Dynamic Systems and Applications 16 (2007) 743-754

UPPER AND LOWER SOLUTIONS METHOD AND A SUPERLINEAR SINGULAR DISCRETE BOUNDARY VALUE PROBLEM

DAQING JIANG, P. Y. H. PANG, AND RAVI P. AGARWAL

Department of Mathematics, Northeast Normal University, Changchun 130024, People's Republic of China (daqingjiang@163.com) Department of Mathematics, National University of Singapore, 2 Science Drive 2,

Singapore 117543 (matpyh@nus.edu.sg)

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA (agarwal@fit.edu)

ABSTRACT. In this paper, we study the singular discrete boundary value problem

$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + g(t, u(t)) = 0, \quad t \in \{1, 2, \dots, T\},\\ u(0) = u(T+1) = 0 \end{cases}$$

where $\phi(s) = |s|^{p-2}s$, p > 1, and the function g is superlinear at infinity and may change sign or be singular at u = 0. Existence of solutions is obtained via an upper and lower solutions method. **Keywords and Phrases.** Singular discrete boundary value problem, upper and lower solutions. **AMS Subject Classification.** 34B16, 39A99.

1. INTRODUCTION

In this paper we study the existence of positive solutions for the singular discrete boundary value problem

(1.1)
$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + g(t,u(t)) = 0, & t \in Z[1,T], \\ u(0) = u(T+1) = 0, \end{cases}$$

where $\phi(s) = |s|^{p-2}s$, p > 1; the function $g : Z[1,T] \times R_0^+ \to R$ $(R_0^+ = (0,\infty))$ is continuous in the second variable, is superlinear at infinity and may change sign.

Throughout this paper, for integers a, b with a < b, we shall use the notations $Z[a, b] = \{a, a + 1, \dots, b\}, Z[a, b) = \{a, \dots, b - 1\}, Z[a, \infty) = \{a, a + 1, \dots\},$ etc.

Discrete boundary value problems have been the subject of many investigations. In particular, [1, 4–6, 8–10, 12, 14, 19–21, 27–30, 41–47], among others, have studied problems that are related to that of this paper. Several of these [4, 5, 10, 20, 21, 45] study the existence of positive solutions under the assumption that the nonlinear term is positive. In [5], g is allowed to be singular at u = 0 and superlinear at $u = \infty$.

Jiang is supported by the National Natural Science Foundation of China.

Received September 19, 2005 1056-2176 \$15.00 ©Dynamic Publishers, Inc.

We note that (1.1) is a discrete model of the *p*-Laplace equation which occurs in the study of many diffusion phenomena such as non-Newtonian fluid flow and the turbulent flow of gas in porous media. We refer the readers to [2, 3, 11, 13, 15–18, 22, 26, 31–33, 35–40] for results in the continuous case as well as general results on singular boundary value problems. In particular, [2, 3, 33] deal with the superlinear problem; [11, 22] study the case where g is allowed to change sign, and [18] considers the possibility of singularities at u = 0, t = 0 or t = 1. More recently, in [7, 23–25, 34], the case where g may change sign and also be singular at u = 0, t = 0 or t = 1is studied. Moreover, in [7, 23, 24, 34], g(t, u) is allowed to be superlinear at $u = \infty$. The method of upper and lower solutions is used in these works.

The present work is inspired by [18, 24, 25]. In particular, we shall develop an upper and lower solutions method (Theorem 2.1) by extending that of [32, 38, 39] for the continuous case and [47] for the discrete case. Our main results (Theorems 3.1 and 3.2) extend those of [5, 37] as well as the discrete analogs of [2, 3, 7, 11, 18, 22–25, 37].

2. UPPER AND LOWER SOLUTIONS

Consider the discrete boundary value problem

(2.1)
$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + f(t,u(t)) = 0, & t \in Z[1,T], \\ u(0) = A, & u(T+1) = B, \end{cases}$$

where A and B are given real numbers, and $f(t, x) : Z[1, T] \times R \to R$ is continuous in x.

