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ABSTRACT. In this paper we provide necessary and sufficient conditions for optimality of a

stochastic differential equation driven by an infinite dimensional martingale, and its solution takes

its values in a separable Hilbert space. By using the adjoint equation, which is a backward stochastic

differential equation, we derive the maximum principle in the sense of Pontryagin for this optimal

control problem.
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1. INTRODUCTION

We shall study a stochastic optimal control problem governed by the following

stochastic differential equation (SDE shortly):










dX(t) = (a(t, u(t))X(t) + b(t, u(t)))dt

+ [
〈

σ(t, u(t)), X(t)
〉

K
+ g(t, u(t))]dM(t),

X(0) = x0,

(1.1)

with bounded and predictable mappings a, b, σ and g, and an admissible control

{u(t), t ≥ 0}. The space K is a separable Hilbert space with inner product denoted

by
〈

·, ·
〉

K
, or sometimes

〈

·, ·
〉

, if no ambiguity occurs. For this equation we shall

consider a cost functional of the following type:

J(u(·)) = E

[
∫ T

0

〈

ρ(t, u(t)), X(t)
〉

K
dt+

〈

θ,X(T )
〉

K

]

.

See Section 3 for more details.

Such SDEs with a martingale noise are studied for example in [13], [16], [26],

[12] and [4]. The maximum principle for such problems was not studied in these

works, except in [4], where we derived some necessary conditions for optimality of

stochastic systems more general than (1.1), but the results there provide the maximum

principle only in its local form. We also required there the control domain to be

convex. In this paper we shall consider a suitable perturbation of an optimal control
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by means of the spike variation method and derive the maximum principle in its

global form. The convexity assumption on the control domain will not be required.

Our approach here will be achieved by using adjoint equations, which are backward

stochastic differential equations (BSDEs) driven by martingales. The main results

are recorded in Theorems 4.2, 5.1. The ideas of Bensoussan in [7], [8] and Zhou

in [28], [27] together with our earlier work in [3] will be very useful in our present

study. Sufficient conditions for optimality for this control problem will be established

in Section 5.

It is recorded in [4, Remark 6.4] that studying a controlled stochastic evolution

equation, which is more general than (1.1), and when the control variable is allowed to

enter in the noise term is still an open problem. This is due to the difficulty of handling

the resulting adjoint equations, which are in this particular case BSDEs driven by

martingales and contain both first-order and second-order adjoint processes. This

raised from the fact that we were dealing there with a BSDE driven by a martingale

M , as we are still considering here in equation (1.1), and not merely a Brownian

motion. So the work in this paper can be considered as a progress in this direction.

Let us remark that the use of BSDEs for deriving the maximum principle for

forward controlled stochastic equations was done first by Bismut in [9]; cf. also [7],

[8]. In 1990 Pardoux & Peng, [22], initiated the theory of nonlinear BSDEs. Then

Peng studied the stochastic maximum principle in [23] and [24]. Since then several

works appeared consequently on the maximum principle and its relationship with

BSDEs. For example we refer the reader to [14], and [27] and the references therein.

On the other hand, the maximum principle in infinite dimensions started after the

work of Pontryagin [25]. One can see also [18].

We shall start by giving some preliminary notation, and introduce in Section 3

our main control problem.

2. NOTATION

Let (Ω,F ,P) be a complete probability space, filtered by a continuous filtration

{Ft}t≥0 in the sense that every square integrable K-valued martingale with respect

to {Ft , 0 ≤ t ≤ T} has a continuous version.

