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WITH neN, n>2
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ABSTRACT. In the paper, we derive a fractional fundamental lemma for functions of one variable
with Riemann-Liouville derivatives of order « € (n— %, n) where n € N, n > 2. To prove this lemma
we derive a theorem on the integral representation of a function possessing the fractional derivative
of order o > 0 and a theorem on the fractional integration by parts of high order. Case of n =1 is

studied in [D. Idczak, Fractional fundamental lemma of order « € (%, 1), to appear].
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1. INTRODUCTION

In the classical calculus of variations and in the variational theory of ordinary
differential equations of high order the following result is known as the fundamental

lemma or du Bois-Reymond lemma of order n (cf. [10]).

Lemma 1.1 (fundamental lemma of order n). If a, € L*([a,b],R™), ay_1,...,a0 €
L*([a,b],R™) and

/ b(an(t)D”h(t) 4 ag () DR(E) + ao(t)h(t))dt = 0

for any function h : [a,b] — R™ which is absolutely continuous together with the
classical derivatives D'h,. .., D™ VYh, such that D™h € L*([a,b],R™) and
h(a) = D'h(a) = --- = D" 'h(a) = 0,
h(b) = D'h(b) = --- = D" 'h(b) = 0,
then the functions appearing below in the brackets are absolutely continuous and
D'(...(DYD'((D*(an) — @n-1) + an_g) +---+ (=1)"tay) + (=1)"ag = 0
a.e. on [a,b.
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Remark 1.2. More precisely, each of the above functions appearing in brackets is
equal a.e. on [a,b] to some absolutely continuous function. In the next (as in the

lemma), we shall identify functions that are equal a.e. on [a, b].

The aim of the paper is to derive a counterpart of Lemma 1.1 for the Riemann-
Liouville fractional derivatives of order v € (n — 1, n) where n € N, n > 2. Case
of n = 1 is studied in [6]. The presented paper contains an extension of the result
obtained in [6] to the case of any n € N. Our investigations are based on a theorem
on the integral representation of a function possessing fractional derivative of order
a > 0 and on a theorem on the fractional integration by parts for the Riemann-
Liouville derivatives of high order, obtained in the paper. To the best knowledge
of the authors the fractional fundamental lemma of high order nor theorem on the
fractional integration by parts of high order nor theorem on the integral representation
of a function possessing fractional derivatives of order o > 0 have not been proved up
to now. The obtained fundamental lemma can be used to study the Euler-Lagrange
equations for functionals depending on fractional derivatives of high order. Some
formulations of the Euler-Lagrange equations for such functionals have been given by
other Authors (cf. [1], [2], [5], [8]) but as we read in [3]: “For a given Lagrangian, there
are several proposed methods to obtain the fractional Fuler-Lagrange equations and
the corresponding Hamiltonians. However, this issue is not yet completely clarified

and it requires more further detailed analysis.”

The paper is organized as follows. In section 2 we recall some definitions and
facts from the fractional differential calculus. In section 3 we derive a theorem on the
integral representation of a function possessing the fractional derivative of order v > 0
and in section 4 - a theorem on the integration by parts for the Riemann-Liouville
derivatives of high order. Section 5 is devoted to some technical result which is used in
the proof of the main result. In section 6 we give the proof of a fractional fundamental

lemma and some its generalizations.

2. PRELIMINARIES

Let n € N, n > 2. By AC™([a,b],R™) we denote the space of all functions
f i a,b] — R™ that are absolutely continuous together with the classical deriva-
tives D'f,... ., D" 1 f. Tt is known that f € AC™([a,b],R™) if and only if there exist

constants cg, ci,...,¢,—1 € R™ and a function ¢ € L!([a,b], R™) such that
ft)=co+ L(t—a)+-- -—i—L(t—a) -l
1! (n—1)!

/ / / detn 1. dtl, t e [a, b]
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Consequently, if f € AC™([a, b}, R™), then

f(CL) = Cp, le(a> =C1y-- 0y Dn_lf(a> = Cp—1,
D"f(t) = ¢(t), t € [a,b] a.e.
By AC{([a,b],R™) we denote the space of all functions f € AC™([a,b],R™) that

satisfy the conditions

fla)=0, D'f(a)=0,..., D" 'f(a) =0

Of course, f € ACZ([a,b],R™) if and only if there exists a function ¢ € L'([a, b], R™)
such that

(2.1) // / 7Ydrdt,_; ...dt, t € [a,b].