Definition 2.1. A function $\alpha(t) : Z[0, T+1] \to R$ is said to be a lower solution of (2.1) if

$$\Delta[\phi(\Delta\alpha(t-1))] + f(t,\alpha(t)) \ge 0, \qquad t \in Z[1,T],$$

$$\alpha(0) \le A, \quad \alpha(T+1) \le B.$$

The definition of an upper solution β of (2.1) is given similarly by reversing all the above inequalities.

Theorem 2.1. Let α, β be respectively a lower and an upper solution of (2.1) such that $\alpha(t) \leq \beta(t)$ for all $t \in Z[0, T + 1]$. Then (2.1) has at least one solution u(t) which satisfies

$$\alpha(t) \le u(t) \le \beta(t), \qquad \forall \ t \in Z[0, T+1].$$

To prove Theorem 2.1, consider first the modified discrete boundary value problem

(2.2)
$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + f^*(t,u(t)) = 0, & t \in \mathbb{Z}[1,T], \\ u(0) = A, & u(T+1) = B, \end{cases}$$

where

$$f^*(t,x) = \begin{cases} f(t,\alpha(t)) + \frac{\alpha(t) - x}{1 + x^2}, & x < \alpha(t), \\ f(t,x), & \alpha(t) \le x \le \beta(t), \\ f(t,\beta(t)) + \frac{\beta(t) - x}{1 + x^2}, & x > \beta(t). \end{cases}$$

It is readily seen that $f^*(t, x) : Z[1, T] \times R \to R$ is continuous in x. Moreover, there exists H > 0 such that

(2.3)
$$|f^*(t,x)| \le H, \qquad \forall \ (t,x) \in Z[1,T] \times R.$$

Equip $E = \{u : Z[0, T+1] \to R\}$ with the norm $||u|| = \max\{|u(t)| : t \in Z[0, T+1]\}$. Then E is the Banach space. Define the operator $\Phi : E \to E$ by

$$(\Phi u)(t) = \begin{cases} A, & t = 0, \\ B + \sum_{s=t}^{T} \phi^{-1} \left(\tau + \sum_{r=1}^{s} f^{*}(r, u(r)) \right), & t \in Z[1, T] \\ B, & t = T + 1, \end{cases}$$

where τ is a solution of the equation

(2.4)
$$w(\tau) := \phi^{-1}(\tau) + \sum_{s=1}^{T} \phi^{-1}\left(\tau + \sum_{r=1}^{s} f^{*}(r, u(r))\right) = A - B.$$

In the next two lemmas, we will show that Φ is well-defined, bounded and continuous.

Lemma 2.1. For each fixed $u \in E$, (2.4) has a unique solution τ , and $|\tau| \leq C$, where C is a positive constant independent of u.

Proof. Let $u \in E$ be fixed. Then we have, by the definition of w,

(2.5)
$$(T+1)\phi^{-1}(\tau - TH) \le w(\tau) \le (T+1)\phi^{-1}(\tau + TH),$$

for all $\tau \in R$, where *H* is as in (2.3). As ϕ^{-1} is a continuous, strictly increasing function on *R* with $\phi^{-1}(R) = R$, so is *w* (for each fixed $u \in E$). Thus, there exists a unique $\tau \in R$ satisfying (2.4). By (2.4) and (2.5), we have

$$au \le \phi\left(\frac{A-B}{T+1}\right) + TH, \qquad \tau \ge \phi\left(\frac{A-B}{T+1}\right) - TH,$$

and hence τ is bounded. This establishes Lemma 2.1.

Lemma 2.2. $\Phi: E \to E$ is bounded and continuous.

Proof. Let $u \in E$ be fixed and $\tau \in R$ be the unique solution of (2.4) corresponding to u. Then by Lemma 2.1, we have

$$\|\Phi u\| \le M,$$

where M is a positive constant independent of u, showing that Φ is bounded.

