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ABSTRACT. In this paper, we study the singular discrete boundary value problem






∆[φ(∆u(t − 1))] + g(t, u(t)) = 0, t ∈ {1, 2, . . . , T},

u(0) = u(T + 1) = 0

where φ(s) = |s|p−2s, p > 1, and the function g is superlinear at infinity and may change sign or be

singular at u = 0. Existence of solutions is obtained via an upper and lower solutions method.
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1. INTRODUCTION

In this paper we study the existence of positive solutions for the singular discrete

boundary value problem

(1.1)







∆[φ(∆u(t − 1))] + g(t, u(t)) = 0, t ∈ Z[1, T ],

u(0) = u(T + 1) = 0,

where φ(s) = |s|p−2s, p > 1; the function g : Z[1, T ] × R+
0 → R (R+

0 = (0,∞)) is

continuous in the second variable, is superlinear at infinity and may change sign.

Throughout this paper, for integers a, b with a < b, we shall use the notations

Z[a, b] = {a, a + 1, . . . , b}, Z[a, b) = {a, . . . , b − 1}, Z[a,∞) = {a, a + 1, . . . }, etc.

Discrete boundary value problems have been the subject of many investigations.

In particular, [1, 4–6, 8–10, 12, 14, 19–21, 27–30, 41–47], among others, have studied

problems that are related to that of this paper. Several of these [4, 5, 10, 20, 21,

45] study the existence of positive solutions under the assumption that the nonlinear

term is positive. In [5], g is allowed to be singular at u = 0 and superlinear at u = ∞.
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We note that (1.1) is a discrete model of the p-Laplace equation which occurs in

the study of many diffusion phenomena such as non-Newtonian fluid flow and the

turbulent flow of gas in porous media. We refer the readers to [2, 3, 11, 13, 15–18,

22, 26, 31–33, 35–40] for results in the continuous case as well as general results on

singular boundary value problems. In particular, [2, 3, 33] deal with the superlinear

problem; [11, 22] study the case where g is allowed to change sign, and [18] considers

the possibility of singularities at u = 0, t = 0 or t = 1. More recently, in [7, 23–25,

34], the case where g may change sign and also be singular at u = 0, t = 0 or t = 1

is studied. Moreover, in [7, 23, 24, 34], g(t, u) is allowed to be superlinear at u = ∞.

The method of upper and lower solutions is used in these works.

The present work is inspired by [18, 24, 25]. In particular, we shall develop an

upper and lower solutions method (Theorem 2.1) by extending that of [32, 38, 39] for

the continuous case and [47] for the discrete case. Our main results (Theorems 3.1

and 3.2) extend those of [5, 37] as well as the discrete analogs of [2, 3, 7, 11, 18,

22–25, 37].

2. UPPER AND LOWER SOLUTIONS

Consider the discrete boundary value problem

(2.1)







∆[φ(∆u(t − 1))] + f(t, u(t)) = 0, t ∈ Z[1, T ],

u(0) = A, u(T + 1) = B,

where A and B are given real numbers, and f(t, x) : Z[1, T ] × R → R is continuous

in x.

Definition 2.1. A function α(t) : Z[0, T + 1] → R is said to be a lower solution of

(2.1) if

∆[φ(∆α(t − 1))] + f(t, α(t)) ≥ 0, t ∈ Z[1, T ],

α(0) ≤ A, α(T + 1) ≤ B.

The definition of an upper solution β of (2.1) is given similarly by reversing all the

above inequalities.

Theorem 2.1. Let α, β be respectively a lower and an upper solution of (2.1) such

that α(t) ≤ β(t) for all t ∈ Z[0, T + 1]. Then (2.1) has at least one solution u(t)

which satisfies

α(t) ≤ u(t) ≤ β(t), ∀ t ∈ Z[0, T + 1].