By AC™P([a,b],R™), 0" ([a,b],R™) (1 < p < o) we denote the spaces of
functions possessing the approprlate representations with ¢ € LP([a, b], R™); of course,
AC™([a,b],R™) = AC™([a,b], R™), ACy"([a,b], R™) = ACF([a, b],R™).

Let a > 0, ¢ € L'([a,b],R™). By a left-sided Riemann-Liouville fractional

integral of ¢ on the interval |a, b] we mean a function I, ¢ given by

(Igy)(t) = F(l ) / ( #(7) —dr, t € [a,0] ae.

o t—7)t

Analogously, by a right-sided Riemann-Liouville fractional integral of ¢ on the interval

[a, b] we mean a function I f given by

(LZp)(t) = F(la) /t - (i(z_))l—adT’ t € [a,b] ae.

We shall use

Theorem 2.1. (a) If « > 0 and p > 1, then I, ¢ € LP([a,b],R™) for any ¢ €
LP([a,b],R™)

(b)) Ifa>0,p>1andp > é, then the function I$, ¢ is continuous on [a,b] for
any ¢ € LP([a,b],R™).

Remark 2.2. Theorem 2.1(a) follows from [9, Th. 2.6], Theorem 2.1(b) can be de-
duced from the results obtained in [4] (cf. also [9, Th. 3.6]). Analogous theorem holds
true for the right-sided integral.

In [9, Corollary of Th. 3.5] (cf. also [7, Lemma 2.7 (a)]) the following theorem on

the integration by parts is given.

Theorem 2.3. Ifa>0andp>1,qg>1 and %%—% < 1+« (additionally, we assume
that p > 1 and ¢ > 1 when%+% =1+ «), then

[enuzma - [ uaweo
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for ¢ € LP([a,b],R™), ¢ € L([a,b],R™).

Now, let n — 1 < a < n for some n € N, f € L'([a,b],R™). We say that f pos-
sesses the left-sided Riemann-Liouville derivative D, f of order « on the interval [a, b]
if 1;7%f € AC™([a, b],R™). By this derivative we mean the derivative D" (1% f), i.e.

(Dg () = %)D"( / (LT)_dT)(t), t € [a,b] ae.

(n—a t — 7)l-nta

Similarly, we say that f possesses the right-sided Riemann-Liouville derivative D;’ f
of order o on the interval [a,b] if I;'"“f € AC"([a,b],R™). By this derivative we
mean the function (—1)"D™ (I~ f), i.e

b
(D2 f)(t) = %)(—1)’@(")( /t (Ldf)(t), teab ac.

(n —a T — t)l—n—l—a
Additionally, we put DY, f = f, Dj_f = f.

Theorem 2.3 implies the next theorem (cf. [9, Corollary 2 of Th. 2.4] and also
7, Lemma 2.7 (b)]).

Theorem 2.4. If a >0,p>1,q¢>1 and % + % < 1+ a (additionally, we assume
thatp > 1 and g > 1 when%jt% =1+ «), then

b b
/ fO)(Dyg)(t)dt = / (D2 f)(t)g(t)dt.
for f e I2 (L*([a,b],R™)), g € I (L9([a, b],R™)).

Remark 2.5. The previous theorem is an analogue of the following classical one: if
the functions g, h : [a,b] — R belongs to AC™([a, b],R™) and

g(b) D" h(b) = D'g(b)D"*h(b) = - -+ = D" "' g(b)h(b) = 0,
g(a)D""'h(a) = D'g(a)D" *h(a) = - -- = D""'g(a)h(a) =0,

/ab (D" h(t) /D"

This classical result follows from the following more general theorem: if the functions
g, h:la,b] — R belongs to AC™([a,b],R™), then

then

n

[ sD ey = 3" (-1) D g0 i

k=1

_Zn:(_l)k—le 1 ( )Dn kh /Dn

k=1
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3. INTEGRAL REPRESENTATION

We shall prove

Theorem 3.1. Ifn—1<a<n,n €N, n>2 and f € L'([a,b],R™), then f has the

left-sided Riemann-Liowville derivative D, f of order a on the interval [a,b] if and

only if there exist constants ¢y, c1,...,cn_1 € R™ and a function ¢ € L'([a, b],R™)
such that
(3.1) F(t) = et = )" 4 e (t = 0)"
' Ma—n+1) I'(a—n+2)
b L ()t T o(t), t € [a,b] ace.