Denote by P the predictable σ-algebra of subsets of Ω×[0, T ]. AK-valued process

is said to be predictable if it is P/B(K) measurable. Denote by M2
[0,T ](K) the Hilbert

space of cadlag square integrable martingales {M(t), 0 ≤ t ≤ T} taking their values

in K. Let M2,c
[0,T ](K) be the subspace of M2

[0,T ](K) consisting of all continuous square

integrable martingales in K. We say that two elements M and N of M2
[0,T ](K) are

very strongly orthogonal (VSO shortly) if E [M(τ) ⊗N(τ)] = E[M(0) ⊗N(0)], for all

[0, T ]-valued stopping times τ .
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For M ∈ M2,c
[0,T ](K) let < M > denote the predictable quadratic variation of

M and << M >> be the predictable tensor quadratic variation of M , which takes

its values in the space L1(K) of all nuclear operators on K. Hence, M ⊗M− <<

M >>∈ M2,c
[0,T ](L1(K)). From here on we shall assume that, for a given fixed M ∈

M2,c
[0,T ](K), there exists a measurable mapping Q(·) : [0, T ] × Ω → L1(K) such that

Q(t) is symmetric, positive definite, Q(t) ≤ Q for some positive definite nuclear

operator Q on K, and satisfies ≪M ≫t =
∫ t

0
Q(s) ds.

If for (t, ω), Q̃(t, ω) is a symmetric, positive definite nuclear operator on K, we

denote by LQ̃(t,ω)(K) to the set of all linear, not necessarily bounded operators Φ

which map Q̃1/2(t, ω)(K) into K and satisfy ΦQ̃1/2(t, ω) ∈ L2(K). Here L2(K) is

the space of all Hilbert-Schmidt operators from K into itself with inner product and

norm denoted respectively by
〈

·, ·
〉

2
and || · ||2.

It is known (e.g. [21]) that the stochastic integral
∫ ·

0
Φ(s)dM(s) is defined for map-

pings Φ such that for each (t, ω), Φ(t, ω) ∈ LQ(t,ω)(K), ΦQ1/2(t, ω)(h) is predictable

∀ h ∈ K, and

E

[
∫ T

0

||(ΦQ1/2)(t)||22 dt

]

<∞.

The space of such integrands is a Hilbert space with respect to the scalar product

(Φ1,Φ2) 7→ E

[

∫ T

0

〈

Φ1Q
1/2(t),Φ2Q

1/2(t)
〉

dt
]

. Simple processes with values in L(K)

are examples of such integrands. Now denoting by Λ2(K;P,M) to the closure of the

set of simple processes in this Hilbert space we obtain a Hilbert subspace. Now the

following isometry property is expected:

E

[

|

∫ T

0

Φ(s)dM(s)|2
]

= E

[

∫ T

0

||Φ(s)Q1/2(s)||22 ds
]

(2.1)

for mappings Φ ∈ Λ2(K;P,M). For more details and proofs we refer the reader to

[21].

In the case where M is taken to be genuine Wiener process (or cylindrical as well)

one should replace Λ2(K;P,M) by a space of the type:

L2
F(0, T ;E) := {ψ : [0, T ] × Ω → E, predictable and E [

∫ T

0

|ψ(t)|2Edt ] <∞},

where E is a separable Hilbert space.

3. PROBLEM FORMULATION

Let O be a separable Hilbert space equipped with an inner product
〈

·, ·
〉

O
, and

let U be a nonempty subset of O. We say that u(·) : [0, T ] × Ω → O is admissible

if u(·) ∈ L2
F (0, T ;O) and u(t) ∈ U a.e., a.s. The set of admissible controls will be

denoted by Uad.

Let θ be a fixed element of K and consider the following hypothesis:
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(A) a : Ω × [0, T ] × O → R , b : Ω × [0, T ] × O → K, σ : Ω × [0, T ] × O → K

and g : Ω × [0, T ] × O → LQ(K) are predictable and bounded mappings, and ρ :

[0, T ] ×O → K is a bounded measurable mapping.

Consider the following SDE:










dX(t) = (a(t, u(t))X(t) + b(t, u(t)))dt

+ [
〈

σ(t, u(t)), X(t)
〉

+ g(t, u(t))]dM(t), 0 < t ≤ T,

X(0) = x0 ∈ K.

(3.1)

We shall be interested in minimizing the following cost functional over the set Uad :

(3.2) J(u(·)) = E
[

∫ T

0

〈

ρ(t, u(t)), Xu(·)(t)
〉

dt+
〈

θ,Xu(·)(T )
〉 ]

.