To prove Theorem 2.1, consider first the modified discrete boundary value problem

(2.2)







∆[φ(∆u(t − 1))] + f ∗(t, u(t)) = 0, t ∈ Z[1, T ],

u(0) = A, u(T + 1) = B,
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where

f ∗(t, x) =























f(t, α(t)) +
α(t) − x

1 + x2
, x < α(t),

f(t, x), α(t) ≤ x ≤ β(t),

f(t, β(t)) +
β(t) − x

1 + x2
, x > β(t).

It is readily seen that f ∗(t, x) : Z[1, T ] × R → R is continuous in x. Moreover, there

exists H > 0 such that

(2.3) |f ∗(t, x)| ≤ H, ∀ (t, x) ∈ Z[1, T ] × R.

Equip E = {u : Z[0, T + 1] → R} with the norm ‖u‖ = max{|u(t)| : t ∈ Z[0, T +

1]}. Then E is the Banach space. Define the operator Φ : E → E by

(Φu)(t) =























A, t = 0,

B +

T
∑

s=t

φ−1

(

τ +

s
∑

r=1

f ∗(r, u(r))

)

, t ∈ Z[1, T ],

B, t = T + 1,

where τ is a solution of the equation

(2.4) w(τ) := φ−1(τ) +
T
∑

s=1

φ−1

(

τ +
s
∑

r=1

f ∗(r, u(r))

)

= A − B.

In the next two lemmas, we will show that Φ is well-defined, bounded and continuous.

Lemma 2.1. For each fixed u ∈ E, (2.4) has a unique solution τ , and |τ | ≤ C, where

C is a positive constant independent of u.

Proof. Let u ∈ E be fixed. Then we have, by the definition of w,

(2.5) (T + 1)φ−1(τ − TH) ≤ w(τ) ≤ (T + 1)φ−1(τ + TH),

for all τ ∈ R, where H is as in (2.3). As φ−1 is a continuous, strictly increasing

function on R with φ−1(R) = R, so is w (for each fixed u ∈ E). Thus, there exists a

unique τ ∈ R satisfying (2.4). By (2.4) and (2.5), we have

τ ≤ φ

(

A − B

T + 1

)

+ TH, τ ≥ φ

(

A − B

T + 1

)

− TH,

and hence τ is bounded. This establishes Lemma 2.1. �

Lemma 2.2. Φ : E → E is bounded and continuous.

Proof. Let u ∈ E be fixed and τ ∈ R be the unique solution of (2.4) corresponding

to u. Then by Lemma 2.1, we have

(2.6) ‖Φu‖ ≤ M,

where M is a positive constant independent of u, showing that Φ is bounded.
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Now let
{

u0, {un}
}

⊂ E with un → u0. Then, by Lemma 2.1, |τn| ≤ C,

n = 0, 1, 2, . . ., where C is independent of un. Suppose that τ ∗ ∈ [−C, C] is an

accumulation point of {τn}. Then there is a subsequence of {τn} which converges to

τ ∗, and

φ−1(τ ∗) +
T
∑

s=1

φ−1(τ ∗ +
s
∑

r=1

f ∗(r, u0(r))) = A − B.

It follows from the uniqueness of Lemma 2.1 that τ ∗ = τ0, and hence τn → τ0. Thus,

lim
n→∞

(Φun)(t) = (Φu0)(t)

and the proof is complete. �

By virtue of Lemma 2.2, the Brouwer fixed point theorem tells us that Φ has at

least one fixed point in E. Let u be a fixed point of Φ. Then it is easy to see that

∆u(t) =















−φ−1(τ), t = 0,

−φ−1

(

τ +
t
∑

r=1

f ∗(r, u(r))

)

, t ∈ Z[1, T ],

and hence u(t) is a solution to (2.2).

Proof of Theorem 2.1. To complete the proof of Theorem 2.1, we only need to

show that the above solution u(t) of (2.2) satisfies

α(t) ≤ u(t) ≤ β(t)

for all t ∈ Z[0, T + 1].