Now let $\{u_0, \{u_n\}\} \subset E$ with $u_n \to u_0$. Then, by Lemma 2.1, $|\tau_n| \leq C$, $n = 0, 1, 2, \ldots$, where C is independent of u_n . Suppose that $\tau^* \in [-C, C]$ is an accumulation point of $\{\tau_n\}$. Then there is a subsequence of $\{\tau_n\}$ which converges to τ^* , and

$$\phi^{-1}(\tau^*) + \sum_{s=1}^{T} \phi^{-1}(\tau^* + \sum_{r=1}^{s} f^*(r, u_0(r))) = A - B.$$

It follows from the uniqueness of Lemma 2.1 that $\tau^* = \tau_0$, and hence $\tau_n \to \tau_0$. Thus,

$$\lim_{n \to \infty} (\Phi u_n)(t) = (\Phi u_0)(t)$$

and the proof is complete.

By virtue of Lemma 2.2, the Brouwer fixed point theorem tells us that Φ has at least one fixed point in E. Let u be a fixed point of Φ . Then it is easy to see that

$$\Delta u(t) = \begin{cases} -\phi^{-1}(\tau), & t = 0, \\ -\phi^{-1}\left(\tau + \sum_{r=1}^{t} f^*(r, u(r))\right), & t \in Z[1, T] \end{cases}$$

and hence u(t) is a solution to (2.2).

Proof of Theorem 2.1. To complete the proof of Theorem 2.1, we only need to show that the above solution u(t) of (2.2) satisfies

$$\alpha(t) \le u(t) \le \beta(t)$$

for all $t \in Z[0, T+1]$.

To see that $u(t) \leq \beta(t)$ on Z[0, T+1], let $x(t) = u(t) - \beta(t)$ and suppose that $u(t) > \beta(t)$ for some $t \in Z(0, T+1)$. Since $x(0) \leq 0$, $x(T+1) \leq 0$, there exists a point $t_0 \in Z(0, T+1)$ such that $x(t_0) = \max_{t \in Z[0, T+1]} x(t) > 0$, $\Delta x(t_0 - 1) \geq 0$, $\Delta x(t_0) \leq 0$, and

$$\Delta[\phi(\Delta u(t_0 - 1))] = \phi[\Delta u(t_0)] - \phi[\Delta u(t_0 - 1)]$$

$$\leq \phi[\Delta\beta(t_0)] - \phi[\Delta\beta(t_0 - 1)]$$

$$= \Delta[\phi(\Delta\beta(t_0 - 1))].$$

It follows that

$$\begin{aligned} \Delta[\phi(\Delta u(t_0 - 1))] &= -f^*(t_0, u(t_0)) \\ &= -\left[f(t_0, \beta(t_0)) + \frac{\beta(t_0) - u(t_0)}{1 + u^2(t_0)}\right] \\ &> \Delta[\phi(\Delta \beta(t_0 - 1))], \end{aligned}$$

which is a contradiction.

Similarly, we can prove $u(t) \ge \alpha(t)$ on Z[0, T+1] and the proof of Theorem 2.1 is complete.

Remark 2.1. It is an immediate corollary of Theorem 2.1 that if $f(t, x) : Z[1, T] \times R \to R$ is bounded and continuous in x, then (2.1) has at least one solution.

3. MAIN RESULTS

Motivated by the example $g(t, u) = \sigma(u^{-a} + u^b + \sin(8t/T))$, where $a > 0, b \ge 0, \sigma > 0$, we have the following main results for the singular discrete boundary value problem (1.1).

