1, s)||
2
Lds

)

1

2

M2||uf ||L2 +M2M3(t2 − t1)
1

2 ||uf ||L2

+ 2M2M3ε
1

2 ||uf ||L2.

and

||uf ||L2 ≤ M1

[

M3||x0|| + ||x1|| + (M3 + 1)|M(Bn0
)| +M3

∫ b

0

[ϕn0
(s) + ψm0

(s)]ds

]

= M4,

where |M(Bn0
)| = sup[||M(y)|| : y ∈ Bn0

] is bounded (sinceM is a compact operator).

Also, we know that t→ U(t, s) is continuous in the operator norm topology, uniformly

s ∈ T such that t− s is bounded away from zero.

Now, given ε′ > 0, by absolute continuity of the Lebesgue integral we can choose

ε > 0, such that

2M3

∫ t1

t1−ε

[ϕn0
(s) + ψm0

(s)]ds+ 2M2M3M4ε
1

2 <
ε′

2
.

By the continuity property of U(·, s) mentioned above and absolute continuity of the

Lebesgue integral, we can find δ > 0 such that if t2 − t1 < δ, we have

M3

∫ t2

t1

[ϕn0
(s) + ψm0

(s)]ds+

∫ t1−ε

0

||U(t2, s) − U(t1, s)||L[ϕn0
(s) + ψm0

(s)]ds

+

(
∫ t1−ε

0

||U(t2, s) − U(t1, s)||
2
Lds

)

1

2

M2M4 +M2M3M4(t2 − t1)
1

2 <
ε′

2
.

So R(Bn0
) is equicontinuous.

LetA1 = convR(Bn0
), then A1 is also equicontinuous. We define sequence An+1 =

convR(An) (n ≥ 1), then An+1 ⊂ An and An is equicontinuous, closed and convex

subset of C(T,X) when n ≥ 1.

Step 4 βC(An) → 0, as n→ ∞.

Let A ∈ Pfb(Bn0
) be equicontinuous. In what follows, we set A(t) = {x(t) : x(·) ∈

A} and V (A)(s) = {
∫ s

0
K(s, τ)x(τ)dτ : x ∈ A}. Observe that s→ A(s) is measurable,

since if {xn}n≥1 ⊆ A is dense in A, then from the continuity of the evaluation map, we

have that A(s) = {xn(s) : n ≥ 1}, establishing the measurability of A(·). Similarly,

using Theorem 3.1 of Kandilakis-Papageorgiou (Ref. 26), we have that V (A)(s) =

{
∫ s

0
K(s, τ)xn(τ)dτ : n ≥ 1} ⇒ s→ V (A)(s) is measurable. As in proof Theorem 3.2
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of Papageorgiou (Ref. 27), we have that s → H(s) = convF (s, A(s), V (A)(s)) is

measurable for the Lebesgue σ−field on T . By H(2)(iii), |H(s)| = sup{||h|| : h ∈

H(s)} ≤ ϕn0
(s) + ψm0

(s) a.e. on T , then H(·) is integrably bounded. Let

B̂ = {x1−M(x)−U(b, 0)(x0−M(x))−

∫ b

0

U(b, s)f(s)ds : f ∈ S1
F (·,x(·),V (x)(·)), x ∈ A},

we can easily check that B̂ is bounded subset in X. Let |B̂| ≤ n1 and Ŵ = {f ∈

L2(T, U) : |f(t)| ≤ φn1
(t) a.e}. Also, L2(T, U) is separable, there exists {gn : n ≥

1} ⊆ Ŵ such that it is dense in Ŵ . Let G(t) = {gn(t) : n ≥ 1}, then G(·) is integrable

bonded. By H(5)(ii), {uf ∈ L2(T, U) : f ∈ S1
F (·,x(·),V (x(·)), x ∈ A} ⊆ S1

G(·). We have

R(A)(t) ⊆ U(t, 0)(x0 −M(A)) +

∫ t

0

U(t, s)[(H(s) +BG(s)]ds.

By Proposition 2.1-2.2, H(3) and note that M , B are compact operators, we have

β(R(A)(t)) ≤ β(U(t, 0)(x0 −M(A))) + β(

∫ t

0

U(t, s)[H(s) +BG(s)]ds)

≤

∫ t

0

β(U(t, s)H(s))ds+

∫ t

0

β(U(t, s)BG(s))ds

≤ M3

∫ t

0

β(H(s))ds = M3

∫ t

0

β(F (s, A(s), V (A)(s)))ds

≤ M3

∫ t

0

k(s)[β(A(s)) + β(V (A)(s))]ds(7)

= M3

∫ t

0

k(s)[β(A(s)) + β(V (A)(s))]ds.

