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ABSTRACT. We consider a parametric nonlinear Neumann problem driven by the p-Laplacian

plus an L∞-potential. We study the dependence of positive solutions on the parameter λ > 0, when

the reaction term has a superdiffusive kind of behaviour. We prove a bifurcation type theorem,

showing the existence of a critical parameter value λ∗ > 0, such that for λ > λ∗, the problem has at

least two positive solutions, for λ = λ∗ the problem has at least one positive solution and finally for

λ ∈ (0, λ∗), no positive solution exists.
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1. INTRODUCTION

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following nonlinear Neumann eigenvalue problem:

(P )λ





−∆pu(z) + β(z)

∣∣u(z)
∣∣p−2

u(z) = λf
(
z, u(z)

)
in Ω,

∂u

∂n
= 0 on Ω.

Here ∆p stands for the p-Laplace differential operator, defined by

∆pu(z) = div
(
‖∇u(z)‖p−2∇u(z)

)
∀u ∈ W 1,p(Ω)

(with 1 < p < +∞). Also, n(·) denotes the outward unit normal on ∂Ω, β ∈ L∞(Ω)

is a potential function and f : Ω × R −→ R is a Carathéodory reaction (i.e., for all

ζ ∈ R, the function z 7−→ f(z, ζ) is measurable and for almost all z ∈ Ω, the function

ζ 7−→ f(z, ζ) is continuous). For the potential function β, we require that the corre-

sponding nonlinear Neumann eigenvalue problem with potential β of the p-Laplacian,

has a positive principal eigenvalue λ̂1(β). Our aim is to determine the dependence of

the positive solutions on the parameter λ > 0. This problem was investigated in the

context of semilinear (i.e., p = 2) and nonlinear (i.e., p 6= 2) Dirichlet eigenvalue prob-

lems by Delgado-Suárez [4], Maya-Shivaji [17], Rabinowitz [22] (semilinear Dirichlet

problems) and by Brock-Itturiaga-Ubilla [3], Dong [5], Guo [11], Hu-Papageorgiou
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[13], Perera [21], Takeuchi [23, 24] (nonlinear Dirichlet problems). Delgado-Suárez [4]

and Takeuchi [23, 24] deal with logistic equations of superdiffusive type and so their

reaction term has the special form:

λζq−1(1 − ζr) ∀ζ > 0,

with 1 < p < q, r > 0. In addition Takeuchi [23, 24] requires that p > 2.

Hu-Papageorgiou [13] and Perera [21] extend to p-Laplace equations the work of

Maya-Shivaji [17] and also relax significantly the hypotheses on the reaction f(z, ζ).

Moreover, in Hu-Papageorgiou [13] the primitive of the reaction is nonsmooth and

so the problem is multivalued (hemivariational inequality). The approach in Hu-

Papageorgiou [13] is degree theoretic based on the degree theory for operators of

monotone type. The work of Dong [5], extends to p-Laplacian equations the semilin-

ear result of Rabinowitz [22]. We emphasize that none of the aforementioned works,

proves a bifurcation theorem describing the precise dependence of the positive solu-

tions on the parameter λ > 0. They show that there is a parameter value λ > 0,

such that for all λ > λ, problem (P )λ has at least two solutions. They do not show

the optimality of λ > 0, i.e., that below it, no positive solution exists and in addi-

tion they do not study what happens when λ = λ. Only Brock-Itturiaga-Ubilla [3]

have such a bifurcation result but under stronger hypotheses on the reaction f(z, ζ).

Namely f(z, ζ) > 0 for almost all z ∈ Ω and all ζ > 0 (see the proofs of Lem-

mata 3.1 and 3.2) and that f(z, ·) is (p − 1)-sublinear near +∞ (see H4 and H5(i)).

To the best of our knowledge no such results exist for the Neumann problems. As

for some other multiplicity results for the Neumann problems we refer to the works

of Gasiński-Papageorgiou [7, 9, 8, 10].

Our approach is variational bases on the critical point theory, coupled with suit-

able truncation techniques.