Any u∗(·) ∈ Uad satisfying

(3.3) J(u∗(·)) = inf{J(u(·)) : u(·) ∈ Uad}

is called an optimal control of the stochastic optimal control problem (3.1)–(3.3), and

its corresponding solution X∗ := Xu∗(·) to (3.1) is called an optimal solution of this

problem. In this case the pair (X∗ , u∗(·)) is called an optimal pair of the control

problem (3.1)–(3.3).

We emphasize here that the case where M is a Wiener process (cylindrical or

genuine) is rather much simpler and is treated in [28]. This special case can also

be gleaned from the adjoint equation (4.4) in Section 4 by letting M in (3.1) be a

cylindrical Wiener process for example and so Nu(·) in (4.4) vanishes. Indeed this

comes from the martingale representation theorem and the construction of solutions

of BSDEs driven by Wiener processes as in [1].

Since this control problem has no constraints we deal here with progressively

measurable controls. However, for the case when there are final state constraints,

one can mimic our results in Section 4, and use Ekeland’s variational principle in a

similar way to the works in [20], [23] or [27].

4. MAXIMUM PRINCIPLE

Let us first recall the optimal control problem (3.1)–(3.3). For this control prob-

lem we define the Hamiltonian

H : [0, T ] × Ω ×K ×O ×K × L2(K) → R

by

H(t, ω, x, u, y, z) =
〈

ρ(t, u) , x
〉

+ a(t, ω, u)
〈

x , y
〉

+
〈

b(t, ω, u) , y
〉

(4.1)

+
〈

B(t, ω, u)z, x
〉

+
〈

g(t, ω, u)Q1/2(t, ω) , z
〉

2
,
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where B : [0, T ] × Ω ×O → L(L2(K), K) is defined such that

(4.2) B(t, ω, u)z =
〈

Q1/2(t, ω) , z
〉

2
σ(t, ω, u), z ∈ L2(K).

Hence it follows that

(4.3) ∇xH(t, ω, x, u, y, z) = ρ(t, u) + a(t, ω, u)y +B(t, ω, u)z.

Furthermore, the adjoint equation of (3.1) is the following BSDE:










−dY u(·)(t) = ∇xH(t, Xu(·)(t), u(t), Y u(·)(t), Zu(·)(t)Q1/2(t))dt

−Zu(·)(t)dM(t) − dNu(·)(t), 0 ≤ t < T,

Y u(·)(T ) = θ.

(4.4)

This equation is a BSDE driven by the martingale M . Such types of equations

are studied extensively in [2]. We refer the reader also to [19] for financial applications

of these types of BSDEs, and to [6], [15], [11] and [5] for other applications.

It is important to recognize that the presence of the process Q1/2(·) in equa-

tion (4.4) is crucial in order for the mapping ∇xH to be defined on the space L2(K),

since the process Zu(·) need not be bounded if we recall the fact that the integrand Φ

in Section 2 does not have to be bounded. This always has to be taken into account

when dealing with BSDEs driven by martingales in infinite dimensions.

The proceeding theorem gives the solution to BSDE (4.4) in the sense that there

exists a triple (Y u(·), Zu(·), Nu(·)) in L2
F(0, T ;K) × Λ2(K;P,M) ×M2,c

[0,T ](K) such that

the following equality holds a.s. for all t ∈ [0, T ], N(0) = 0 and N is VSO to M :

Y u(·)(t) = ξ +

∫ T

t

∇xH(s,Xu(·)(s), u(s), Y u(·)(s), Zu(·)(s)Q1/2(s)) ds

−

∫ T

t

Zu(·)(s)dM(s) −

∫ T

t

dNu(·)(s).

Theorem 4.1. Assume that (A) holds. Then there exists a unique solution (Y u(·),

Zu(·), Nu(·)) of BSDE (4.4).

The proof of this theorem can be found in [2].

We shall denote briefly the solution of (4.4) corresponding to the optimal control

u∗(·) by (Y ∗, Z∗, N∗).

It would be useful to know that the adjoint equation of an SDE with a general

filtration being larger than the Wiener filtration is a BSDE driven by a martingale.