To see that u(t) ≤ β(t) on Z[0, T + 1], let x(t) = u(t) − β(t) and suppose that

u(t) > β(t) for some t ∈ Z(0, T + 1). Since x(0) ≤ 0, x(T + 1) ≤ 0, there exists

a point t0 ∈ Z(0, T + 1) such that x(t0) = maxt∈Z[0,T+1] x(t) > 0, ∆x(t0 − 1) ≥ 0,

∆x(t0) ≤ 0, and

∆[φ(∆u(t0 − 1))] = φ[∆u(t0)] − φ[∆u(t0 − 1)]

≤ φ[∆β(t0)] − φ[∆β(t0 − 1)]

= ∆[φ(∆β(t0 − 1))].

It follows that

∆[φ(∆u(t0 − 1))] = −f ∗(t0, u(t0))

= −

[

f(t0, β(t0)) +
β(t0) − u(t0)

1 + u2(t0)

]

> ∆[φ(∆β(t0 − 1))],

which is a contradiction.

Similarly, we can prove u(t) ≥ α(t) on Z[0, T + 1] and the proof of Theorem 2.1 is

complete. �
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Remark 2.1. It is an immediate corollary of Theorem 2.1 that if f(t, x) : Z[1, T ] ×

R → R is bounded and continuous in x, then (2.1) has at least one solution.

3. MAIN RESULTS

Motivated by the example g(t, u) = σ(u−a + ub + sin(8t/T )), where a > 0, b ≥

0, σ > 0, we have the following main results for the singular discrete boundary value

problem (1.1).

Theorem 3.1. Assume that there exist constants L > 0 and ε > 0 such that

(3.1) g(t, x) > L, ∀(t, x) ∈ Z[1, T ] × (0, ε],

and that there exists a function q : Z[1, T ] → (0,∞) such that

(3.2) |g(t, x)| ≤ q(t)(F (x) + Q(x)), ∀(t, x) ∈ Z[1, T ] × R+
0

with F > 0 continuous and nonincreasing, Q ≥ 0 continuous, and Q/F nondecreas-

ing. Further, assume that

(3.3) sup
c∈(0,∞)

1

φ−1

(

1 + Q(c)
F (c)

)

∫ c

0

du

φ−1(F (u))
> b0,

where

b0 = max
t∈Z[1,T ]

max

{

t
∑

s=1

φ−1

( t
∑

r=s

q(r)

)

,
T
∑

s=t

φ−1

( s
∑

r=t

q(r)

)

}

.

Then (1.1) has at least one positive solution.

First, in view of (3.3), we may choose 0 < µ < M such that

(3.4)
1

φ−1

(

1 + Q(M)
F (M)

)

∫ M

µ

du

φ−1(F (u))
> b0.

For µ above and ε in (3.1), choose a sequence {εn} such that min{ε, µ} > εn ↓ 0 as

n → ∞. Let λ(t) = t(T + 1 − t), t ∈ Z[0, T + 1], and set

(3.5) m = min

{

4
ε − ε1

(T + 1)2
,

(

L

|∆[φ(∆λ)]|0 + 1

)1/(p−1)
}

,

where

|∆[φ(∆λ)]|0 = max
t∈Z[1,T ]

|∆[φ(∆λ(t − 1))]|.

Now, we consider the sequence of boundary value problems

(3.6)n







∆[φ(∆u(t − 1))] + g(t, u(t)) = 0, t ∈ Z[1, T ],

u(0) = u(T + 1) = εn.

It is clear that any solution un(t) of (3.6)n is an upper solution for (3.6)n+1.

Lemma 3.1. The function αn(t) = mλ(t) + εn is a lower solution of (3.6)n.
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Proof. Note that

αn(t) ≤ mλ(t) + ε1 ≤ m(T + 1)2/4 + ε1 ≤ ε, ∀ t ∈ z[0, T + 1],

and thus by (3.1)

g(t, αn(t)) > L.

It follows that

∆[φ(∆αn(t − 1))] + g(t, αn(t)) > L − mp−1(1 + |∆[φ(∆λ)]|0) ≥ 0,

thus establishing the lemma. �

Lemma 3.2. The problem (3.6)1 has at least one solution.