IN{))

In such a case
DY(IZ7f)(a) = co. D'ITF)(@) = e, oo, D HIZEF) (@) = o
and

(D2 F)(E) = (t), ¢ € [a.8] ae.

Proof. Let us assume that f has the left-sided Riemann-Liouville derivative Dg, f of
order a on the interval [a,b], i.e. [)7*f € AC™([a,b],R™). This means that there

exist constants cg, c1,...,¢,—1 € R™ and a function ¢ € L'([a,b], R™) such that

n—af(4) — g R S PR
17" (t)—co+1!(t a) + +(n—1)!(t a)

t t1 tn—1
—I—/ / / (p(T)detn_l...dtl, te[a,b].

(3.2) DI f)(a) = co, DYIZZf)(a) =ci,..., D" ' I f)(a) = co

Of course, in such a case

and
(D f)(t) =D (1 f)(t) = p(t), t € a,b] ae.
Let us define on (a, b) a function

9(t) = r(a—jz+1)(t_a)a_n+

&1

A (et
Ta—nggl 9"

From [7, formula (2.1.16)] it follows that

(- = )" ™) (1) = LE((- = a)* =7 (1) = Bt — a),

I (= )™ ™)) = L((- = a)* 2 (1) = D552 - o),

(3.3) re)

I (= @) )(0) = Kt — ),



256 D. IDCZAK AND M. MAJEWSKI

So,
n—o ) 1 Cn—1 n—
(3.4) I %g(t) = m(t —a)’ + m(t —a)' +--+ D) (t—a)" "
Consequently,
I f(t) = 7o (f = g)(8) + e (t = ) 4 =t — @) b ot a)n

(1) ['(2) [(n)
Since 1. f, I7%g € AC™([a,b],R™), therefore I;7%(f — g) € AC™([a,b],R™). Of
course (cf. (3.2), (3.4)),

DULZ(f - g))(a) = 0, DNIZ(f — 9))(a) = 0.
DI (f — g))(a) = 0.

This means that I;-“(f —g) € AC{([a,b],R™), i.e. (cf. (2.1)) there exists a function
¢ € L'([a,b],R™) such that

("o (f — // / Ddrdto ... dty = (I, o) (1),

Thus,

t € la,bl.

(L") = (L5 g) (1) + (g o) (1) = (L5 "9) (1) + (L3 Lg ) (1),

t € [a,b] a.e.

So,

f) = D (L N)(t) = Dy (L5 g) () + Dy (L gy ) (1)

=9() + U500 = p o (= O " g Ot
b L (= a)2 T+ (19, 0)(1), ¢ € [a,b] ace.

[(a)

Now, let us assume that f has the representation (3.1). From (3.3) and from the
fact that

(LTI o)(t) = / / / T)drdt,_1 ... dty,

it follows that I./”*f belongs to AC"([a,b], R™). O

t € [a,b] a.e.

Remark 3.2. The above theorem can be also deduced from [7, Corollary 2.1, Lemma
2.5 (b), Lemma 2.6 (b)] but, to our best knowledge, it has not been formulated up to

now.
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By AC;P(Ja,b],R™) with n — 1 < a <n, n € N, n > 2, we denote the set of all
functions f : [a,b] — R™ that have representation (3.1) with ¢ € L?([a, b}, R™).

Remark 3.3. The space ACS: ([a, b], R™) can be treated as a fractional counterpart
of the space AC"([a, b],R™).

In an analogous way one can prove

Theorem 3.4. Ifn—1<a<n,n €N, n>2 andg € L*([a,b],R™), then g has the
left-sided Riemann-Liouwville derivative Dg,_g of order o on the interval [a,b] if and
only if there exist constants dy, dy,...,d,—1 € R™ and a function b € L'([a, b], R™)
such that

(3.5) g(t) = ﬁ(b — )T 4 ﬁ(b — p)entl
+ee ??;él)(b—t)“‘l + I 4p(T), t € [a,b] ae.