Theorem 3.1. Assume that there exist constants L > 0 and $\varepsilon > 0$ such that

(3.1)
$$g(t,x) > L, \qquad \forall (t,x) \in Z[1,T] \times (0,\varepsilon],$$

and that there exists a function $q: Z[1,T] \to (0,\infty)$ such that

(3.2)
$$|g(t,x)| \le q(t)(F(x) + Q(x)), \quad \forall (t,x) \in Z[1,T] \times R_0^+$$

with F > 0 continuous and nonincreasing, $Q \ge 0$ continuous, and Q/F nondecreasing. Further, assume that

(3.3)
$$\sup_{c \in (0,\infty)} \frac{1}{\phi^{-1} \left(1 + \frac{Q(c)}{F(c)}\right)} \int_0^c \frac{du}{\phi^{-1}(F(u))} > b_0,$$

where

$$b_0 = \max_{t \in \mathbb{Z}[1,T]} \max\left\{\sum_{s=1}^t \phi^{-1}\left(\sum_{r=s}^t q(r)\right), \sum_{s=t}^T \phi^{-1}\left(\sum_{r=t}^s q(r)\right)\right\}.$$

Then (1.1) has at least one positive solution.

First, in view of (3.3), we may choose $0 < \mu < M$ such that

(3.4)
$$\frac{1}{\phi^{-1}\left(1+\frac{Q(M)}{F(M)}\right)} \int_{\mu}^{M} \frac{du}{\phi^{-1}(F(u))} > b_{0}.$$

For μ above and ε in (3.1), choose a sequence $\{\varepsilon_n\}$ such that $\min\{\varepsilon, \mu\} > \varepsilon_n \downarrow 0$ as $n \to \infty$. Let $\lambda(t) = t(T+1-t), t \in \mathbb{Z}[0, T+1]$, and set

(3.5)
$$m = \min\left\{4\frac{\varepsilon - \varepsilon_1}{(T+1)^2}, \left(\frac{L}{|\Delta[\phi(\Delta\lambda)]|_0 + 1}\right)^{1/(p-1)}\right\},$$

where

$$|\Delta[\phi(\Delta\lambda)]|_0 = \max_{t \in \mathbb{Z}[1,T]} |\Delta[\phi(\Delta\lambda(t-1))]|.$$

Now, we consider the sequence of boundary value problems

(3.6)_n
$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + g(t, u(t)) = 0, & t \in Z[1, T], \\ u(0) = u(T+1) = \varepsilon_n. \end{cases}$$

It is clear that any solution $u_n(t)$ of $(3.6)_n$ is an upper solution for $(3.6)_{n+1}$.

Lemma 3.1. The function $\alpha_n(t) = m\lambda(t) + \varepsilon_n$ is a lower solution of $(3.6)_n$.

Proof. Note that

$$\alpha_n(t) \le m\lambda(t) + \varepsilon_1 \le m(T+1)^2/4 + \varepsilon_1 \le \varepsilon, \quad \forall t \in z[0, T+1],$$

and thus by (3.1)

$$g(t, \alpha_n(t)) > L$$

It follows that

$$\Delta[\phi(\Delta\alpha_n(t-1))] + g(t,\alpha_n(t)) > L - m^{p-1}(1 + |\Delta[\phi(\Delta\lambda)]|_0) \ge 0,$$

thus establishing the lemma.

Lemma 3.2. The problem $(3.6)_1$ has at least one solution.

Proof. Consider the regular (nonsingular) boundary value problem

(3.7)
$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + q(t)F(u(t))\left(1 + \frac{Q(M)}{F(M)}\right) = 0, \quad t \in Z[1,T], \\ u(0) = u(T+1) = \varepsilon_1. \end{cases}$$

It is easy to see $\alpha_0(t) \equiv \varepsilon_1$ is a lower solution of (3.7). By Remark 2.1, one can see that the boundary value problem

(3.8)
$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + q(t)F(\varepsilon_1)\left(1 + \frac{Q(M)}{F(M)}\right) = 0, & t \in Z[1,T], \\ u(0) = u(T+1) = \varepsilon_1, \end{cases}$$

has a solution $\beta_0(t)$. Since $\Delta[\phi(\Delta\beta_0(t-1))] \leq 0$ on Z[1,T], $\beta_0(t)$ is concave on Z[0,T+1], and hence $\beta_0(t) \geq \varepsilon_1$. Further,

$$\begin{aligned} \Delta[\phi(\Delta\beta_0(t-1))] &= -q(t)F(\varepsilon_1)\left(1+\frac{Q(M)}{F(M)}\right) \\ &\leq -q(t)F(\beta_0(t))\left(1+\frac{Q(M)}{F(M)}\right), \end{aligned}$$

so that β_0 is an upper solution of (3.7). Thus by Theorem 2.1, (3.7) has a solution u(t) such that $\varepsilon_1 \leq u(t) \leq \beta_0(t)$.

