EXISTENCE OF SOLUTIONS OF FUNCTIONAL STOCHASTIC INCLUSION

JERZY MOTYL

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-516 Zielona Góra, Poland

ABSTRACT. We prove the existence of local solutions of the delayed stochastic inclusion $dX(t) \in F(X_t)dt + G(X_t)dW(t)$, $X_0 = \xi$, with upper separated set-valued functions F and G.

AMS (MOS) Subject Classification. 49J53, 60H20, 93E03

1. INTRODUCTION

Stochastic ordinary differential inclusions were investigated in early 90's of the last century among others by N. U. Ahmed in [1], [2], J. P. Aubin and G. Da Prato in [4], G. Da Prato and H. Frankowska in [7], M. Kisielewicz in [10], [11] and the author in [20], [21]. In the papers [16] and [22] stochastic inclusions driven by semimartingales have been studied. All the papers mentioned above refer mainly to strong solutions of stochastic inclusions with Lipschitz continuous or dissipative set-valued operators. We refer the reader to the survey works [12] and [13] for results on this topic. From the other side, stochastic functional equations with delay were investigated by many authors during last decades (see e.g.: [14], [15], [19] and references therein). Stochastic functional inclusions with delay have been considered by P. Balasubramanian, S. K. Ntouyas and D. Vinayagam in [5], [6].

In this work we prove the existence of local strong solutions for delay stochastic inclusion with upper separated set-valued drift and diffusion terms. Let us mention that such set-valued functions introduced in [17] need not be continuous in any sense.

2. MAIN RESULT

Let r > 0 be given. By $C([-r, 0], \mathbb{R}^d)$ we denote the Banach space of continuous \mathbb{R}^d -valued functions defined on [-r, 0] and endowed with the supremum norm $\|\cdot\|$. Let $W = (W(t))_{t\geq 0}$ be an \mathbb{R}^m -valued Brownian motion defined on a complete probability space (Ω, \mathcal{F}, P) endowed with the standard Brownian filtration $(\mathcal{F}_t^W)_{t\geq 0}$. Let $\xi : \Omega \to \mathbb{R}^d$

Dedicated to Professor N. U. Ahmed on his 75-th birthday

Received November 15, 2011 1056-2176 \$15.00 ©Dynamic Publishers, Inc.

 $C([-r, 0], \mathbb{R}^d)$ be an (\mathcal{F}_t^W) -independent $C([-r, 0], \mathbb{R}^d)$ -valued random variable. By \mathcal{F}_t we denote a σ -algebra $\mathcal{F}_t^W \vee \sigma(\xi)$.

For a stochastic proces X defined at least on [t-r, t] we denote $X_t(s) = X(t+s)$, $s \in [-r, 0], t \ge 0$.

Let T be a predictable (\mathcal{F}_t) -stopping time and let $X : (\Omega \times [-r, 0]) \cup [0, T) \to \mathbb{R}^d$. A pair (X, T) is called a local (\mathcal{F}_t) -semimartingale up to time T starting from ξ if $X_0 = \xi$ P-almost surely and for any sequence of predictable stopping times $T_n \nearrow T$, the process $X(t \wedge T_n)$ is an (\mathcal{F}_t) -adapted semimartingale.

Let $ClConv(\mathbb{R}^d)$ denote the family of all closed, convex and nonempty subsets of \mathbb{R}^d .

Definition 2.1. Let $F : C([-r, 0], R^d) \to ClConv(R^d)$ and $G : C([-r, 0], R^d) \to ClConv(R^{d \times m})$ be given set-valued functions. Consider the stochastic functional inclusion (SFI):

$$dX(t) \in F(X_t)dt + G(X_t)dW(t),$$

$$X_0 = \xi.$$

A local (\mathcal{F}_t) -semimartingale (X, T) up to a predictable stopping time T is called a local strong solution of inclusion (SFI) if $X_0 = \xi$ and for any stopping time $T_n < T$ and $0 \le s \le t < \infty$

$$X(t \wedge T_n) - X(s \wedge T_n) \in \int_{s \wedge T_n}^{t \wedge T_n} F(X_u) du + \int_{s \wedge T_n}^{t \wedge T_n} G(X_u) dW(u).$$

Set-valued Lebesgue and Itô integrals are meant in the sense of Aumann. For detailed definitions and properies of such integrals see e.g.: [12].