In such a case
D(I}=%g)(b) = do, D'(I;}~%g)(b) = —dy, ..., D" (I} *g)(b) = (—1)" 'dn—y

and
(Dy_g)(t) = (1), t € [a,b] a.e

By ACy(Ja,b],R™) withn —1 < o <n, n € N, n > 2, we denote the set of all
functions g : [a,b] — R™ that have representation (3.5) with ¢» € L([a, b], R™).

4. INTEGRATION BY PARTS

The following fractional counterpart of the second theorem formulated in Remark
2.5 holds true.

Theorem 4.1. Ifn—1<a<n,neNn>2 n—a<l-—-= n—a<1—— then

/ FODE )t = S (DI ) (@) (1" D¢ g) (a)

n—1

=D (D)D) () (L DE, £)(b) + / (Day f)(t)g(t)dt

1=0

for f € ACP([a,b],R™), g € AC}"([a,b],R™).

Proof. Let
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do dl

Mo ni )G Ta_nzg?

g(t) =

dn—l a— (e
NIV (o) (b—1) L LY (T)dT,

where cg,...,ch_1,do, - ,dn_1 € R™ ¢ € LP([a,b],R™), ¥ € L([a,b],R™). We have
b

(the third integral given below exists because n—a < 1—%; integral / (IS¢, @) (t)w(t)dt
exists by Theorem 2.1 (b))

/ F()(Dgg)(t)dt = / F(y (@)t

_ N /b Mt)_ dt + a )/b(t—a)a—"“w(t)dt

Na—n+1)/, (t—a)r@ Na—n+2)/,

Cpn—1 b a—1 '
+...+F(a)/a (t—a) ¢(t)dt+/a (Lg o) () (t)dt

= oI ) (@) + e () (@) + -+ e (50 (0)
+ / (I o) (t)w(t)de.

Similarly,

b
/ (D2, ) (Dg(t)dt = do(I5" 1 0)(B) + da (I 20) (D) + ...
b
Tl (12, 0)(0) + / (BT ) ().

Since (cf. Theorem 2.3)

/ (12, ) (y(t)dt = / ST ) (1),

therefore

/ FODE )it =3 eI i) @) S d I ) 0)
/ (D3, £yt = 3" (DI F) (@) (I Dig) ()
-3 DD ) I D A0 + [ (D2 f)Bate

and the proof is completed. O
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5. ON SOME DETERMINANT

Let us denote

e L = 0) L (- ) )
e e = ) Le (B~ ) 0)
Wan = : :
5 (0= 7)) g 17 (b= 7))
rrn L2 (b = )P=m)(b) o (b= )|

where a € (n — 5, n), n € N, n > 2 (assumptions on « guarantee that the entries of

the above n x n dimensional matrix are well defined).

In the proof of the main result of the paper the following proposition plays the

fundamental role.

Proposition 5.1. The matriz W, , is nonsingular.

Proof. Clearly, our theorem holds true for n = 2 because

1 (b a)2a73 (b_a)2a72
det ng = det (b—a 22 2 bfgggfl .
(D= D(a))? [ odf i

So, let us assume that n > 3. It is easy to see that determinant of W, ,, is different

from zero if and only if determinant of the matrix
b b

/ 2a 2n - / (b _ 7_>2o¢—(2n—1)d7_

b a

b
)201—(271 1) dT / (b _ T>2a—(2n—2)d7_

b
7‘)20‘_("+2)d7‘ / (b _ 7_)2a—(n+1)d7_
)

b
/ (b —7)%"dr

(b_a)2a—(2n—1)+1

— 7)2a—(n+1) g+

o
fo-
i

(b_a)Qa—QnJrl

20—2n+1 20— (2n—1)+1
(b_a)2a7(2n71)+1 (b_a)2a7(2n72)+1

2a—(2n—1)+1 2a—(2n—2)+1

(b a)2a (n+2)+1 (b_a)Qa—(7L+1)+l

20— (n+2)+1 2a—(n+1)+1
(b a)Za (n4+1)+1 (b_a)2a7n+1
L 200—(n+1)+1 2a—n+1

is nonzero. Now, we multiply (n — 1)-th row by (b — a), (n —
, first row by (b — a)""! and next we divide the n-th column by (b —