2. MATHEMATICAL PRELIMINARIES AND HYPOTHESES

Suppose that X is a Banach space and X∗ is its topological dual. By 〈·, ·〉 we

denote the duality brackets for the pair (X, X∗). For a given ϕ ∈ C1(X), we say that

ϕ satisfies the Palais-Smale condition, if the following is true:

“Every sequence {xn}n>1 ⊆ X, such that
{
ϕ(xn)

}
n>1

⊆ R is bounded and

ϕ′(xn) −→ 0 in X∗,

admits a strongly convergent subsequence.”

Using this compactness type condition, we can have the following minimax the-

orem, known in the literature as the “mountain pass theorem”.
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Theorem 2.1. If ϕ satisfies the Palais-Smale condition, x0, x1 ∈ X, ̺ > 0, ‖x1 −

x0‖ > ̺,

max{ϕ(x0), ϕ(x1)} < inf
{
ϕ(x) : ‖x − x0‖ = ̺

}
= η̺

and

c = inf
γ∈Γ

max
06t61

ϕ
(
γ(t)

)
,

where

Γ =
{
γ ∈ C

(
[0, 1]; X

)
: γ(0) = x0, γ(1) = x1

}
,

then c > η̺ and c is a critical value of ϕ.

In the analysis of problem (P )λ, in addition to the Sobolev space W 1,p(Ω), we

will also use the ordered Banach space C1
n(Ω), defined by

C1
n(Ω) =

{
u ∈ C1(Ω) :

∂u

∂n
(z) = 0 for all z ∈ ∂Ω

}
.

One can show that

W 1,p(Ω) = C1
n(Ω)

‖·‖
,

where ‖ · ‖ denotes the usual norm of the Sobolev space W 1,p(Ω). The space C1
n(Ω)

is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

n(Ω) : u(z) > 0 for all z ∈ Ω
}
.

This cone has a nonempty interior, given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

Let β ∈ L∞(Ω) and consider the following nonlinear “weighted” eigenvalue prob-

lem:

(2.1)





−∆pu(z) + β(z)

∣∣u(z)
∣∣p−2

u(z) = λ
∣∣u(z)

∣∣p−2
u(z) in Ω,

∂u

∂n
= 0 on Ω.

We point out that the potential function β may change sign. Problem (2.1) was

studied in details by Mugnai-Papageorgiou [20]. Among other things, they proved

that problem (2.1) has a smallest eigenvalue λ̂1(β) which is isolated, simple and admits

the following variational characterization:

(2.2) λ̂1(β) = inf

{
σ(u)

‖u‖p
p

: u ∈ W 1,p(Ω), u 6= 0

}
,

where σ : W 1,p(Ω) −→ R is defined by

σ(u) = ‖∇u‖p
p +

∫

Ω

β(z)
∣∣u(z)

∣∣p dz ∀u ∈ W 1,p(Ω).

The infimum in (2.2) is attained at the Lp-normalized eigenfunction û1 (i.e., ‖û1‖p =

1), which corresponds to λ̂1(β) (recall that λ̂1(β) is simple). It is clear that we can

always assume that û1 > 0 (note that in (2.2) we can replace u by |u|). Nonlinear
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regularity theory and the nonlinear maximal principle of Vázquez [25], imply that

û1 ∈ int C+. For details and generalizations, we refer to Mugnai-Papageorgiou [20].

The hypotheses on β are the following:

H(β): β ∈ L∞(Ω), λ̂1(β) > 0.

Remark 2.2. If β ∈ L∞(Ω) and β(z) > 0 for almost all z ∈ Ω, β 6= 0, then by virtue

of Lemma 1 of Iannizzotto-Papageorgiou [15], we have that λ̂1(β) > 0. But also sign

changing potentials β can give λ̂1(β) > 0.