Since $\Delta[\phi(\Delta u(t-1))] \leq 0$, we note that the solution u(t) of (3.7) is concave on Z[0, T+1], and there exists $t_0 \in Z(0, T+1)$ with $u(t_0) = ||u||, \Delta u(t) \geq 0$ on $Z[0, t_0)$ and $\Delta u(t) \leq 0$ on $Z[t_0, T+1)$.

For $0 \le s < t_0$, sum (3.7) from s to t_0 to obtain

$$\phi[\Delta u(t_0)] = \phi[\Delta u(s)] - \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{r=s}^{t_0-1} F(u(r+1))q(r+1).$$

Since $\Delta u(t_0) \leq 0$, we have

$$\phi[\Delta u(s)] = \phi[\Delta u(t_0)] + \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{\substack{r=s\\r=s}}^{t_0-1} F(u(r+1))q(r+1)$$

$$\leq F(u(s+1)) \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{\substack{r=s+1\\r=s+1}}^{t_0} q(r).$$

It follows that

(3.9)
$$\frac{\Delta u(s)}{\phi^{-1}(F(u(s+1)))} \le \phi^{-1} \left(1 + \frac{Q(M)}{F(M)}\right) \phi^{-1} \left(\sum_{r=s+1}^{t_0} q(r)\right).$$

Since $F(u(s+1)) \le F(u) \le F(u(s))$ as $u(s) \le u \le u(s+1)$, we have

(3.10)
$$\int_{u(s)}^{u(s+1)} \frac{du}{\phi^{-1}(F(u))} \le \frac{\Delta u(s)}{\phi^{-1}(F(u(s+1)))}.$$

It follows from (3.9) and (3.10) that

$$\int_{u(s)}^{u(s+1)} \frac{du}{\phi^{-1}(F(u))} \le \phi^{-1} \left(1 + \frac{Q(M)}{F(M)}\right) \phi^{-1} \left(\sum_{r=s+1}^{t_0} q(r)\right).$$

Summing from 0 to $t_0 - 1$, we obtain

(3.11)
$$\int_{\varepsilon_1}^{u(t_0)} \frac{du}{\phi^{-1}(F(u))} \leq \phi^{-1} \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{s=0}^{t_0-1} \phi^{-1} \left(\sum_{r=s+1}^{t_0} q(r)\right) \\ = \phi^{-1} \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{s=1}^{t_0} \phi^{-1} \left(\sum_{r=s}^{t_0} q(r)\right).$$

Similarly, for $s \ge t_0$,

$$\phi[\Delta u(s)] = \phi[\Delta u(t_0 - 1)] - \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{r=t_0 - 1}^{s-1} F(u(r+1))q(r+1)$$

and, making use of $\Delta u(t_0 - 1) \ge 0$, we have

(3.12)
$$\int_{\varepsilon_1}^{u(t_0)} \frac{du}{\phi^{-1}(F(u))} \le \phi^{-1} \left(1 + \frac{Q(M)}{F(M)}\right) \sum_{s=t_0}^T \phi^{-1} \left(\sum_{r=t_0}^s q(r)\right).$$

Now (3.11) and (3.12) imply that

$$\int_{\varepsilon_1}^{u(t_0)} \frac{du}{\phi^{-1}(F(u))} \le b_0 \phi^{-1} \left(1 + \frac{Q(M)}{F(M)} \right)$$