The pair (X, T) is called a maximal local solution if

$$P(\{\exists \text{ compact } K \subset C([-r,0], \mathbb{R}^d) \exists t_i \nearrow T : X_{t_i} \in K\} \cap \{T < \infty\}) = 0.$$

It means that (X_t) leaves any compact set $K \subset C([-r, 0], \mathbb{R}^d)$ for $t \to T$, *P*-almost surely on $\{T < \infty\}$.

Assume (Y, \preceq) is an order complete Banach lattice with an order generated by a positive cone K^+ (i.e.: $x \preceq y$ iff $y - x \in K^+$).

We adjoin to Y the greatest element $+\infty$ together with the lowest element $-\infty$ and extend the vector space operations in a natural way. Let $\overline{Y} = Y \cup \{\pm\infty\}$.

Let Z be a Banach space. For a set-valued function $F: Z \to ClConv(Y)$ we define functions $V, W: Z \to \overline{Y}$ by formulas

$$V(x) = \sup\{a : a \in F(x)\} \text{ and } W(x) = \inf\{b : b \in F(x)\}.$$

Let $\Pi_{F(x)}(a)$ denote the metric projection of a point $a \in Y$ onto the set F(x). We define

$$\bar{V}(x) := \begin{cases} \Pi_{F(x)}(V(x)) & \text{for } x \in DomV \\ +\infty & \text{for } x \notin DomV \end{cases}$$
$$\bar{W}(x) := \begin{cases} \Pi_{F(x)}(W(x)) & \text{for } x \in DomW \\ -\infty & \text{for } x \notin DomW \end{cases}$$

where $Dom f = \{x \in Z : f(x) \neq \pm \infty\}.$

Definition 2.2. A set-valued function $F : Z \to ClConv(Y)$ is upper separated if each point $(x, \overline{W}(x) - \epsilon)$ can be separated from the set $Epi\overline{V} = \{(x, a) \in Z \times Y : \overline{V}(x) \leq a\}$ in the following sense:

for every $x \in Z$ and each $\epsilon \in K^+ \setminus \{0\}$ there exist $A \in \mathcal{L}(Z, Y)$, $a \in \mathbb{R}^1$ and $\delta \in K^+ \setminus \{0\}$ such that for every $y \in Dom\overline{V}$ and each $b \in K^+$ the condition

$$A(x) - A(y) + a(\bar{W}(x) - \bar{V}(y) - \epsilon - b) - \delta \in K^+$$

holds where $\mathcal{L}(Z, Y)$ denotes the space of all linear and norm-continuous operators from Z to Y.

In an equivalent form the above condition means

$$A(x) + a(\bar{W}(x) - \epsilon) \succeq A(y) + a(\bar{V}(y) + b) + \delta.$$

Example 2.3. Let $Z = C([a, b], R^d)$ and let Y be an arbitrary order-complete Banach lattice with a positive cone K^+ . Let Var(x) denote a total Jordan variation of the function x on the interval [a, b]. Let $z \in K^+ \setminus \{0\}$ be arbitrary fixed. We define a set-valued function $F : C([a, b], R^d) \to ClConv(Y)$ by the formula:

$$F(x) = \begin{cases} [0, z] & \text{for } x \text{ such that } \operatorname{Var}(x) < \infty \\ [-z, 0] & \text{for } x \text{ such that } \operatorname{Var}(x) = \infty \end{cases}$$

where [0, z] and [-z, 0] are order intervals in Y. Observe that V(y) is equal to z for finite variation functions $x \in C([a, b], R^d)$ and takes on the value 0 otherwise. Similarly W(x) takes on 0 or -z as its values. Therefore, taking $A \equiv 0, a = -1$, $\delta = \epsilon$ in Definition 2.2, and noting that $\overline{W}(x) = W(x), \overline{V}(y) = V(y)$ we obtain the inequality

$$\forall_{x,y \in C([a,b],R^d)} \forall_{b \in K^+} \ V(y) + b \succeq W(x),$$

which is clearly fulfiled because of

$$V(y) + b \succeq 0 \succeq \max\{0, -z\} \succeq W(x).$$

This means that F is upper separated. Moreover, the above defined F is neither upper nor lower semicontinuous in any point $x \in C([a, b], R^d)$ because families of finite variation functions as well as infinite variation functions are dense subsets of $C([a, b], R^d)$. Upper separated set-valued functions need not satisfy any type of Lipschitz nor monotone-dissipative conditions. For other examples of upper separated set-valued functions see [18].