The hypotheses on the reaction f are the following:

H(f): f : Ω×R is a Carathéodory function, such that f(z, 0) = 0 for almost all z ∈ Ω

and

(i): there exist a ∈ L∞(Ω)+, c > 0 and r ∈ [p, p∗), such that
∣∣f(z, ζ)

∣∣ 6 a(z) + c|ζ |r−1 for almost all z ∈ Ω, all ζ > 0,

where

p∗ =

{
Np

N−p
if p < N,

+∞ if p > N ;

(ii): we have that

lim sup
ζ→+∞

f(z, ζ)

ζp−1
6 0 uniformly for almost all z ∈ Ω

and there exists v0 ∈ Lr(Ω), such that v0(z) > 0 for almost all z ∈ Ω, v0 6= 0

and ∫

Ω

F
(
z, v0(z)

)
dz > 0,

where

F (z, ζ) =

∫ ζ

0

f(z, s) ds;

(iii): lim
ζ→0+

f(z, ζ)

ζp−1
= 0 uniformly for almost all z ∈ Ω;

(iv): there exists τ > p, such that for almost all z ∈ Ω, the function ζ 7−→ f(z,ζ)
ζτ−1

is strictly decreasing on (0, +∞);

(v): there exists q > p, such that for every ̺ > 0, we can find γ̺ > 0 for which

we have that for almost all z ∈ Ω, the function ζ 7−→ f(z, ζ) + γ̺ζ
q−1 is nonde-

creasing on [0, ̺].

Remark 2.3. Since we are interested in positive solutions and all the above hypothe-

ses concern only positive semiaxis R+ = [0, +∞), without any loss of generality, we

may (and will) assume that f(z, ζ) = 0 for almost all z ∈ Ω and all ζ 6 0. As we

illustrate in the examples that follow, these hypotheses incorporate as special cases

important classes of nonlinearities, such as superdiffusive reactions (see Takeuchi
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[23, 24]). Also, in contrast to Rabinowitz [22] and Dong [5], we do not require the

existence of ξ > 0, such that f(z, ζ) < 0 for almost all z ∈ Ω, all ζ > ξ.

Example 2.4. The following functions satisfy hypotheses H(f). For the sake of

simplicity, we drop the z-dependence.

f1(ζ) = ζq−1(1 − ζη) ∀ζ > 0,

with p < q, η > 0 and q + η < p∗,

f2(ζ) = cζp−1 ln(1 + ζ) − ζq−1 ∀ζ > 0,

with p < q < p∗, c > 0,

f3(ζ) =

{
ζp−1 ln(1 + ζ) if ζ ∈ [0, 1],

cζη−1 if ζ > 1,

with 1 < η < p, c = ln 2 > 0.

Note that f1 is the reaction of superdiffusive logistic equations. Such equations

arise in models of mathematical biology (see Gurtin-Mac Camy [12]). For the p-

Laplacian, they were studied by Takeuchi [23, 24], with p > 2.

From Aizicovici-Papageorgiou-Staicu [2] (Proposition 3), we have

Proposition 2.5. If u1, u2 ∈ int C+ with u1 6 u2, h1, h2 ∈ L∞(Ω), h1 6 h2, ξ̂ > 0

and p < q satisfy

−∆puk(z) + β(z)uk(z)p−1 + ξ̂uk(z)q−1 = hk(z) in Ω, k = 1, 2

and for every nonempty, compact K ⊆ Ω, we can find γK > 0, such that

γK 6 h2(z) − h1(z) for almost all z ∈ K,

then u2 − u1 ∈ int C+.

By a positive solution of (P )λ, we mean a function u ∈ W 1,p(Ω) \ {0}, such that

u(z) > 0 for almost all z ∈ Ω, which is a weak solution of (P )λ. From nonlinear

regularity (see Hu-Papageorgiou [14] and Lieberman [16]), we have that u ∈ C+ \ {0}

and

−∆pu(z) + β(z)u(z)p−1 = λf
(
z, u(z)

)
for almost all z ∈ Ω.

Let ̺ = ‖u‖∞ and let q and γ̺ > 0 be as postulated by hypothesis H(f)(v). Then

−∆pu(z) + β(z)u(z)p−1 + λγ̺u(z)q−1 = λ
(
f
(
z, u(z)

)
+ γ̺u(z)q−1

)
> 0

for almost all z ∈ Ω, so

∆pu(z) 6
(
‖β‖∞ + λγ̺̺

q−p
)
u(z)p−1 for almost all z ∈ Ω,

so u ∈ int C+ (see Vázquez [25]).

Therefore, every positive solution of (P )λ belongs in int C+.
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As we already indicated, by ‖·‖ we denote the norm of the Sobolev space W 1,p(Ω).

