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ABSTRACT. We discuss solvability for the semilinear equation of the vibrating string xtt(t, y) −

∆x(t, y)+f(t, y, x(t, y)) = 0 in bounded domain, infinity time interval and certain type of nonlinear-

ity on the boundary. To this effect we derive new dual variational method. Next we discuss stability

of solutions with respect to initial conditions.
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1. INTRODUCTION

Throughout the paper, Ω will be a general open bounded domain in Rn, with

boundary Γ, assumed to be sufficiently smooth. The aim of the paper is to study

existence and stability questions over an infinite interval [0,∞). We consider the sec-

ond order hyperbolic semilinear problem with nonlinear sources terms in the equation

and on the boundary:

(1.1)

xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0, in (0,∞) × Ω,

∂νx(t, y) + x(t, y) = h(t, y, x(t, y)) on Σ = (0,∞) × Γ,

x(0, ·) = x0(·) ∈ H1(Ω), xt(0, ·) = x1(·) ∈ L2(Ω).

We recall first some facts on history of this problem underlying an influence of

structural form of nonlinearity l on global solution to (1.1). The supremum of all T ’s

for which the solution to (1.1) exists on [0, T ) is called the lifespan of the solution. We

denote this number by Tmax. We say the solution is global if Tmax = +∞ while it is

nonglobal if Tmax < +∞: If 0 < Tmax < +∞ we say that the solution blows up in finite

time. The forcing term l, of primary interest is the function l(y, x) = |x|p−1 x − µ2x

when p > 1, the difference of polynomial function and linear (monotonic) function.

The model theorem, in literature (see [12], compare also [15], for unbounded domain),

for such problem stressing also the role of the size of initial conditions is the following
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Theorem 1.1. Suppose that there is ǫ > 0 such that for all possible y ∈ Rn and

real values of x we have xl(y, x) ≤ (2 + ǫ)L(y, x) (L is antiderivative of l). Suppose

further that for some T > 0 (1.1) has a solution. Assume that the initial energy

E(0) =
1

2

∫

Rn

∣∣∇x0(y)
∣∣2 dy +

1

2

∫

Rn

(
x1(y)

)2
dy −

∫

Rn

L(y, x0(y))dy

is negative. Then Tmax < +∞.

There is many results extending and sharpening the theorem especialy in the

case of µ 6= 0 and of bounded domain. In the beginin of this centuary there appeared

many papers that treat the question of global existence and global nonexistence for

solutions of the initial value problem for semilinear wave equations which also have

damping terms present:

xtt(t, y) − ∆x(t, y) + g(t, y, xt(t, y)) + l(t, y, x(t, y)) = 0, in (0, T ) × Rn,(1.2)

x(t, y) = 0 on Σ = (0, T ) × Γ,

x(0, ·) = x0(·) ∈ H1(Ω), xt(0, ·) = x1(·) ∈ L2(Rn).

The interaction between the nonlinear damping and source terms creates diffculties

which were overcome, for a bounded domain with Dirichlet boundary conditions, by

Georgiev and Todorova, Levine and Serrin, Levine, Pucci and Serrin to mention a

few (see e.g. [11], [15], [12], [25] and references therein). Summarizing some of these

result (see [14], [23], [24]) we can formulate the following

Theorem 1.2. Assume x0 ∈ H1, x1 ∈ L2 have compact support and l(y, x) =

|x|p−1 x − µ2x, g(t, y, xt) = a |xt|
m−1 xt.

(a) If 1 ≤ m < p, then every local solution is global.

(b) If µ = 0, E(0) < 0 and p > m > np/(n + p + 1), then the local solution blows up

in finite time.

This result shows that both nonlinear damping and the stabilisation term µ2x are

insuffcient to prevent the blow up effect of the source for all negative initial energy

E(0) in the above Cauchy problem. Therefore, this result and the blow-up result

of Levine [12] in the case of linear damping indirectly show that no condition other

than 1 ≤ m < p should be needed to guarantee the blow-up of the solution, i.e.

the restrictions for the initial energy E(0) and m are method driven. The nature

of propagation of singularities and related regularity is very different for bounded

domains. The analysis must take into consideration the role of the boundary and the

type of boundary conditions imposed on it. It is thus expected that both the results

and the methods should depend on the behavior of solutions near the boundary.