A set $A \subset Y$ is called order bounded if it is contained in some order interval $[a, b] = \{y \in Y : a \leq y \leq b\}$. A set A is order convex if for each $x, y \in A$ the order interval $[x, y] \subset A$.

A set-valued function $F : Z \to 2^Y$ is majorized in the neighbourhood of x_0 if there exists an open neighbourhood U_{x_0} and $y \in Y$ such that for each $x \in U_{x_0}$ and every $a \in F(x)$ the inequality $a \leq y$ holds.

Definition 2.4. A function $f : Z \to Y$ is locally Lipschitz if and only if for every $z \in Z$ there exist an open neighbourhood U_z and a constant $L_z > 0$ such that

$$||f(x) - f(y)|| \le L_z ||x - y|| \text{ for every } x, y \in U_z.$$

Let us remark, that for an infinite dimensional space Z, e.g.: $Z = C([-r, 0], R^d)$, the above property is essentially weaker than the inequality $||f(x) - f(y)|| \le L_n ||x-y||$ for every $x, y \in Z$ with ||x|| < n, ||y|| < n, or $||f(x) - f(y)|| \le L_{n,\epsilon} ||x - y||$ with ||x|| < n, ||y|| < n, $||x - y|| \le \epsilon$, and called also "a local Lipschitz property" by many authors investigating existence of solutions of stochastic delay equations (see e.g.: [3], [9], [15], [19]).

The following result from [17] will be useful in the sequel:

Theorem 2.5. Let $F : Z \to ClConv(Y)$ takes on order bounded and order convex values. Assume that there exists $x_1 \in Z$ such that F is majorized in a neighborhood of x_1 . If F is upper separated then there exists a locally Lipschitz and order convex function f such that $f(x) \in F(x)$ for each $x \in Z$.

Remark 2.6. Let us note, that if a set-valued function F admits an order-convex selection satisfying $\overline{W}(x) \preceq f(x) \preceq \overline{V}(x)$, then F should be upper separated (see: [17]). Therefore, the "upper separating property" gives the necessary and sufficient conditions for the existence of order-convex selections.

Consider R^d with the Euclidean norm $|\cdot|$ (resp.: $R^{d \times m}$ with the norm $|M| = \sqrt{tr(MM^*)}$) and the canonical order defined by the positive cone $K^+ := \{a \in R^d : a_i \geq 0, i = 1, 2, ..., d\}$ (resp.: $a_{i,j} \geq 0, i = 1, 2, ..., d, j = 1, 2, ..., m$). Then (R^d, \preceq) (resp.: $(R^{d \times m}, \preceq)$ is an order complete Banach lattice.

Now, we are ready to prove the main result of the paper.

Theorem 2.7. Let $F : C([-r, 0], R^d) \to ClConv(R^d)$ and $G : C([-r, 0], R^d) \to ClConv(R^{d \times m})$ be upper separated set-valued functions with order bounded and order convex values. Assume that F is majorized in the neighbourhood of some point $x_1 \in C([-r,0], \mathbb{R}^d)$ and G is majorized in the neighbourhood of some point $x_2 \in C([-r,0], \mathbb{R}^d)$. Then the inclusion (SFI) admits a maximal local strong solution (X,T).

Proof. Since F and G satisfy assumptions of Theorem 2.5 with $Z = C([-r, 0], R^d)$, $Y = (R^d, \preceq)$ (resp.: $Y = (R^{d \times m}, \preceq)$, then there exist selections $f : C([-r, 0], R^d) \rightarrow R^d$ of F and $g : C([-r, 0], R^d) \rightarrow R^{d \times m}$ of G being locally Lipschitz in the sense of Definition 2.4. Observe first that f and g are Lipschitz continuous on every compact set $K \subset C([-r, 0], R^d)$ with Lipschitz constants L_K and M_K depending only on the set K. Indeed, let K be an arbitrary fixed compact subset of $C([-r, 0], R^d)$. For every $z \in C([-r, 0], R^d)$ let $B(z; \epsilon_z)$ denote an open ball centered in z with radius ϵ_z on which f is Lipschitz with a constant L_z . A family $\{B(z; \epsilon_z)\}_{z \in C([-r, 0], R^d)}$ is an open covering of $C([-r, 0], R^d)$. From this covering we take the finite subcovering $\mathcal{A} = \{B(z_i; \epsilon_{z_i})\}_{i=1,2,...n}$ of a compact set K. There exists $\delta > 0$ such that $\{B(z; \delta)\}_{z \in K}$ covers K and each $B(z; \delta)$ is contained in some $B(z_i; \epsilon_{z_i})$ (see e.g.: [8] Th. 4.3.20). Let $x, y \in K$ be such that $||x - y|| < \delta$. Then there exists some i, i = 1, 2, ...n, such that $x, y \in B(y; \delta) \subset B(z_i; \epsilon_{z_i})$.