Also, if ζ ∈ R, then

ζ+ = max{ζ, 0} and ζ− = max{−ζ, 0}.

For every u ∈ W 1,p(Ω), we set

u+(·) = u(·)+ and u−(·) = u(·)−.

We know that u+, u− ∈ W 1,p(Ω) and u = u+ −u−, |u| = u+ +u−. By | · |N we denote

the Lebesgue measure in R
N . For any h : Ω × R −→ R measurable, we define

Nh(u)(·) = h
(
·, u(·)

)
∀u ∈ W 1,p(Ω).

Finally A : W 1,p(Ω) −→ W 1,p(Ω)∗ is the nonlinear map, defined by

〈
A(u), y

〉
=

∫

Ω

‖∇u‖p−2(∇u,∇y)RN dz ∀u, y ∈ W 1,p(Ω).

From Iannizzotto-Papageorgiou [15, Proposition 2], we know that A is maximal mono-

tone and of type (S)+, i.e., if un −→ u weakly in W 1,p(Ω) and

lim sup
n→+∞

〈
A(un), un − u

〉
6 0,

then un −→ u in W 1,p(Ω).

3. BIFURCATION-TYPE RESULT

In this section, we study the dependence on the parameter λ > 0 of the posi-

tive solutions of (P )λ. At the end, we have a bifurcation-type result describing this

dependence.

Let

Y =
{
λ > 0 : problem (P )λ has a positive solution

}
.

We set λ∗ = inf Y .

Proposition 3.1. If hypotheses H(β) and H(f) hold, then λ∗ > 0.

Proof. Hypotheses H(f)(i), (ii) and (iii) imply that we can find c1 > 0, such that

(3.1) f(z, ζ) 6 c1ζ
p−1 for almost all z ∈ Ω, all ζ > 0.

Let λ ∈ Y . Then problem (P )λ has a solution u ∈ int C+. We have

(3.2) σ(u) = λ

∫

Ω

f(z, u)u dz 6 λc1‖u‖
p
p

(see (3.1)). Suppose that λ ∈
(
0,

bλ1(β)
c1

)
(see hypotheses H(β)). Then from (3.2), we

have

σ(u) < λ̂1(β)‖u‖p
p,

which contradicts (2.2). Hence λ∗ >
bλ1(β)

c1
> 0.



POSITIVE SOLUTIONS FOR NONLINEAR NEUMANN EIGENVALUE PROBLEMS 241

Proposition 3.2. If hypotheses H(β) and H(f) hold, then Y 6= ∅. Moreover, if

λ ∈ Y, µ > λ, then µ ∈ Y.

Proof. By virtue of hypotheses H(f)(i) and (ii), for a given ε > 0, we can find cε > 0,

such that

(3.3) F (z, ζ) 6
ε

p
ζp + cε for almost all z ∈ Ω, all ζ > 0.

Let ϕλ : W 1,p(Ω) −→ R be the energy functional for problem (P )λ, defined by

ϕλ(u) =
1

p
σ(u) − λ

∫

Ω

F
(
z, u(z)

)
dz ∀u ∈ W 1,p(Ω).

Evidently ϕλ ∈ C1
(
W 1,p(Ω)

)
and for all u ∈ W 1,p(Ω), we have

ϕλ(u) >
1

p
σ(u) −

λε

p
‖u+‖p

p − λcε|Ω|N

>
λ̂1(β) − λε

p
‖u‖p

p − λcε|Ω|N

(see (3.3) and (2.2)). Choosing ε ∈
(
0,

bλ1(β)
λ

)
, we obtain

(3.4) ϕλ(u) > c2‖u‖
p
p − λcε|Ω|N ∀u ∈ W 1,p(Ω),

for some c2 > 0.

Using (3.4), we can show that ϕλ is coercive. We argue by contradiction. So,

suppose that ϕλ is not coercive. Then we can find a sequence {un}n>1 ⊆ W 1,p(Ω)

and M > 0, such that

(3.5) ‖un‖ −→ +∞ and ϕλ(un) 6 M ∀n > 1.