From the definition of the Volterra integral operator V (·), we have

β(V (A)(s)) = β[

∫ s

0

K(s, τ)A(τ)dτ ]

≤

∫ s

0

β(K(s, τ)A(τ))dτ

≤

∫ s

0

Lβ(A(τ))dτ

⇒

∫ t

0

β(V (A)(s))ds ≤

∫ t

0

∫ s

0

Lβ(A(τ))dτds ≤ Lb

∫ t

0

β(A(τ))dτ.

β(R(A)(t)) ≤

∫ t

0

k(s)M3(1 + Lb)β(A(s))ds.

We choose λ > M3(1 + Lb) and let ψ(A) = supt∈T [e−λ
R

t

0
k(s)dsβ(A(t)]. Using the

properties of β(·) and the fact thatA ⊂ Bn0
is equicontinuous, we can easily check that

ψ(·)is a sublinear measure of noncompactness, in the sense of Banas-Goebel(Ref. 22).

We have

β(R(A)(t)) ≤

∫ t

0

k(s)M3(1 + Lb)e−λ
R

s

0
k(τ)dτeλ

R

s

0
k(τ)dτβ(A(s))ds
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≤

∫ t

0

k(s)M3(1 + Lb)ψ(A)eλ
R

s

0
k(τ)dτds

=
M3(1 + Lb)ψ(A)

λ

∫ t

0

d(eλ
R

s

0
k(τ)dτ )

=
M3(1 + Lb)

λ
eλ

R

t

0
k(s)dsψ(A).

Then

β(R(A)(t))e−λ
R

t

0
k(s)ds ≤

M3(1 + Lb)

λ
ψ(A), t ∈ T

⇒ ψ(R(A)) ≤
M3(1 + Lb)

λ
ψ(A).

Set ρ = M3(1+Lb)
λ

< 1 and note that

ψ(A) = sup
t∈T

[e−λ
R

t

0
k(s)dsβ(A(t))] ≥ m sup

t∈T

β(A(t)) = mβC(A),

where m = e−λ
R

b

0
k(s)ds > 0, then

βC(An+1) ≤
1

m
ψ(An+1) =

1

m
ψ(convR(An)) ≤

ρ

m
ψ(An)

⇒ βC(An+1) ≤
ρn

m
ψ(A1), forn ≥ 1 ⇒ βC(An) → 0, asn→ ∞.

Invoking Lemma 2.1, we get A0 =
⋂∞

n=1An is a nonempty, compact convex subset

of C(T,X) and R(A0) ⊂ A0.

Step 5 R : A0 → Pkc(A0) is u.s.c.

To this end, we only need to show that R(·) has a closed graph. Let {ym : m ≥

1} ⊆ A0, ym → y in C(T,X) and xm ∈ R(ym), xm → x in C(T,X). Then by

definition we have

xm(t) = U(t, 0)(x0 −M(ym)) + γ(fm +Bufm
)(t)

with fm ∈ S1
F (·,ym(·),V (ym)(·)). Let G(t) = conv

⋃

m≥1 F (t, ym(t), V (ym)(t)). Because of

hypothesis H(2)(ii) and Theorem 7.4.2 of Klein-Thompson (Ref. 28), we have that

G(t) ∈ Pwkc(X), G(·) is clearly measurable (since for each m ≥ 1 t → F (t, ym(t),

V (ym(t)) is measurable) and |G(t)| ≤ ϕn0
(t) + ψm0

(t) a.e on T . So from Proposition

3.1 of Papageorgiou (Ref. 25), we have that S1
G ∈ Pwkc(L

1(T,X)) and since {fm}m≥1 ⊆

S1
G, we may assume by to a subsequence if necessary, that fm → f in L1(T,X)w. The

invoking Theorem 3.1 of Papageorgiou (Ref. 29), we get that

f(t) ∈ convw − lim{fm(t)}m≥1 ⊆ convw − limF (t, ym(t), V (ym)(t))

⊆ F (t, y(t), V (y)(t)) a.e. onT,

the last inclusion being a consequence of hypothesis H(2)(ii). Therefore f ∈ S1
F (·,y(·),V (y)(·)).

Also we can easily verify that for every t ∈ T , γ(fm + Bufm
)(t) → γ(f + Buf)(t) in

Xw, as m→ ∞. Hence

U(t, 0)(x0 −M(ym)) + γ(fm +Bufm
)(t) → U(t, 0)(x0 −M(y)) + γ(f +Buf)(t)
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in Xw as m→ ∞, t ∈ T . Therefore we get

x(t) = U(t, 0)(x0 −M(y)) + γ(f +Buf)(t), t ∈ T

with f ∈ S1
F (·,y(·),V (y)(·)), i.e., R(·) has a closed graph and so is u.s.c. By the Kakutani’

fixed point theorem, we deduce that R(·) has a fixed point and thus the system (1)

is nonlocally controllable on T .