Let

$$N = \sup\{|f(x)| : x \in K\} = \max_{1 \le i \le n} \sup\{|f(x)| : x \in B(z_i; \epsilon_{z_i})\}$$

For every $x \in B(z_i; \epsilon_{z_i})$ we have

$$|f(x)| \le |f(x) - f(z_i)| + |f(z_i)| \le L_{z_i} ||x - z_i|| + |f(z_i)| \le L_{z_i} \epsilon_{z_i} + |f(z_i)|.$$

Therefore,

$$N \le \max_{1 \le i \le n} \{ L_{z_i} \epsilon_{z_i} + |f(z_i)| \} < \infty.$$

Let $L_K = \max_{1 \le i \le n} \{L_{z_i}; 2N/\delta\}$ and let $x, y \in K$ be arbitrary chosen. Two cases can occur:

(a) $||x - y|| < \delta$ (b) $||x - y|| \ge \delta$.

In the case (a) there exists some i, i = 1, 2, ...n, such that $x, y \in B(z_i; \epsilon_{z_i})$. Then

$$|f(x) - f(y)| \le L_{z_i} ||x - y|| \le L_K ||x - y||.$$

In the case (b) we have

$$|f(x) - f(y)| \le 2N = 2N\delta/\delta \le L_K\delta \le L_K ||x - y||,$$

and therefore, f is Lipschitz on K with a Lipschitz constant L_K . The same holds for g with some Lipschitz constant M_K .

By the above Lipschitz property we get

$$2\langle f(x) - f(y); x(0) - y(0) \rangle \le 2|f(x) - f(y)| \cdot |x(0) - y(0)|$$

$$\leq 2L_K \|x - y\| \cdot |x(0) - y(0)| \leq 2L_K \|x - y\|^2$$

for all $x, y \in K$, where $\langle \cdot, \cdot \rangle$ denots the inner product in \mathbb{R}^d .

Therefore,

$$2\langle f(x) - f(y); x(0) - y(0) \rangle + |g(x) - g(y)|^2 \le (2L_K + M_K^2) ||x - y||^2.$$

Now we are in position to use the following result of M.-K von Renesse and M. Scheutzow from [23]:

Assume that for each compact set $K \subset C([-r, 0], \mathbb{R}^d)$ there exists a number N_K such that for all $x, y \in K$

$$2\langle f(x) - f(y); x(0) - y(0) \rangle + |g(x) - g(y)|^2 \le N_K ||x - y||^2.$$

Then the stochastic equation

$$dX(t) = f(X_t)dt + g(X_t)dW(t), \ X_0 = \xi$$

admits a unique maximal local strong solution (X, T) up to a predictable stopping time T.

It means that $X_0 = \xi$ and for any stopping time $T_n < T$ and $0 \le t < \infty$

$$X(t \wedge T_n) = X(0) + \int_0^{t \wedge T_n} f(X_u) du + \int_0^{t \wedge T_n} g(X_u) dW(u)$$
 P-a.s.

Therefore,

$$X(t \wedge T_n) - X(s \wedge T_n) = \int_{s \wedge T_n}^{t \wedge T_n} f(X_u) du + \int_{s \wedge T_n}^{t \wedge T_n} g(X_u) dW(u)$$

$$\in \int_{s \wedge T_n}^{t \wedge T_n} F(X_u) du + \int_{s \wedge T_n}^{t \wedge T_n} G(X_u) dW(u),$$

because f and g are selections of F and G respectively. This proves the Theorem. \Box

Remark 2.8. Assume additionally that F and G satisfy the following global growth conditions with convex functions on their right sides:

there exists c > 0 such that for every $x \in C([-r, 0], \mathbb{R}^d)$

$$|F(x)| = \sup\{|a|: a \in F(x)\} \le (c(1+||x||^2))^{1/2}; |G(x)| \le (c(1+||x||^2))^{1/2}.$$

Then the solution (X, T) from Theorem 2.7 exists globally, i.e.: $T = +\infty$ *P*-almost surely.