This is indeed the case even if the martingale M appearing in the equation (1.1) is a

Brownian motion with respect to a right continuous filtration. Our earlier work in [2]

on BSDEs will play an important role in deriving the stochastic maximum principle

for the control problem (3.1)–(3.3).

The main theorem of this section is the following.
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Theorem 4.2. Suppose that (A) holds. Assume moreover that U is compact and

ρ, a, b, σ, g are continuous as mappings in v a.s. If (X∗, u∗(·)) is an optimal pair

of the problem (3.1)–(3.3), then there exists a unique solution (Y ∗, Z∗, N∗) to the

corresponding BSDE (4.4) such that the following inequality holds:

H(t, X∗(t), v, Y ∗(t), Z∗(t)Q1/2(t))(4.5)

≥ H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

a.e. t ∈ [0, T ], a.s. ∀ v ∈ U.

Remark 4.3. (i) The compactness assumption of U and the continuity of ρ, a, b, σ, g

in v in the above theorem are not actually needed in all the proofs that follow,

however such assumptions are needed in order for the minimum of the mapping

v 7→ H(t, X∗(t), v, Y ∗(t), Z∗(t)Q1/2(t)) required in (4.5) to exist in U . (ii) A measur-

able selection theorem due to Ekeland and Temam, [10], can be applied to select an

admissible control satisfying (4.5), one can see also [17, Theorem 3.2, p. 169] for the

same purpose.

We shall divide the proof of Theorem 4.2 into different parts. Let us first as-

sume that (X∗, u∗(·)) is the given optimal pair. Let 0 ≤ t0 < T be fixed such that

E [ |X∗(t0) |
2] <∞, and 0 < ε < T − t0. Let v be a random variable taking its values

in U , Ft0-measurable and sup
ω∈Ω

|v(ω)| < ∞. Consider the following spike variation of

the control u∗(·):

uε(t) =

{

u∗(t) if t ∈ [0, T ]\[t0, t0 + ε]

v if t ∈ [t0, t0 + ε].

Let Xuε(·) denote the solution of SDE (3.1) corresponding to uε(·). We shall

denote it briefly by Xε. It is easy to see that Xε(t) = X∗(t) for all 0 ≤ t ≤ t0. This

will be used in the following lemma.

Lemma 4.4. Under (A), if ςε(t) = Xε(t) −X∗(t), t ∈ [0, T ], then

(4.6) sup
t0+ε≤t≤T

E [|ςε(t)|
2 ] = O(ε).

Proof. For t ∈ [t0 + ε, T ], we have

ςε(t) = ςε(t0 + ε) +

∫ t

t0+ε

a(s, u∗(s))ςε(s)ds(4.7)

+

∫ t

t0+ε

〈

σ(s, u∗(s)) , ςε(s)
〉

dM(s).

Thus Itô’s formula together with assumption (A) implies that

(4.8) sup
t0+ε≤t≤T

E [|ςε(t)|
2 ] ≤ C1 E [|ςε(t0 + ε)|2 ],



MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF SDES 211

for some positive constant C1. But ςε(t0) = 0 and, for t0 ≤ t ≤ t0 + ε,

ςε(t) =

∫ t

t0

[

(

a(s, v) − a(s, u∗(s))
)

Xε(s)(4.9)

+
(

b(s, v) − b(s, u∗(s))
)

+ a(s, u∗(s)) ςε(s)
]

ds

+

∫ t

t0

[

〈

σ(s, v) − σ(s, u∗(s)) , Xε(s)
〉

+
(

g(s, v)− g(s, u∗(s))
)

+
〈

σ(s, u∗(s)) , ςε(s)
〉

]

dM(s).

Hence, again by applying Itô’s formula, Cauchy-Schwartz inequality and the bound-

edness properties in assumption (A) we get

E [ | ςε(t) |
2 ] ≤ C2 · (1 + ||Q1/2||22)

∫ t

t0

E [| ςε(s)|
2 ] ds(4.10)

+C3 · (1 + ||Q1/2||22 + 1) ·
(

E [|X∗(t0)|
2 ] + C4 ε

)

ε+ C5 ε,

for some positive constants Ci, i = 2, . . . , 5. Therefore Gronwall’s inequality gives

(4.11) sup
t0≤t≤t0+ε

E [ | ςε(t) |
2 ] ≤ C6(ε) · ε,

where

C6(ε) = eC2·(1+‖Q1/2‖2

2
)ε

(

C3 · (1 + ‖Q1/2‖2
2) ·

(

E [|X∗(t0)|
2 ] + C4 ε

)

+ C5 ε
)

.