Together with (3.4), this implies $u(t_0) = ||u|| \le M$. Finally, by (3.2),

$$\begin{split} \Delta[\phi(\Delta u(t-1))] + g(t,u(t)) &\leq -q(t)F(u(t))\left(1 + \frac{Q(M)}{F(M)}\right) + |g(t,u(t))| \\ &\leq q(t)F(u(t))\left(\frac{Q(u(t))}{F(u(t))} - \frac{Q(M)}{F(M)}\right) \\ &\leq 0, \end{split}$$

so that $\beta = u$ is an upper solution of $(3.6)_1$. Together with the lower solution $\alpha \equiv \varepsilon_1$, we conclude by Theorem 2.1 that there is a solution $u_1(t)$ of $(3.6)_1$ such that

$$\varepsilon_1 = \alpha(t) \le u_1(t) \le \beta, \quad \forall t \in Z[0, T+1].$$

The proof of Lemma 3.2 is complete.

Proof of Theorem 3.1. By Lemmas 3.1 and 3.2, and also the fact that any solution $u_n(t)$ of $(3.6)_n$ is an upper solution of $(3.6)_{n+1}$, we obtain, by Theorem 2.1, a sequence of solutions $\{u_n(t)\}$ to $(3.6)_n$ such that $m\lambda(t) + \varepsilon_n = \alpha_n(t) \le u_n(t) \le u_{n-1}(t)$ and $u_n(0) = u_n(T+1) = \varepsilon_n$.

Consider now the pointwise limit $z(t) \lim_{n\to\infty} u_n(t)$. As |g(t,x)| is bounded for $t \in Z[1,T]$ and $m\lambda(t) \leq x \leq u_1(t)$, it is easy to see by the Arzela-Ascoli theorem that z(t) is a positive solution of (1.1). This completes the proof of Theorem 3.1.

By similar arguments as above and [18, Theorem 2], we can prove:

Theorem 3.2. Suppose (3.1) holds for some positive constants L and ε and that for any r > 0 there exists a function $h_r(t) : Z[1,T] \to R^+$ such that

$$|g(t,x)| \le h_r(t), \qquad \forall \ t \in Z[1,T], \ x \ge r.$$

Then (1.1) has at least one positive solution. If, moreover, g(t, x) is strictly decreasing in x, then the solution is unique.

Proof. We only give the proof of the uniqueness. Let $u_1(t)$ and $u_2(t)$ be two solutions, and write $x(t) = u_1(t) - u_2(t)$. Suppose that |x(t)| > 0 for some $t \in Z(0, T + 1)$. Without loss of generality, we may assume that there exists a point $t_0 \in Z(0, T + 1)$ such that $x(t_0) = \max_{t \in Z[0, T+1]} x(t) > 0$. Then, $\Delta x(t_0 - 1) \ge 0$, $\Delta x(t_0) \le 0$, and

$$\begin{aligned} \Delta[\phi(\Delta u_1(t_0 - 1))] &= \phi[\Delta u_1(t_0)] - \phi[\Delta u_1(t_0 - 1)] \\ &\leq \phi[\Delta u_2(t_0)] - \phi[\Delta u_2(t_0 - 1)] \\ &= \Delta[\phi(\Delta u_2(t_0 - 1))]. \end{aligned}$$

This implies that

$$\Delta[\phi(\Delta u_1(t_0 - 1))] = -f(t_0, u_1(t_0))$$

> $-f(t_0, u_2(t_0)) = \Delta[\phi(\Delta u_2(t_0 - 1))],$

which is a contradiction.

The following corollary of Theorem 3.2 extends the result of [37] as well as the discrete analogs of those of [18, 25].

Corollary 3.1. Let $A(t) : Z[1,T] \to R_0^+$, $B(t) : Z[1,T] \to R$ and $f : R_0^+ \to R_0^+$ be given continuous function such that f is strictly decreasing and $\lim_{u\to 0^+} f(u) = \infty$.