Indeed, it suffices to observe that selections f and g used in the proof of Theorem 2.7 satisfy

$$\begin{aligned} 2\langle f(x); x(0) \rangle + |g(x)|^2 &\leq 2(c(1+\|x\|^2))^{1/2} \cdot \|x\| + c(1+\|x\|^2) \\ &\leq 2(c^{1/2}+1)(1+\|x\|^2) = \rho(\|x\|^2), \end{aligned}$$

where the convex function $\rho(u) = 2(c^{1/2}+1)(1+u)$ is non-decreasing with $\int_0^\infty 1/\rho(u)du = +\infty$.

Now, the remark follows by Theorem 2.3 of [23].

REFERENCES

- N. U. Ahmed, Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl., 12(1):1–10, 1994.
- [2] N. U. Ahmed, Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, Optimal Control and Differential Equations. Lect. Notes on Pure and Appl. Math. 160, 1994.
- [3] J. Appleby, C. Kelly, X. Mao, A. Rodkina, Positivity and stabilisation for nonlinear stochastic delay differential equations, *Stochastics*, 81(1):29–54, 2009.
- [4] J. P. Aubin i G. Da Prato, The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl., 16:1–15, 1998.
- [5] P. Balasubramaniam, Controllability for partial neutral functional stochastic integrodifferential inclusions with unbounded delay, *Trends in Math. Information Center for Math. Sci.*, 9(2):1–7, 2006.
- [6] P. Balasubramaniam, S. K. Ntouyas, D. Vinayagam, Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space, J. Math. Anal. Appl., 305(2):438–451, 2005.
- [7] G. Da Prato i H. Frankowska, A stochastic Fillipov theorem, Stoch. Anal. Appl., 12(4):409–426, 1994.
- [8] R. Engelking, Toplogia Ogólna, PWN, Warsaw, 1975 (in Polish), resp.: General Topology, translated from the Polish by the author, Sigma Series in Pure Math. 6, Heldermann Verlag Berlin, 1989.
- [9] A. Ivanov, Y. Kazmerchuk, A. Swishchuk, Theory, Stochastic Stability and Applications of Stochastic Delay Differential Equations: a Survey of Results, *Differ. Equations Dynam. Syst.*, 11:55–115, 2003.
- [10] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl., 15(5):783–800, 1997.
- [11] M. Kisielewicz, Weak compactness of solution sets to stochastic differential inclusions with convex right-hand side, *Topol. Meth. Nonlin. Anal.*, 18:149–169, 2003.
- [12] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part I (Existence and regularity properties) *Dynamic Syst. Appl.*, 12(3-4):405–432, 2003.
- [13] M. Kisielewicz, M. Michta, J. Motyl, Set valued approach to stochastic control. Part II (Viability and semimartingale issue), *Dynamic Syst. Appl.*, 12(3,4):433–466, 2003.
- [14] V. B. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Acad. Publ., 1992.
- [15] X. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing, Chichester, 1997.
- [16] M. Michta, Stochastic inclusions with multivalued integrators, Stoch. Anal. Appl., 20(4):847– 862, 2002.
- [17] M. Michta, J. Motyl, Locally Lipschitz selections in Banach lattices, Nonlin. Anal., 71:2335– 2342, 2009.
- [18] M. Michta, J. Motyl, Stochastic Inclusions with a non-Lipschitz Right Hand Side, Stoch. Differ. Equations, 189–232, 2011.

- [19] S. -E. A. Mohammed, Stochastic Differential Systems with memory: Theory, Examples and Applications Stoch. Anal. Rel. Topics VI, Progress in Probab. 42, Birkhäuser Boston, 1998.
- [20] J. Motyl, On the solution of stochastic differential inclusion, J. Math. Anal. Appl., 192:177–132, 1995.
- [21] J. Motyl, Existence of solutions of set-valued Itô equation, Bull. Pol. Acad. Sci. ser. Math., 46(4):419–430, 1998.
- [22] J. Motyl, Stochastic functional inclusion driven by semimartingale, Stoch. Anal. Appl., 16(3):717–532, 1998.
- [23] M.-K. von Renesse, M. Scheutzow, Existence and uniqueness of solutions of stochastic functional differential equations, *Random Oper. Stoch. Equations*, 18(3):267–284, 2010.