Consequently, applying (4.11) in (4.8) yields (4.6).

Our next step now is trying to derive a duality formula by computing E[
〈

Y ∗(t0 +

ε), ςε(t0 + ε)
〉

].

Lemma 4.5. If (A) holds, then

E

[

〈

Y ∗(t0 + ε) , ςε(t0 + ε)
〉

+

∫ t0+ε

t0

〈

ρ(t, u∗(t)) , ςε(t)
〉

dt
]

(4.12)

= E
[

∫ t0+ε

t0

〈

Y ∗(t) ,
(

a(t, v) − a(t, u∗(t))
)

Xε(t)
〉

dt
]

+ E
[

∫ t0+ε

t0

〈

Y ∗(t) , b(t, v) − b(t, u∗(t))
〉

dt
]

+ E
[

∫ t0+ε

t0

〈

σ(t, v) − σ(t, u∗(t)) , Xε(t)
〉 〈

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2
dt

]

+ E
[

∫ t0+ε

t0

〈(

g(t, v) − g(t, u∗(t))
)

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2
dt

]

,

and

E [
〈

Y ∗(t0 + ε), ςε(t0 + ε)
〉

] = E
[ 〈

θ , ςε(T )
〉 ]

(4.13)

+ E
[

∫ T

t0+ε

〈

ρ(t, u∗(t)) , ςε(t)
〉

dt
]

.
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Proof. The proof of (4.12) follows from applying Itô’s formula to (4.9) and (4.4), and

then using (4.3) and (4.2). The equality in (4.13) is proved similarly but with the

help of (4.7).

Lemma 4.6. Assume (A). Then

0 ≤ E

[

∫ t0+ε

t0

〈

ρ(t, v) − ρ(t, u∗(t)) , X∗(t)
〉

dt ](4.14)

+ E
[

∫ t0+ε

t0

〈

Y ∗(t) ,
(

a(t, v) − a(t, u∗(t))
)

X∗(t)
〉

dt
]

+ E
[

∫ t0+ε

t0

〈

Y ∗(t) , b(t, v) − b(t, u∗(t))
〉

dt
]

+ E
[

∫ t0+ε

t0

〈

σ(t, v) − σ(t, u∗(t)) , X∗(t)
〉 〈

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2
dt

]

+ E
[

∫ t0+ε

t0

〈(

g(t, v) − g(t, u∗(t))
)

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2
dt

]

+ o(ε).

Proof. Since u∗(·) is optimal, then

0 ≤ J(uε(·)) − J(u∗(·))

= E
[

∫ T

0

( 〈

ρ(t, uε(t)) , Xε(t)
〉

−
〈

ρ(t, u∗(t)) , X∗(t)
〉 )

dt
]

+ E
[ 〈

θ ,Xε(T )
〉

−
〈

θ ,X∗(T )
〉 ]

= E

[

∫ t0+ε

t0

( 〈

ρ(t, v) − ρ(t, u∗(t)) , Xε(t)
〉

+
〈

ρ(t, u∗(t)) , ςε(t)
〉 )

dt
]

+ E
[

∫ T

t0+ε

〈

ρ(t, u∗(t)) , ςε(t)
〉

dt+
〈

θ, ςε(T )
〉 ]

.

Thus applying Lemma 4.5 (4.13) in this inequality gives

0 ≤ E

[

∫ t0+ε

t0

(〈

ρ(t, v) − ρ(t, u∗(t)) , Xε(t)
〉

+
〈

ρ(t, u∗(t)) , ςε(t)
〉)

dt
]

+ E
[ 〈

Y ∗(t0 + ε)) , ςε(t0 + ε)
〉 ]

.