Then the problem

$$\begin{cases} \Delta[\phi(\Delta u(t-1))] + A(t)f(u(t)) = B(t), & t \in Z[1,T], \\ u(0) = u(T+1) = 0 \end{cases}$$

has a unique positive solution.

Finally, we give an example. Consider the singular discrete boundary value problem (1.1) with p = 2 and $g(t, u) = \sigma q(t)(u^{-a} + u^b + \sin(8t/T))$, where a > 0, $b \ge 0$ and $\sigma > 0$ are given constants. Using $F(u) = \sigma u^{-a}$ and $Q(u) = \sigma(u^b + 1)$, we can see from Theorem 3.1 that this problem has at least one positive solutions if

$$\sigma < \sup_{x \in (0,\infty)} \frac{x^{a+1}}{b_0(a+1)(1+x^a+x^{a+b})}.$$

In particular, if $0 \le b < 1$, then the problem has at least one positive solution for all $\sigma > 0$.

REFERENCES

- [1] R. P. Agarwal, *Difference Equations and Inequalities*, 2nd ed., Marcel Dekker, New York, 2000.
- [2] R. P. Agarwal and D. O'Regan, Singular boundary value problems for superlinear second ordinary and delay differential equations, J. Differential Equations 130(1996), 335–355.
- [3] R. P. Agarwal and D. O'Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Differential Equations 143(1998), 60–95.
- [4] R. P. Agarwal and D. O'Regan, Singular discrete (n, p) boundary value problems, Appl. Math. Lett. 12(1999), 113–119.
- [5] R. P. Agarwal and D. O'Regan, Singular discrete boundary value problems, *Appl. Math. Lett.* 12(1999), 127–131.
- [6] R. P. Agarwal and D. O'Regan, Multiple solutions for higher-order difference equations, Computers Math. Applic. 37(1999), 39–48.
- [7] R. P. Agarwal and D. O'Regan, Singular initial and boundary value problems with sign changing nonlinearities, *IMA J. Appl. Math.* 65(2000), 173–198.
- [8] R. P. Agarwal, D. O'Regan and P. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer, Dordrecht, 1999.
- [9] R. P. Agarwal and F. Wong, Upper and lower solutions method for higher-order discrete boundary value problems, *Math. Inequal. Appl.* 1(1998), 551–557.
- [10] R. P. Agarwal, F. Wong and W. Lian, Positive solutions for nonlinear singular boundary value problems, Appl. Math. Lett. 12(1999), 115–120.
- [11] L. E. Bobisud, D. O'Regan and W. D. Royalty, Solvability of some nonlinear boundary value problems, *Nonlinear Anal.* 12(1988), 855–869.
- [12] A. Cabada and V. Otero-Espinar, Optimal existence results for nth order periodic boundary difference equations, J. Math. Anal. Appl. 247(2000), 67–86.
- [13] A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64(1978), 96–105.
- [14] S. N. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1996.