Proof. Consider the regular (nonsingular) boundary value problem

(3.7)











∆[φ(∆u(t − 1))] + q(t)F (u(t))

(

1 + Q(M)
F (M)

)

= 0, t ∈ Z[1, T ],

u(0) = u(T + 1) = ε1.

It is easy to see α0(t) ≡ ε1 is a lower solution of (3.7). By Remark 2.1, one can see

that the boundary value problem

(3.8)











∆[φ(∆u(t − 1))] + q(t)F (ε1)

(

1 + Q(M)
F (M)

)

= 0, t ∈ Z[1, T ],

u(0) = u(T + 1) = ε1,

has a solution β0(t). Since ∆[φ(∆β0(t − 1))] ≤ 0 on Z[1, T ], β0(t) is concave on

Z[0, T + 1], and hence β0(t) ≥ ε1. Further,

∆[φ(∆β0(t − 1))] = −q(t)F (ε1)

(

1 +
Q(M)

F (M)

)

≤ −q(t)F (β0(t))

(

1 +
Q(M)

F (M)

)

,

so that β0 is an upper solution of (3.7). Thus by Theorem 2.1, (3.7) has a solution

u(t) such that ε1 ≤ u(t) ≤ β0(t).

Since ∆[φ(∆u(t − 1))] ≤ 0, we note that the solution u(t) of (3.7) is concave on

Z[0, T + 1], and there exists t0 ∈ Z(0, T + 1) with u(t0) = ‖u‖, ∆u(t) ≥ 0 on Z[0, t0)

and ∆u(t) ≤ 0 on Z[t0, T + 1).

For 0 ≤ s < t0, sum (3.7) from s to t0 to obtain

φ[∆u(t0)] = φ[∆u(s)] −

(

1 +
Q(M)

F (M)

) t0−1
∑

r=s

F (u(r + 1))q(r + 1).
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Since ∆u(t0) ≤ 0, we have

φ[∆u(s)] = φ[∆u(t0)] +

(

1 +
Q(M)

F (M)

) t0−1
∑

r=s

F (u(r + 1))q(r + 1)

≤ F (u(s + 1))

(

1 +
Q(M)

F (M)

) t0
∑

r=s+1

q(r).

It follows that

(3.9)
∆u(s)

φ−1(F (u(s + 1)))
≤ φ−1

(

1 +
Q(M)

F (M)

)

φ−1

( t0
∑

r=s+1

q(r)

)

.

Since F (u(s + 1)) ≤ F (u) ≤ F (u(s)) as u(s) ≤ u ≤ u(s + 1), we have

(3.10)

∫ u(s+1)

u(s)

du

φ−1(F (u))
≤

∆u(s)

φ−1(F (u(s + 1)))
.

It follows from (3.9) and (3.10) that

∫ u(s+1)

u(s)

du

φ−1(F (u))
≤ φ−1

(

1 +
Q(M)

F (M)

)

φ−1

( t0
∑

r=s+1

q(r)

)

.

Summing from 0 to t0 − 1, we obtain

(3.11)

∫ u(t0)

ε1

du

φ−1(F (u))
≤ φ−1

(

1 + Q(M)
F (M)

)t0−1
∑

s=0

φ−1

( t0
∑

r=s+1

q(r)

)

= φ−1

(

1 + Q(M)
F (M)

) t0
∑

s=1

φ−1

( t0
∑

r=s

q(r)

)

.

Similarly, for s ≥ t0,

φ[∆u(s)] = φ[∆u(t0 − 1)] −

(

1 +
Q(M)

F (M)

) s−1
∑

r=t0−1

F (u(r + 1))q(r + 1),

and, making use of ∆u(t0 − 1) ≥ 0, we have

(3.12)

∫ u(t0)

ε1

du

φ−1(F (u))
≤ φ−1

(

1 +
Q(M)

F (M)

) T
∑

s=t0

φ−1

( s
∑

r=t0

q(r)

)

.

Now (3.11) and (3.12) imply that
∫ u(t0)

ε1

du

φ−1(F (u))
≤ b0φ

−1

(

1 +
Q(M)

F (M)

)

.