From (3.4) and (3.5) it follows that the sequence {un}n>1 ⊆ Lp(Ω) is bounded. Hence

‖∇un‖p −→ +∞ (see (3.5)). We have

1

p
‖∇un‖

p
p 6

1

p

(
‖β‖∞ + λε

)
c3 + c4 ∀n > 1

for some c3, c3 > 0 (see (3.3)), so

the sequence {∇un}n>1 ⊆ Lp(Ω; RN) is bounded,

a contradiction. This proves that ϕλ is coercive. Also, exploiting the compactness of

the embedding W 1,p(Ω) ⊆ Lp(Ω), we can easily check that ϕλ is sequentially weakly

lower semicontinuous. So, by the Weierstrass theorem, we can find u0 ∈ W 1,p(Ω),

such that

(3.6) ϕλ(u0) = inf
u∈W 1,p(Ω)

ϕλ(u).

Consider the integral functional IF : Lr(Ω) −→ R, defined by

IF (v) =

∫

Ω

F
(
z, v(z)

)
dz ∀v ∈ Lr(Ω).
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By virtue of Krasnoselskii’s theorem (see e.g., Gasiński-Papageorgiou [6, p. 407]), we

have that IF is continuous. Also, by hypothesis H(f)(ii), IF (v0) > 0. Since W 1,p(Ω)

is dense in Lr(Ω), we can find v̂ ∈ W 1,p(Ω), such that IF (v̂) > 0. Therefore, for large

λ > 0, we will have

ϕλ(u0) 6
1

p
σ(v̂) − λIF (v̂) < 0 = ϕλ(0)

(see (3.6)), so u0 6= 0.

From ((3.6)), we have

ϕ′
λ(u0) = 0,

so

(3.7) A(u0) + β|u0|
p−2u0 = λNf(u0).

Acting on (3.7) with −u−
0 ∈ W 1,p(Ω), we obtain u0 > 0, u0 6= 0. So, from (3.7), we

have 



−∆pu0(z) + β(z)u0(z)p−1 = λf

(
z, u0(z)

)
in Ω,

∂u0

∂n
= 0 on Ω

(see Motreanu-Papageorgiou [19]), so λ ∈ Y for large λ > 0 and so Y 6= ∅.

Next suppose that λ ∈ Y and let uλ ∈ int C+ be a positive solution of (P )λ. For

µ > λ, let ϑ ∈ (0, 1) be such that λ = ϑτ−pµ with τ > p as in hypothesis H(f)(iv).

Let u = ϑuλ ∈ int C+. We have

−∆pu(z) + β(z)u(z)p−1 = λϑp−1f
(
z, uλ(z)

)

6 ϑτ−1µf
(
z, uλ(z)

)

6 µf
(
z, u(z)

)
for almost all z ∈ Ω(3.8)

(see hypotheses H(f)(iv)). We introduce the following truncation of the reaction

f(z, ζ):

(3.9) g(z, ζ) =

{
f
(
z, u(z)

)
if ζ 6 u(z),

f(z, ζ) if u(z) < ζ.

This is a Carathéodory function. We set

G(z, ζ) =

∫ ζ

0

g(z, s) ds

and consider the C1-functional ϕ̂µ : W 1,p(Ω) −→ R, defined by

ϕ̂µ(u) =
1

p
σ(u) − µ

∫

Ω

G
(
z, u(z)

)
dz ∀u ∈ W 1,p(Ω).

We have

(3.10) ϕ̂µ(u) >
1

p
σ(u) − µ

∫

{u6u}

F
(
z, u(z)

)
dz − c5 ∀u ∈ W 1,p(Ω),

for some c5 > 0 (see (3.9) and hypothesis H(f)(i)).
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From (3.10), as before using (3.3) with ε ∈
(
0,

bλ1(β)
µ

)
, we show that ϕ̂µ is coercive.

Also, it is sequentially weakly lower semicontinuous. So, we can find û ∈ W 1,p(Ω),

such that

ϕ̂µ(û) = inf
u∈W 1,p(Ω)

ϕ̂µ(u),

so

ϕ̂′
µ(û) = 0

and thus

(3.11) A(û) + β|û|p−2û = µNg(û).