Also from Lemma 4.5 (4.12) it follows that

0 ≤ E
[

∫ t0+ε

t0

〈

ρ(t, v) − ρ(t, u∗(t)) , Xε(t)
〉

dt
]

(4.15)

+ E
[

∫ t0+ε

t0

〈

Y ∗(t) ,
(

a(t, v) − a(t, u∗(t))
)

Xε(t)
〉

dt
]

+ E
[

∫ t0+ε

t0

〈

Y ∗(t) , b(t, v) − b(t, u∗(t))
〉

dt
]

+ E
[

∫ t0+ε

t0

〈

σ(t, v) − σ(t, u∗(t)) , Xε(t)
〉 〈

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2
dt

]
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+ E
[

∫ t0+ε

t0

〈(

g(t, v)− g(t, u∗(t))
)

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2
dt

]

.

But from assumption (A) and Lemma 4.4 we know that

1

ε
E

[

∫ t0+ε

t0

〈

Y ∗(t) ,
(

a(t, v) − a(t, u∗(t))
)

ςε(t)
〉

dt
]

(4.16)

≤ C7 · (
1

ε
)

∫ t0+ε

t0

E

(

|Y ∗(t)| · |ςε(t)|
)

dt

≤ C7 · (
1

ε
)

∫ t0+ε

t0

(

(
ε1/3

2
) E [|Y ∗(t)|2] + (

1

2 ε1/3
) E [|ςε(t)|

2]
)

dt

≤ C8 ·
(

ε1/3 (
1

ε
)

∫ t0+ε

t0

E [|Y ∗(t)|2]dt+ (
1

ε
) ε (

1

ε1/3
) ε

)

→ 0,

as ε→ 0, if t0 is a Lebesgue point of the function t 7→ E [ |Y ∗(t) |2 ], where C7 and C8

are some positive constants. Similarly, one can find evidently that

1

ε
E

[

∫ t0+ε

t0

(

〈

ρ(t, v) − ρ(t, u∗(t)) , ςε(t)
〉

(4.17)

+
〈

σ(t, v) − σ(t, u∗(t)) , ςε(t)
〉 〈

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2

)

dt
]

→ 0,

as ε→ 0, if t0 is a Lebesgue point of the function t 7→ E [ ||Z∗(t)Q1/2(t) ||22 ].

Now applying (4.16) and (4.17) in (4.15) yields (4.14).

In the following we complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let us divide (4.14) in Lemma 4.6 by ε and let ε → 0. We

then get

E

[

〈

ρ(t0, v) − ρ(t0, u
∗(t0)) , X

∗(t0)
〉

+
〈

Y ∗(t0) ,
(

a(t0, v) − a(t0, u
∗(t0))

)

X∗(t0)
〉

]

+ E
[ 〈

Y ∗(t0) , b(t0, v) − b(t0, u
∗(t0))

〉 ]

+ E
[ 〈

σ(t0, v) − σ(t0, u
∗(t0)) , X

∗(t0)
〉 〈

Q1/2(t0) , Z
∗(t0)Q

1/2(t0)
〉

2

]

+ E
[ 〈(

g(t0, v) − g(t0, u
∗(t0)

)

Q1/2(t0) , Z
∗(t0)Q

1/2(t0)
〉

2

]

≥ 0.

So by recalling (4.1) and (4.2) this inequality reads as

E [H(t0, X
∗(t0), v, Y

∗(t0), Z
∗(t0)Q

1/2(t0)) ]

≥ E [H(t0, X
∗(t0), u

∗(t0), Y
∗(t0), Z

∗(t0)Q
1/2(t0)) ].

Now by a standard argument as in [27, Chapet 3] for instance we deduce that

(4.5) holds. The proof of Theorem 4.2 has then been completed.
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5. SUFFICIENT CONDITIONS FOR OPTIMALITY

In the previous section we derived the maximum principle for the optimal control

problem (3.1)–(3.3), which gives us some necessary conditions for optimality. If we

have also a convexity assumption on the control domain U , we shall also obtain

sufficient conditions for optimality for this control problem. We record this result in

the following theorem.