The model under consideration is equipped with the Neumann nonlinear boundary

conditions. It is known that the Lopatinski condition fails for the Neumann problems,
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causing the loss of 1/3 derivative in linear dynamics driven by boundary sources

(unless the dimension of Ω is equal to one). It is thus expected that the boundary

and boundary conditions will play a prominent role in the analysis. While internal

sources, up to the critical level, do not pose problems with the treatment of local

well-posedness, boundary sources, even mildly nonlinear, are problematic and require

much more subtle analysis. This is due to the “loss of derivatives” in the linear

dynamics. Boundary damping does restore some of the loss of the regularity incurred

due to the failure of the Lopatinski condition. The interaction between boundary

damping and source has been further exploited, where local existence of solutions

was established for boundary sources of a polynomial structure (with the exclusion of

super-supercritical exponents) interacting with sufficiently high nonlinear damping.

The main goal of the papers, writen in last two years, was twofold: (i) to study

well-posedness of the system given by (1.1) on the finite energy space, i.e. H1(Ω)

×L2(Ω), and (ii) to derive uniform decay rates of the energy when t → ∞. The

well-posedness included existence and uniqueness of both local and global solutions.

However as it is shown in [7] if we want to admit more general nonlinearities then we

cannot expect well-posedness in Hadamard sense. The main difficulty and the novelty

of the problem considered is related to the presence on the boundary a nonlinear

term h(t, y, x). This difficulty has to do with the fact that Lopatinski condition

does not hold for the Neumann problem. The above translates into the fact that in

the absence of the damping, the linear map h → (x(t), xt(t)), is not bounded from

L2(Σ) → H1(Ω) × L2(Ω), unless the dimension of Ω is equal to one. More details on

this problem is discussed in [7].

The aim of the paper is to study existence and stability questions over an infinite

interval [0,∞) for more general nonlinearities l, h, (l is a difference of continuous and

monotonic functions) than in [7], [2] and so we are not interested in well-posedness in

Hadamard sense. However, we want still study stability of the system with respect

to initial conditions i.e. continuous dependence (in some new sense) with respect to

initial conditions.

The importance of the problem with nonlinearity on the boundary appears in

optimal control theory see e.g. [16], [17], [18], [7] and the references therein. The

problems like (1.1) - with damping terms, were studied mostly by topological method,

semigroup theory or monotone operator theory (see [7] for discussion about that). As

it is known to the author there is no papers studying (1.1) (with nonlinearity on

the boundary) by variational method. We would like to stress that just using the

variational approach the dissipation term on the boundary has no influence on the

existence and regularity of solution to ( 1.1). This is why we do not include dissipa-

tions in the equation and on the boundary as it is usually done while approaching

other methods (see e.g. [7], [2]). What is essential in the method used here is that,
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following a trick of Galewski [9], [10] we consider first the equation

∂νx(t, y) + x(t, y) = h(t, y, v(t, y)) on Σ = (0,∞) × Γ,

with v any given function from C([0,∞); H1(Γ)) and put H = 1
2
x2 − xh̄, which is

convex function, where h̄(x, y) = h(t, y, v(t, y)). Convexity is exploited in the paper

in different forms. Just convexity and special structure of nonlinearities eliminate need

for dissipations to get global solutions to (1.1). The general nonlinearity of interior

source has the form:

(1.3) l(t, y, x) = ±Fx (t, y, x) − Gx(t, y, x), x ∈ R, (t, y) ∈ (0,∞) × Ω

where F , G are C1 in x and F is additionally convex function in x. It turns out that

in this case a size of initial conditions is not essential, however some restrictions on

initial conditions are hidden in (HΓ). Instead we impose some restriction on behavior

of nonlinearities h (see (HΓ)) and l (see (As)) below.