On (3.11) we act with (u − û)+ ∈ W 1,p(Ω) and obtain

〈
A(û), (u − û)+

〉
+

∫

Ω

β|û|p−2û(u − û)+ dz

= µ

∫

Ω

f(z, u)(u − û)+ dz

>
〈
A(u), (u − û)+

〉
+

∫

Ω

βup−1(u − û)+ dz

(see (3.9) and (3.8)), so

〈
A(u) − A(û), (u − û)+

〉
+

∫

Ω

β
(
up−1 − |û|p−2û

)
(u − û)+ dz 6 0

and thus
∣∣{u > û}

∣∣
N

= 0,

i.e., u 6 û.

Then (3.11) becomes

A(û) + βûp−1 = µNf(û)

(see (3.9)), so




−∆pû(z) + β(z)

∣∣û(z)
∣∣p−1

= µf
(
z, û(z)

)
in Ω,

∂û

∂n
= 0 on Ω

(see Motreanu-Papageorgiou [19]) and thus

û ∈ int C+ is a positive solution of (P )µ

and so µ ∈ Y .

Proposition 3.3. If hypotheses H(β) and H(f) hold and λ > λ∗, then problem (P )λ

has at least two nontrivial positive smooth solutions

u0, û ∈ int C+, u0 6 û, u0 6= û.
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Proof. Let η ∈ (λ∗, λ)∩Y and let uη ∈ int C+ be a positive solution of problem (P )η.

Let ϑ ∈ (0, 1) be such that η = ϑτ−pλ (τ > p is as in hypothesis H(f)(iv)). Let

u = ϑuη ∈ int C+. As in the proof of Proposition 3.2, we truncate f(z, ·) at u(z),

introduce the corresponding C1-functional ϕ̂λ : W 1,p(Ω) −→ R and via the direct

method, we obtain u0 ∈ int C+, such that

(3.12) ϕ̂λ(u0) = inf
u∈W 1,p(Ω)

ϕ̂λ(u) u 6 u0

and u0 solves problem (P )λ.

Let ̺ = ‖u0‖∞ and let γ̺ > 0 be as postulated by hypothesis H(f)(v). Then

− ∆pu(z) + β(z)u(z)p−1 + ηγ̺u(z)q−1

= ϑp−1ηf
(
z, uη(z)

)
+ ηγ̺u(z)q−1

= η

(
ϑτ−1

ϑτ−p
f
(
z, uη(z)

)
+ γ̺u(z)q−1

)

6 η

(
λ

η
f
(
z, u(z)

)
+ γ̺u(z)q−1

)

= λf
(
z, u(z)

)
+ ηγ̺u(z)q−1

6 λf
(
z, u(z)

)
+ λγ̺u(z)q−1

6 λf
(
z, u0(z)

)
+ λγ̺u0(z)q−1

= −∆pu0(z) + β(z)u0(z)p−1 + λγ̺u0(z)q−1(3.13)

for almost all z ∈ Ω (we have used hypothesis H(f)(iv) − (v) and the facts that

ϑτ−p = η

λ
, η < λ and u 6 u0). We set

h1(z) = ϑp−1ηf
(
z, uη(z)

)
+ ηγ̺u(z)q−1

h2(z) = λf
(
z, u0(z)

)
+ λγ̺u0(z)q−1.

Then h1, h2 ∈ L∞(Ω) (recall that u0, û, uη ∈ int C+). Choose

m0 ∈
(
0, min

Ω
u
)

(recall that u ∈ int C+). Then

h1(z) + (λ − η)γ̺m
q−1
0

= ϑp−1ηf
(
z, uη(z)

)
+ ηγ̺u(z)q−1 + (λ − η)γ̺m

q−1
0

6 ϑp−1ηf
(
z, uη(z)

)
+ ηγ̺u(z)q−1 + (λ − η)γ̺u(z)q−1

= ϑp−1ηf
(
z, uη(z)

)
+ λγ̺u(z)q−1

6 λf
(
z, u(z)

)
+ λγ̺u(z)q−1

6 λf
(
z, u0(z)

)
+ λγ̺u0(z)q−1

= h2(z) for almost all z ∈ Ω
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(we have used hypotheses H(f)(iv), (v) and the fact that η < λ), thus

(λ − η)mq−1
0 6 (h2 − h1)(z) for almost all z ∈ Ω.