Theorem 5.1. Assume that (A) holds. For a given u∗(·) ∈ Uad let X∗ and (Y ∗, Z∗, N∗)

be respectively the corresponding solutions of equations (3.1) and (4.4). Suppose that

the following conditions hold.

(i) U is a convex domain in O.

(ii) The mapping H satisfies the following two conditions:

1. H(t, ·, ·, Y ∗(t), Z∗(t)Q1/2(t)) is convex for all t ∈ [0, T ] a.s.

2. H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

= min
v∈U

H(t, X∗(t), v, Y ∗(t), Z∗(t)Q1/2(t))

for a.e. t ∈ [0, T ] a.s.

Then (X∗, u∗(·)) is an optimal pair for the control problem (3.1)–(3.3).

Proof. Let u(·) ∈ Uad. Consider the following definitions:

I1 := E
[

∫ T

0

( 〈

ρ(t, u∗(t)) , X∗(t)
〉

−
〈

ρ(t, u(t)) , Xu(·)(t)
〉 )

dt
]

,

I2 := E [
〈

θ ,X∗(T ) −Xu(·)(T )
〉

].

Then

J(u∗(·)) − J(u(·)) = I1 + I2(5.1)

and

(5.2) I2 = E [
〈

Y ∗(T ) , X∗(T ) −Xu(T )
〉

].

Let us next define

I3 := E

[

∫ T

0

(

H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

−H(t, Xu(·)(t), u(t), Y ∗(t), Z∗(t)Q1/2(t))
)

dt
]

,

I4 := E

[

∫ T

0

(

〈

a(t, u∗(t))X∗(t) − a(t, u(t))Xu(·)(t) , Y ∗(t)
〉

−
〈

b(t, u∗(t)) − b(t, u(t)) , Y ∗(t)
〉

)

dt
]

and

I5 := E

[

∫ T

0

(

〈

B(t, u∗(t))Z∗(t), X∗(t)
〉

−
〈

B(t, u(t))Z∗(t), Xu(·)(t)
〉
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+
〈 (

g(t, u∗(t)) − g(t, u(t))
)

Q1/2(t) , Z∗(t)Q1/2(t)
〉

2

)

dt
]

.

Then from the definition of H in (4.1) we get easily

(5.3) I1 = I3 − I4 − I5.

We next apply Itô’s formula to compute d
〈

Y ∗(t) , X∗(t) − Xu(·)(t)
〉

by using

equations (4.4) and (3.1) in order to find with the help of (5.2) that

(5.4) I2 = I4 + I5 − I6,

where

I6 := E

[

∫ T

0

〈

∇xH(t, X∗(t), u∗(t), Y ∗(t), Zu∗(·)(t)Q1/2(t)) ,

X∗(t) −Xu(·)(t)
〉

dt
]

.

Now by considering (5.1), (5.3) and (5.4) it follows that

(5.5) J(u∗(·)) − J(u(·)) = I3 − I6.

On the other hand, from the convexity property of the mapping (x, v) 7→ H(t, x, u,

Y ∗(t), Z∗(t)Q1/2(t)) in assumption (ii)(1) the following inequality holds a.s.:
∫ T

0

(

H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

− H(t, Xu(·)(t), u(t), Y ∗(t), Z∗(t)Q1/2(t))
)

dt

≤

∫ T

0

〈

∇xH(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)) ,

X∗(t) −Xu(·)(t)
〉

dt

+

∫ T

0

〈

∇uH(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)) , u∗(t) − u(t)
〉

O
dt.

Consequently

(5.6) I3 ≤ I6 + I7,

where

I7 = E

[

∫ T

0

〈

∇uH(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)) ,

u∗(t) − u(t)
〉

O
dt

]

.

But the minimum condition (ii)(2) shows that I7 ≤ 0. Hence (5.6) implies that

I3 − I6 ≤ 0, which together with (5.5) shows that

J(u∗(·)) − J(u(·)) ≤ 0.

Finally, since u(·) ∈ Uad is arbitrary, (X∗, u∗(·)) is an optimal pair for the control

problem (3.1)–(3.3).
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