(n — 1)-th column by (b — a)?*=3+1,

(b_a)Zaf(n+l)+1 B

. first column (b —

b
/ (b _ 7_>201—(n-|-1)d7_
@b
/ (b—7)%"dr

b :
/ (b — 7)2 3dr

b
/ (b—7)%2dr

20—(n+1)+1
(b_a)Zafanl
2a0—n+1

(b_a)2a73+1
200—3+1
(b_a)2a72+1
200—241

2)-th row by (b — a)?,

CI,) 2a—2+1

a)?e~(+D+1 In such a way
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we obtain the following matrix

1 1 N S
v y+1 v+ (n—1)
1 1 1
y+1 v+2 Y+n
1 1 1
¥+(n—2) ~y+(Mn-1) " y+(2n-3)
1 1 1
L y+(n-1) y+n T y+(2n—2)

where v = 2a — 2n + 1. Of course, matrix W, , is nonsingular if and only if the last

one is.
Let us multiply the first row by 7, the second row by v+ 1, ..., n-th row by
v+ (n —1). We obtain
S R )
1 ot o+l
GEIE y+n
1 ’Y+(” 2) Y+(n—2)
YH(n—1) 7 3+(2n-3)
y+(n—1) +(n—-1)
v T y+(2n—2)

Since the second column can be written down as

. yt+1-1 [ 1T -1
7+1 v+1 y+1
v+2 v+2 v+2
= : =1 : |t : ;
Y+(n—2) Y+(n—=2)+1-1 1 —1
Y+(n—1) Y+(n—1) Y+(n—1)
Y+(n-1) y+(n—1)+1-1 1 =1
AR R B N R aD
therefore det W, ,, # 0 if and only if
[ 1 1 L T
v+1 (D)
1 1 a+1
v+2 T Ytn
det | : : : #0.
1 Y+ (n—2)
y+(n—1) " +(2n-3)
1 y+(n—1)
L y+n T y+(2n-2)

Working in the similar way with the remaining columns we assert that det W, ,, # 0

if and only if

1 1 1

v+1 4 (n-1)
1 1 1
2o

det | : : : # 0.

1 —L S S

Y+(=1) " y+(2n-3)

1 1

L Y+n T +(2n-2)



FRACTIONAL FUNDAMENTAL LEMMA 261

Now, we multiply the first row by v+ 1, the second row - by v+ 2, ..., the last row

- by 7+ n and repeat the previous procedure to obtain the matrix

1 1

v+l 1 Y42 Y+ (n—1)
1 1
72 b oy Tin
1 1

yH-D 1 )
1 1

A e sy D |

etc. In effect, the matrix W, ,, is nonsingular if and only if the matrix

(v +n)
(v+(n+1))

(y+(n=1)(y+n)
(y+n)(v+(n+1))

(y+1)...(y+n)
(v+2)...(v+ (n+1))

(Y+@n=3)(y+(2n—-2)) (v+(2n—-2))
(Y +@Cn=2)(y+(2n—-1)) (v+(2n-1)) ]

(y+(n—=1))...(v+(2n —2))
(v+n)...(vy+(2n—-1))

is nonsingular. If we divide the first row by (v + 1)... (v 4+ n), the second row - by

(v+2)...(v+ (n+1)), ..., the last row - by (y+n)...(y+ (2n — 1)), we obtain
the matrix
[ 1 1 1 1 T
0—2n+1 (6—2n+1)...(6—2n+(n—2)) (6—2n+1)...(6—2n+(n—1))
1 1 1
1 0—2n+2 (6—2n+2)...(60—2n+(n—1)) (6—2n+2)...(6—2n+n)
1 1 1 1
0—2n+(n—1) (6—2n+(n—1))...(0—2n+(2n—4)) (6—2n+(n—1))...(6—2n+(2n—3))
1 1 1
L 1 d—2n+n (6—2n+n)...(6—2n+(2n—3)) (6—2n+n)...(6—2n+(2n—2))

where 6 = v+ 2n=2a —2n+ 1+ 2n =2a + 1.