Together with (3.4), this implies u(t0) = ‖u‖ ≤ M .

Finally, by (3.2),

∆[φ(∆u(t − 1))] + g(t, u(t)) ≤ −q(t)F (u(t))

(

1 + Q(M)
F (M)

)

+ |g(t, u(t))|

≤ q(t)F (u(t))

(

Q(u(t))
F (u(t))

− Q(M)
F (M)

)

≤ 0,
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so that β = u is an upper solution of (3.6)1. Together with the lower solution α ≡ ε1,

we conclude by Theorem 2.1 that there is a solution u1(t) of (3.6)1 such that

ε1 = α(t) ≤ u1(t) ≤ β, ∀ t ∈ Z[0, T + 1].

The proof of Lemma 3.2 is complete. �

Proof of Theorem 3.1. By Lemmas 3.1 and 3.2, and also the fact that any solution

un(t) of (3.6)n is an upper solution of (3.6)n+1, we obtain, by Theorem 2.1, a sequence

of solutions {un(t)} to (3.6)n such that mλ(t) + εn = αn(t) ≤ un(t) ≤ un−1(t) and

un(0) = un(T + 1) = εn.

Consider now the pointwise limit z(t) limn→∞ un(t). As |g(t, x)| is bounded for

t ∈ Z[1, T ] and mλ(t) ≤ x ≤ u1(t), it is easy to see by the Arzela-Ascoli theorem that

z(t) is a positive solution of (1.1). This completes the proof of Theorem 3.1. �

By similar arguments as above and [18, Theorem 2], we can prove:

Theorem 3.2. Suppose (3.1) holds for some positive constants L and ε and that for

any r > 0 there exists a function hr(t) : Z[1, T ] → R+ such that

|g(t, x)| ≤ hr(t), ∀ t ∈ Z[1, T ], x ≥ r.

Then (1.1) has at least one positive solution. If, moreover, g(t, x) is strictly decreasing

in x, then the solution is unique.

Proof. We only give the proof of the uniqueness. Let u1(t) and u2(t) be two solutions,

and write x(t) = u1(t) − u2(t). Suppose that |x(t)| > 0 for some t ∈ Z(0, T + 1).

Without loss of generality, we may assume that there exists a point t0 ∈ Z(0, T + 1)

such that x(t0) = maxt∈Z[0,T+1] x(t) > 0. Then, ∆x(t0 − 1) ≥ 0, ∆x(t0) ≤ 0, and

∆[φ(∆u1(t0 − 1))] = φ[∆u1(t0)] − φ[∆u1(t0 − 1)]

≤ φ[∆u2(t0)] − φ[∆u2(t0 − 1)]

= ∆[φ(∆u2(t0 − 1))].

This implies that

∆[φ(∆u1(t0 − 1))] = −f(t0, u1(t0))

> −f(t0, u2(t0)) = ∆[φ(∆u2(t0 − 1))],

which is a contradiction. �

The following corollary of Theorem 3.2 extends the result of [37] as well as the

discrete analogs of those of [18, 25].

Corollary 3.1. Let A(t) : Z[1, T ] → R+
0 , B(t) : Z[1, T ] → R and f : R+

0 → R+
0 be

given continuous function such that f is strictly decreasing and limu→0+ f(u) = ∞.
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Then the problem






∆[φ(∆u(t − 1))] + A(t)f(u(t)) = B(t), t ∈ Z[1, T ],

u(0) = u(T + 1) = 0

has a unique positive solution.

Finally, we give an example. Consider the singular discrete boundary value problem

(1.1) with p = 2 and g(t, u) = σq(t)(u−a + ub + sin(8t/T )), where a > 0, b ≥ 0 and

σ > 0 are given constants. Using F (u) = σu−a and Q(u) = σ(ub + 1), we can see

from Theorem 3.1 that this problem has at least one positive solutions if

σ < sup
x∈(0,∞)

xa+1

b0(a + 1)(1 + xa + xa+b)
.

In particular, if 0 ≤ b < 1, then the problem has at least one positive solution for all

σ > 0.
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