So, we can apply Proposition 2.5 and infer that

(3.14) u0 − u ∈ int C+.

Let us set

[u) =
{
u ∈ W 1,p(Ω) : u(z) 6 u(z) for almost all z ∈ Ω

}
.

From the definition of ϕ̂λ (see (3.9)), we have

(3.15) ϕ̂λ|[u)
= ϕλ|[u)

− c6

for some c6 ∈ R. Then from (3.12), (3.14) and (3.15), it follows that u0 is a local

C1
n(Ω)-minimizer of ϕλ, hence from Motreanu-Papageorgiou [19], it follows that u0 is

also a local W 1,p(Ω)-minimizer of ϕλ.

Hypothesis H(f)(iii) implies that for a given ε > 0, we can find δ = δ(ε) > 0,

such that

(3.16) F (z, ζ) 6
ε

p
|ζ |p for almost all z ∈ Ω, all |ζ | 6 δ.

Let u ∈ C1
n(Ω) and assume that ‖u‖C1

n(Ω) 6 δ. Then

ϕλ(u) >
1

p
σ(u) −

ελ

p
‖u‖p

p

>
1

p

(
λ̂1(β) − ελ

)
‖u‖p

p > 0

(using (3.16), (2.2) and choosing ε ∈
(
0,

bλ1(β)
λ

)
), so

u = 0 is a local C1
n(Ω)-minimizer of ϕλ,

so also

u = 0 is a local W 1,p(Ω)-minimizer of ϕλ

(see Mugnai-Papageorgiou [20]). Without any loss of generality, we may assume that

0 = ϕλ(0) 6 ϕλ(u0)

(the analysis is similar if the opposite inequality holds). In addition, we may assume

that u0 ∈ int C+ is an isolated critical point of ϕλ (otherwise, we already have a

whole sequence of distinct positive solutions of (P )λ converging in W 1,p(Ω) to u0). As

in Aizicovici-Papageorgiou-Staicu [1] (see the proof of Proposition 29), we can find

̺ ∈ (0, ‖u0‖)), such that

(3.17) ϕλ(0) = 0 6 ϕλ(u0) < inf
{
ϕλ(u) : ‖u − u0‖ = ̺

}
= η̺.
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Since ϕλ is coercive (see the proof of Proposition 3.2), it satisfies the Palais-Smale

condition. This fact and (3.17), permit the use of the mountain pass theorem (see

Theorem 2.1) and we can find û ∈ W 1,p(Ω), such that

(3.18) ϕλ(0) = 0 6 ϕλ(u0) < η̺ 6 ϕλ(û)

(see (3.17)) and so

(3.19) ϕ′
λ(û) = 0.

From (3.18), we have that û 6∈ {0, u0}, while from (3.19), it follows that û ∈ int C+

solves problem (P )λ. So, û is the second nontrivial positive smooth solution of (P )λ

distinct from u0.

Next we examine what happens at the critical parameter value λ∗ > 0 (“bifurca-

tion point”).

Proposition 3.4. If hypotheses H(β) and H(f) hold, then λ∗ ∈ Y, i.e., Y =

[λ∗, +∞).

Proof. Let {λn}n>1 ⊆ Y be a sequence, such that λn ց λ∗. Let un = uλn
∈ int C+

for n > 1 be the sequence of corresponding positive solutions of problems (P )λn
. We

have

(3.20) A(un) + βup−1
n = λnNf (un) ∀n > 1.

Hypotheses H(f)(i) and (ii) imply that for a given ε > 0, we can find ĉε > 0, such

that

(3.21) f(z, ζ) 6 ε(ζ+)p−1 + ĉε for almost all z ∈ Ω, all ζ ∈ R.

Acting on (3.20) with un ∈ int C+, we have

σ(un) = λn

∫

Ω

f(z, un)un dz

6 λnε‖un‖
p
p + ĉε‖un‖p

6
λnε

λ̂1(β)
σ(un) + ĉε‖un‖p

(see (3.21), (2.2)), so choosing ε <
bλ1(β)

λ∗

and since λ∗ < λn for all n > 1, we can find

n0 > 1, such that

(3.22) c7σ(un) 6 ĉε‖un‖p ∀n > n0,

for some c7 = c7(ε) > 0.