Let us denote

1 1 1
L s (0—2k+1)...0—2k+(k—2)) (0—2k+1)...0—2k+(k—1))
1 1 1
L 5= (0—2k+2)...(0—2k+(k—1)) (0—2k+2)...0—2k+k)
Zy=| : : : :
1 1 1 1
5—2k+(k—1) (O—2k+(k—1))...0—2k+(2k—4))  (0—2k+(k—1))...(0—2k~+ (2k—3))
1 1 1
R Ty (0—2k—+k)...(0—2k+(2k—3)) (6—2k—+k)...(0—2k+(2k—2))
for k = 2,...,n. Of course, to show that the matrix W, , has determinant different

from zero it is sufficient to show that det Z,, # 0. To this end, first we shall show that
det Z5 # 0 and next we shall show that the following implication holds true

det Y 7’é 0 = det Z, 7é 0

for any k = 3,... n.
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Indeed,
1
7, = 1 0—4+1 ]
2 1 1 )
6—4+2

so det Zy # 0. Moreover, we have (below, we write a = b for a, b € R when a =b =0
or ab # 0)

det Z, ~ det Z),_;
for any k = 3,...,n . Really, let us fix k = 3,...,n and replace in the matrix Z; the
k-th row by the difference of k-th row and (k — 1)-th row, the (k — 1)-th row - by the
difference of (k —1)-th row and (k —2)-th row, ..., the second row - by the difference

of the second row and the first one. Then

1 1
5—2k+1 e (0—2k+1)...(0—2k+(k—1))
0 -1 —k+1
det Z, — det (G—2k+D)(6—2k+2) " (0—2k+1)...(0—2k+k)
0 -1 —k+1
e o e S e e e )
1 1 1
(6—2k+3) - (0—2k+3)...(0—2k+k)
~ det : :
1 1 1
G—2k+(k+1)) " (0—2k+(k+1))...(0—2k+(2k—2))
1 1
L' e=o-v (G—2(k—1)+1)-..0—2(k— 1)+ ((k—1)—1)
= det : :
1 1 1
G—2(k—1)+(k—1)) " (—2(k—1)+(k—1))...0—2(k—1)+(2(k—1)—2)
= det Zk—l-
So, if det Zy_1 # 0, then det Z # 0 and the proof is completed. O

6. FRACTIONAL FUNDAMENTAL LEMMA

The main result of the paper is the following

1

Lemma 6.1 (fundamental lemma of order o € (n — 3,

n>2, c € L*([a,b],R™) and

n)). Ifn—1<a<n,neN,

b
[ etz o= o
for any h € AC®?([a,b],R™) such that

(6.1)  DUIh)(@) =0, DI *R)(a) =0, D" (I h)(a) = 0.

(62) (I DI R)(b) =0, (157 D h)(b) = 0, (15, DE, h)(b) = 0.
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then there exist constants dy, dy,...,d,_1 € R™ such that
dO _ d1

_—b—t) """ —

Ta—nsn V" T ey

dn—1 a1
F(oz)(b_t) , t € la,b] a.e.

(6.3) c(t) = (b — t)o—n+l

and, consequently,

(D c)(t) =0, t € la,bl.

Proof. Let us consider a function

do dl

- - @@ A oz _ p\a—n+1
Pa-1(t) = F(a—n—l—l)(b t) +F(a—n+2)(b 2
dn—l a—1
+ F(a)(b_ ), t € (a,b).
Clearly,

(D} pa-1)(t) =0, t € (a,b).
Moreover, for any h € ACS([a, b], R™) satisfying (6.1), (6.2), we have

6.0) 0= [ DR~ 0= [ DI~ [ (DF p)ObE
=/‘mwammﬁ—/m4@w;mww

S D ) D) D2, W)
=S D @) o) )
~ [t - ps) D0 O

Now, we shall show that there exist constants dy, di,...,d,,—1 € R such that the

function
(6.5) h(t) = I3, (¢ = pa—1)(t), t € [a,],

belongs to ACS?([a, b], R™) and satisfies (6.1), (6.2). The facts that each function &
given by (6.5) belongs to ACS?([a,b], R™) and satisfies (6.1) are obvious. So, it is
sufficient to show that there exist constants dy, di,...,d,,—1 € R™ such that

(155 pa1) (0) = (155" o) (0)
(135 pa1) (b) = (135" o) (b)

(105 Pa-1)(b) = (127 ') (b)
(184 Pa—1)(b) = (I3c)(b)
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i.e. such that

[ (Lo e)(b) ]
do (Lo %) (b)
Wa,n -
dny (Lo o) (b)
(125 c)(b)

Existence of such constants follows directly from the Proposition 5.1. Thus, from
(6.4)