- [15] J. A. Gatica, G. E. Hernandez and P. Waltman, Radially symmetric solutions of a class of singular elliptic equations, *Proc. Edinburgh Math. Soc.* 33(1990), 168–180.
- [16] J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order differential equations, J. Differential Equations 79(1989), 62–78.
- [17] S. M. Gomes and J. Sprekels, Krasonselskii's Theorem on operators compressing a cone: application to some singular boundary value problems, J. Math. Anal. Appl. 153(1990), 443–459.
- [18] P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181(1994), 684–700.
- [19] D. Hankerson and A. C. Peterson, Comparison of eigenvalue for focal point problem for nth order difference equations, *Diff. Int. Eq.* 3(1990), 363–380.
- [20] J. Henderson, Singular boundary value problems for difference equations, Dynam. Systems Appl. 1(1992), 271–282.
- [21] J. Henderson, Singular boundary value problems for higher order difference equations, in Proceedings of the First World Congress on Nonlinear Analysts, (V. Lakshmikantham, ed.), Walter de Gruyter, 1994, pp 1139–1150.
- [22] J. Janus and J. Myjak, A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23(1994), 953–970.
- [23] D. Jiang, Upper and lower solutions for a superlinear singular boundary value problem, Computers Math. Applic. 41(2001), 563–569.
- [24] D. Jiang, Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimension p-Laplacian, Computers Math. Applic. 42(2001), 927–940.
- [25] D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for the one-dimension p-Laplacian, J. Math. Anal. Appl. 252(2000), 631–648.
- [26] D. Jiang and H. Liu, On the existence of nonnegative radial solutions for the one-dimensional p-Laplacian elliptic systems, Ann. Polon. Math. 71(1999), 19–29.
- [27] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic Press, Boston, 1988.
- [28] F. Merdivenci, Two positive solutions of a boundary value problems for difference equations, J. Difference Eq. Appl. 1(1995), 262–270.
- [29] F. Merdivenci, Green's matrices and positive solution of a discrete boundary value problem, Panamer. Math. J. 5(1995), 25–42.
- [30] F. Merdivenci, Positive solutions for focal point problem 2nth order difference equations, Panamer. Math. J. 5(1995), 71–82.
- [31] D. O'Regan, Positive solutions to singular and nonsingular second-order boundary value problems, J. Math. Anal. Appl. 142(1989), 40–52.
- [32] D. O'Regan, Some general existence principles and results for $[\phi(y')]' = q(t)f(t, y, y')$, (0 < t < 1), SIAM J. Math. Anal. 24(1993), 648–668.
- [33] D. O'Regan, Singular Dirichlet boundary value problems I: superlinear and nonresonant case, Nonlinear Anal. 29(1997), 221–245.
- [34] D. O'Regan and R. P. Agarwal, Singular problems: an upper and lower solution approach, J. Math. Anal. Appl. 251(2000), 230–250.
- [35] S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3(1979), 897–904.
- [36] J. Wang, On positive solutions of singular nonlinear two-point boundary problems, J. Differential Equations 107(1994), 163–174.
- [37] J. Wang and W. Gao, A singular boundary value problem for the one-dimensional p-Laplacian, J. Math. Anal. Appl. 201(1996), 851–866.

- [38] J. Wang, W. Gao and Z. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, *Tohoku Math. J.* 47(1995), 327–344.
- [39] J. Wang and D. Jiang, A unified approach to some two-point, three-point and four-point boundary value problems with Caratheodory functions, J. Math. Anal. Appl. 211(1997), 223– 232.
- [40] J. Wang and J. Jiang, The existence of positive solutions to a singular nonlinear boundary value problem, J. Math. Anal. Appl. 176(1993), 322–329.
- [41] P. J. Wong and R. P. Agarwal, Double positive solutions of (n, p) boundary value problems for higher order difference equations, *Computers Math. Applic.* 32(1996), 1–21.
- [42] P. J. Wong and R. P. Agarwal, Eigenvalues of boundary value problems for higher order difference equations, *Math. Prob. Engineering* 2(1996), 401–434.
- [43] P. J. Wong and R. P. Agarwal, On the existence of positive solutions of higher order difference equations, *Topol. Methods Nonlinear Anal.* 10(1997), 339–351.
- [44] P. J. Wong and R. P. Agarwal, Eigenvalues of an *n*th order difference equation with (n, p) type conditions, *Dynam. Contin. Discrete Impuls. Systems* 4(1997), 149–172.
- [45] P. J. Wong and R. P. Agarwal, On the existence of solutions of singular boundary value problems for higher order difference equations, *Nonlinear Anal.* 28(1997), 277–287.
- [46] P. J. Wong and R. P. Agarwal, Extension of continuous and discrete inequalities due to Eloe and Henderson, *Nonlinear Anal.* 34(1998), 479–487.
- [47] W. Zhuang, Y. Chen and S. S. Cheng, Monotone methods for a discrete boundary value problems, *Computers Math. Applic.* 32(1996), 41–49.