Now we consider the nonconvex version of the above result. Our hypothesis on the

orientor field is now the following:

H(2′): F : T×X×X → Pf(X) is a multifunction such that: (i) (t, x, y) → F (t, x, y)

is graph measurable; (ii) for every t ∈ T , (x, y) → F (t, x, y) is l.s.c. from X ×X into

X; (iii) |F (t, x)| = sup{||v|| : v ∈ F (t, x, y), ||x|| ≤ n, ||y|| ≤ m} ≤ ϕn(t) + ψm(t) a.e,

with ϕn(·), ψm(·) ∈ L1(T,R) and

lim
1

n

∫ b

0

ϕn(s)ds = lim
1

m

∫ b

0

ψm(s)ds = 0.

Theorem 3.2 If hypotheses H(1), H(2′),H(3)-H(5)hold, then problem(1) is nonlo-

cally controllable on T .

Proof Consider the multivalued Nemitsky operator N : C(T,X) → 2L1(T,X) de-

fined by N(x) = S1
F (·,x(·),V (x)(·)). we shall show that N(·) has nonempty, closed,

decomposable values and is l.s.c from C(T,X) to L1(T,X).

The nonemptiness, closedness and decomposability of the values of N(·) are easy

to check. To check the lower semicontinuity of N(·), we need to show that for every

u ∈ L1(T,X), x → d(u,N(x)) is an upper semicontinuous R+-valued function. To

this end, we have

d(u,N(x)) = inf [||u− v||1 : v ∈ N(x)]

= inf

[
∫ b

0

||u(t) − v(t)|| dt : v ∈ N(x)

]

=

∫ b

0

inf [||u(t) − v|| : v ∈ F (t, x(t), V (x)(t))] dt

=

∫ b

0

d(u(t), F (t, x(t), V (x)(t))) dt

(see Ref. 30)). We shall show that every λ ≥ 0, the superlevel set Uλ = {x ∈ C(T,X) :

d(u,N(x)) ≥ λ} is closed in C(T,X). For this purpose let {xn}n≥1 ⊆ Uλ and assume

that xn → x in C(T,X), then for all t ∈ T , xn(t) → x(t) and V (xn)(t) → V (x)(t)

in X. By virtue of hypothesis H(2′) (ii), (x, y) → d(u(t), F (t, x, y)) is an upper

semicontinuous R+-valued function. So via Fatou’s Lemma, we have

λ ≤ limd (u,N(xn)) = lim

∫ b

0

d (u(t), F (t, xn(t), V (xn)(t))) dt

≤

∫ b

0

limd (u(t), F (t, xn(t), V (xn)(t))) dt



NONLINEAR INTEGRODIFFERENTIAL SYSTEMS 739

≤

∫ b

0

d (u(t), F (t, x(t), V (x)(t))) dt = d (u,N(x)) .

Therefore x ∈ Uλ and this proves the lower semicontinuity of N(·). This allows

us to apply Theorem 3 of Bressan-Colombo (Ref. 31) and obtain a continuous map

r : C(T,X) → L1(T,X) such that r(x) ∈ N(x) for every x ∈ C(T,X). Consider the

map π : C(T,X) → C(T,X) defined by

π(x)(t) = U(t, 0)(x0 −M(x)) + γ(r(x) +Bur(x)).

As in the the proof of Step 2-3 of Theorem 3.1, we can show that there exist n0 such

that π(Bn0
) ⊆ Bn0

and π(Bn0
) is equicontinuous.

LetA1 = convπ(Bn0
), then A1 is also equicontinuous. Consider the sequence defined

by An+1 = convπ(An)(n ≥ 1), then An+1 ⊂ An and An is equicontinuous, closed and

convex subset of C(T,X) when n ≥ 1. As in the proof of Step 4 of Theorem 3.1,

A0 =
⋂∞

n=1An is a nonempty, compact convex subset of C(T,X) and π(A0) ⊂ A0.

Finally, we show that π : A0 → A0 is continuous. Let {xn : n ≥ 1} ⊂ A0 and

xn → x in C(T,X). Then by definition

π(xn)(t) = U(t, 0)(x0 −M(x)) + γ(r(xn) +Bur(xn)).

Since r(·) and B are continuous map, we only need to show that ur(xn) → ur(x) in

L2(T, U), as n→ ∞. Note that

ur(xn) = W−1

[

x1 −M(xn) − U(b, 0)(x0 −M(xn)) −

∫ b

0

U(b, s)r(xn)ds

]

,

by the continuity property of operators W−1, M , U(b, ·) and map r(·), then ur(xn) →

ur(x) in L2(T, U), as n→ ∞. So π : A0 → A0 is continuous. Thus applying Schauder’

fixed point theorem, there exist x ∈ A0 such that x = π(x). Then system (1) is

nonlocally controllable on T .
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