0= [ elt) = pars®)DTOt = [ (clt) = pons()
and the proof is completed. O

Remark 6.2. It is easy to see that if n — % < a<n,n €N, n>2 afunction

h € ACS?([a,b],R™) satisfies (6.1) (i.e. h € I, (L*([a,b],R™))), then
(12, D 1)(b) = h(b). (I8 D3 h) (8) = D'(D).... .
(Lo Dgy h)(b) = D" "h(b)
and the conditions (6.2) can be replaced by the following ones
h(b) =0, D'h(b) =0,...,D" *h(b) =0

Indeed, let h = I2 ¢ with some ¢ € L*([a,b],R™) and ¢ € {0,...,n — 1}. From [7,
Property 2.2] it follows that

[s‘;n—l—l—i-iDgé_i_h = 15;("_1_i)D§+h = Dn—l—i];+Dg+h — Dn—l—ih

a.e. on [a,b]. Since a —n+ 1+ > 1, the function I;7"" DY h = I3

is continuous on [a,b]. Moreover, since h = I% ¢ = I} 187" 0 on [a,b] (h
and 771707 are continuous on [a, b)), therefore D"~17h = [¢7"T g =

187" DS hoon [a,b].
Using Lemma 6.1 we obtain
Lemma 6.3. Ifn — % <a<n,neN, n>2 ay, a € L*([a,b],R™) and
b
[ @@z, - atn®)de = o

for any h € AC®?([a,b],R™) satisfying (6.1) and (6.2), i.c.

DY(172%h)(a) = 0,..., D" Y (I *h)(a) = 0,

(I DG h)(b) = 0, (I Dg ) (b) = 0, (13, Dg h) (b) = 0
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then there exist constants dy, dy,...,d,_1 € R™ such that
do dl

a(t) = m(b — )"+ m(b — t)a_n'H
oot ?(L;) (b—t)*" + (I ao)(t), t € [a,b] a.c.

and, consequently,
(Djap)(t) = ap(t), t € [a,b] a.e..

Proof. Let us consider a function
p(t) = I ap(t), t € [a,b] a.e.
For any h € AC([a,b), R™) satisfying (6.1) and (6.2) we have

/ (ax (£)(D2, h)(t)dt — / ao(t)h(t)dt
_ / ax (1)(D2, 1) ()t — / (Dgp)(t)h(t)dt

= / ay(t)(Dgh)(t)dt — Zé_l(Di(fZIah)(a))(Iz?__ "Dy p)(a)

=S DD RO D) - [ D0

- / (as(t) — p(6)) (DS, h)(£)dt.

Lemma 6.1 implies the existence of constants dy, dy,...,d,—1 € R™ such that (6.3)
holds true. O

Before we prove a general version of the fractional fundamental lemma we shall

give some useful proposition.

Proposition 6.4. Let n—% <a<n,neN,n>2 Ifhe ACg‘f([a, b], R™) satisfies
(6.1) and (6.2), then h € ACZ,"*([a,b),R™) and

DIy a) = 0,. .., DIy () = 0,
a—i)—(n—1i)+1 ~ha—i a—i yoa—1
(I D) (0) = 0, (157" DT h) (B) = 0
foranyi=1,...,n— 1. Moreover, D 'h € I! (L*([a,b],R™)).

Proof. Let h € ACS?([a,b], R™) satisfies (6.1), (6.2) and i be a positive integer be-
longing to the set {1,...,n — 1}. Since n — % < a < n, therefore

1
n—i—§<a—i<n—if0ri:1,...,n—1

and
107070 = ["reh e AC™? € ACTTH2,
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This means that h possesses a (continuous) derivative Dg‘;ih and, consequently, be-
longs to AC®,"*([a, b], R™). Moreover,

D137 h) (@) = (I3 h) (@) = 0,
(6.6) :
D=1 (IR (@) = DI NI h) (a) = 0

Of course, function h € AC([a, b], R™) satisfying (6.1) is of the form
h=1I5¢
where ¢ € L?([a,b],R™). Since
Igp = [g;i(lé-i-@)a
therefore
h= 13"
where ¢ = I! _ ¢. So, from (6.2)

(L7 D h) (b) = (Ig ", @) (b) = (I " VD2, h) (b) = 0

(6.7 -
(I8 DS R (b) = (15T 0)(B) = (12, D2, ) (b) = 0

Thus, the function h belongs to ACS, **([a, b], R™) with D27'h = I' ¢ € I', (L*([a, ], R™))
and satisfies (6.6) as well as (6.7). O