From (3.22) and (2.2), it follows that the sequence {un}n>1 ⊆ Lp(Ω) is bounded

and then from (3.22) and hypothesis H(β), we have that the sequence {∇un}n>1 ⊆
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Lp(Ω; RN) is bounded. So, the sequence {un}n>1 ⊆ W 1,p(Ω) is bounded and so we

may assume that

un −→ u∗ weakly in W 1,p(Ω),(3.23)

un −→ u∗ in Lp(Ω),(3.24)

with u∗ > 0. Acting on (3.20) with un − u∗, passing to the limit as n → +∞ and

using (3.23), we obtain

lim
n→+∞

〈
A(un), un − u

〉
= 0,

so

(3.25) un −→ u∗ in W 1,p(Ω)

(since A is of type (S)+; see Iannizzotto-Papageorgiou [15]). Passing to the limit as

n → +∞ in (3.20) and using (3.25), we have

A(u∗) + βup−1
∗ = λ∗Nf(u∗),

so u∗ ∈ C+ solves problem (P )λ. We need to show that u∗ 6= 0. Arguing indirectly,

suppose that u∗ = 0. We set

yn =
un

‖un‖
∀n > 1.

Then ‖yn‖ = 1 for all n > 1 and so we may assume that

yn −→ y weakly in W 1,p(Ω),(3.26)

yn −→ y in Lp(Ω).(3.27)

From (3.20), we have

(3.28) A(yn) + βyp−1
n =

λnNf(un)

‖un‖p−1
∀n > 1.

From hypotheses H(f)(iii), we can find δ > 0, such that

∣∣f(z, ζ)
∣∣ 6 ζp−1 for almost all z ∈ Ω, all ζ ∈ [0, δ].

From hypotheses H(f)(i), we have

∣∣f(z, ζ)
∣∣ 6 ĉζr−1 for almost all z ∈ Ω, all ζ > δ,

with some ĉ > 0. Therefore, finally

(3.29)
∣∣f(z, ζ)

∣∣ 6 c8

(
|ζ |p−1 + |ζ |r−1

)
for almost all z ∈ Ω, all ζ ∈ R,

with some c8 > 0. From (3.26) and (3.29), we see that the sequence
{

λnNf(un)

‖un‖p−1

}

n>1

⊆ Lr′(Ω)
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is bounded. So, we may assume that

(3.30)
λnNf(un)

‖un‖p−1
−→ h weakly in Lr′(Ω).

Using hypothesis H(f)(iii) and reasoning as in Aizicovici-Papageorgiou-Staicu [1]

(see the proof of Proposition 31), we have

(3.31) h = 0.

Acting on (3.28) with yn − y, passing to the limit as n → +∞ and using (3.30), we

have

lim
n→+∞

〈
A(yn), yn − y

〉
= 0,

so

(3.32) yn −→ y in W 1,p(Ω),

hence ‖y‖ = 1, y > 0. Passing to the limit as n → +∞ in (3.28) and using (3.32),

(3.30) and (3.31), we obtain

A(y) + βyp−1 = 0,

so

(3.33)





−∆py(z) + β(z)y(z)p−1 = 0 in Ω,
∂y

∂n
= 0 on Ω

(see Motreanu-Papageorgiou [19]). Since y 6= 0 (see (3.32)) and λ̂1(β) > 0 (see

hypothesis H(β)), from (3.33) we reach a contradiction (see (2.2)). Therefore u∗ 6= 0

and so λ∗ ∈ Y .

So, we can state the following bifurcation-type theorem for problem (P )λ.

Theorem 3.5. If hypotheses H(β) and H(f) hold, then there exists λ∗ > 0, such

that:

(a) for all λ > λ∗, problem (P )λ has at least two nontrivial positive solutions

u0, û ∈ int C+, u0 6 û, u0 6= û;

(b) for λ = λ∗, problem (P )λ has at least one nontrivial positive solution u∗ ∈ int C+;

(c) for λ ∈ (0, λ∗), problem (P )λ has no positive solutions.
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