Now, we are in the position to prove
Lemma 6.5 (general fundamental lemma of order o € (n—3,n)). If n—3 < a < n,
neN, n>2 ag, a, by,... b1 € L*([a,b],R™) and
b
68) [ (@(ODz1)0 - bOD5 D - .
— b1 (D7 "R (1) — ao(t)h(E))dt = 0

for any h € ACg‘f([a, b], R™) satisfying (6.1) and (6.2), then there exists the derivative

D;f__("_l)al, the functions appearing below in brackets are absolutely continuous and

D'(...(DMDY (D" Vay — 17y + I"by) + . ..
(=) ) = (<1)"ag

a.e. on la,b] (the operator D' acts (n — 1) times).
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Proof. Let us fix i = 1,...,n — 1 and denote g; = I} _b;, fi = D% "h. Then D} g; =
bi, fi € 1L, (L*([a,b],R™)) (cf. Proposition 6.4) and for any h € AC%?([a, b], R™)
satisfying (6.1) and (6.2) we have

/ bi(t) (Do h)(t)dt = / (Dy-g:) (1) fi(t)dt = / 9i(t) (Do fi)(t)dt
= /b(fi_bi)(t)(D2+D2‘Iih)(t)dt = /b(fé_bi)(t)(D3+h)(t)dt

(in the last equality we used [7, Property 2.3 (a)]). So, from (6.8) we obtain

b
/ ((ar(t) = (L_ba)(t) = -+ = (L7 0ua) () (DL R)(E) = ao(t)h(t))dt = 0.

Now, Lemma 6.3 implies the existence of constants dy, di,...,d,_1 € R™ such that
ar(t) = (L_ba)(t) =+ = (Ip = b)) ()
dy _ dy _
— h— )en h— ) n+1
Ny L v porrs L)

dn—l a—1 a
4ot F(a)(b_t) + (I-ao)(t), t € [a,b] a.e.

Let us denote 3 = o — (n — 1). The above equality can be written down as

at) = (b)(O) =+ = (B b))
dy 1 dy
B RS v LU

+oe M(b — )02 (P00 (1), ¢ € [a,b] ace
N

All terms appearing on the left side of the above equality, excluding a;, and all
terms appearing on the right side of the above equality, excluding the first one, have
derivative Df_ as absolutely continuous functions. The term ﬁ(b — t)P~1 has
zero derivative D) (cf. [7, Corollary 2.1 (b)]). So there exists derivative D} a; and

(D_an)(8) = (L7B)(#) + -+ (3 b (1)
N d; I'pg+1) dy I'(B+2)
MNa—n+2) I'(1) INa—n+3) I'(2)
dna T'(B+ (n—1))
MNa) T(n-1)

(b—1)° + (b—t)!

44 (b—t)n=2 4 (I'ag)(t), t € [a,b] ae.
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If n = 2, term containing d, vanishes. From the above equality it follows that the

function Df_al — I;__B by is absolutely continuous and

DYDY ay — I770)(8) = —(L o) (8) — - = (1" P, 1) (8)

ds I'g+2) 0
" T(a—n+3) I(2) (b—)

dp 1 T'(B+ (n—1)) _ _
— = —2)(b— )3 — (I 2ay)(t), t b| a.e.
F(Oé) F(n _ 1) (n )( ) ( b— CL(])( )7 S [CL, ] a.e
If n = 2, the proof is completed. If n > 3, the above equality implies that the function

Dl(Df_al — Ibl__ﬁ by) + I "b, is absolutely continuous and

DYDYD} ay — I=Pby) + I-"by) (1)

_ 1—- n—3)— d3 F(ﬁ i 3>
= (I17Pbs) () + - + ([é_ ) bu_1)(t) + INa—n+4) I'(3)
dp1 T(B+ (n—1))
I(a) D(n—1)

Continuing this procedure we obtain

2(b —t)°

(n—2)(n—3)(b—t)"™ + (I 3ap)(t), t € [a,b] ae.

D'(.. (DYDY D" Vay — I'7%by) + I"%s) + . ..
+ (1) T 1) = (—1)"ag

a.e. on [a, b] (the operator D! acts (n — 1) times). O
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