We shall study (1.1) by variational method, i.e. we shall consider (1.1) as the

Euler-Lagrange equations of two functionals:

J (x) =

∫
∞

0

∫

Ω

(
1

2
|∇x(t, y)|2 −

1

2
|xt (t, y)|2 + L(t, y, x(t, y))

)
dy dt(1.4)

− lim
T→∞

(
x (T, ·) , x1 (·)

)
L2(Ω)

,

(1.5) JΓ(x) =

∫
∞

0

∫

Γ

(H(t, y, x(t, y)) + H∗(t, y,−∂νx(t, y))

−〈x(t, y),−∂νx(t, y)〉)dy dt,

where L, is antiderivative of l with respect to the third variable and H∗ is the Fenchel

conjugate to H with respect to the third variable, defined on some subspace of func-

tions of the space C([0,∞); H1(Γ)) discussed below. We assume that, H(t, y, ·) is

finite in R, for each (t, y) ∈ (0,∞) × Ω.

Our purpose is to investigate (1.1) by studying critical points of functionals (1.4)

and (1.5). To this effect we apply a new duality approach. As it is easily to see,

functionals (1.4) and (1.5) are unbounded in C([0,∞); H1(Ω)) and this is a reason

for which we are looking for critical points of J on some subsets of C([0,∞); H1(Ω)).

Our aim is to find a nonlinear subspace X of C([0,∞); H1(Ω)) and study (1.4) and

(1.5) just only on X. The main difficulty in our approach is just to find the set

X. We prove also stability of solutions of (1.1) when x0(·) and x1(·) are changing in

suitable way. To our best knowledge, this is the first result on stability of solutions

for wave flows generated by boundary-interior sources terms. In conclusion, the novel

contribution of the present work consists of:
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(i) Stability of solutions corresponding to interior and boundary sources is es-

tablished. This property, when combined with global existence, provides quite new

result.

(ii) We are also able to treat different interior and boundary sources. Essen-

tial part of the type of nonlinearity is not supercriticality but their structure and

boundedness on some bounded sets.

(iii) The methods used in the present paper are very different than the ones used

before in the literature [5]. We rely on variational methods combined with suitable

convex properties and iteration trick of Galewski, rather than monotonicity methods

[5] or the compactness used in [26], [27]. This alone allows to extend the range of

Sobolev’s exponents for which the analysis is applicable (no need for compactness).

It is also believed that the methods could be used successfully in order to treat

unbounded domains [15].

First we will study the equation

(1.6)
∂νx(t, y) + x(t, y) = h(t, y, v(t, y)) on (0,∞) × Γ,

x(0, ·) = x0(·) ∈ H1(Γ),

with the help of the functional JΓ(x) (see (1.5)) - section 3. Next we will investigate

the equation

(1.7)
∂νx(t, y) + x(t, y) = h(t, y, x(t, y)) on (0,∞) × Γ,

x(0, ·) = x0(·) ∈ H1(Γ),

using an ideas of Galewski on iteration of solutions to (1.6), then we solve

(1.8)

xtt(t, y) − ∆x(t, y) + l(t, y, x(t, y)) = 0 in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y) on (0,∞) × Γ, x̄Γ(0, ·) = x0(·) on Γ,

x(0, ·) = x0(·) ∈ H1(Ω), xt(0, ·) = x1(·) ∈ L2(Ω),

where x̄Γ is a solution of (1.7), with the help of the functional J(x) (see (1.4)) –

section 4, first for the case l(t, y, x) = Fx (t, y, x) − Gx(t, y, w(t, y)) with fixed w ∈

C([0,∞); H1(Ω)) and next again with the help of Galewski type iteration, the general

case (1.3).

2. MAIN RESULTS

We will focus on the case when n ≥ 3. First we formulate results concerning

problem (1.6), its relation to the functional JΓ(x) and problem (1.8). We explain

what do we mean by x0(·) ∈ H1(Γ) in (1.6), x0(·) ∈ H1(Ω) in (1.8) and the normal

derivative ∂νx(t, y) in (1.6) and in (1.5). Let H̃1(Γ) = {x ∈ H1(Ω) : x |Γ ∈ H1(Γ)},

we shall consider the space C([0,∞); H̃1(Γ)). Therefore by the normal derivative
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∂νx(t, y) in (1.6) and in (1.5) we mean normal derivative of a function x(·, ·) ∈

C([0,∞); H1(Ω)) ∩ C([0,∞); H̃1(Γ)). Thus let x0 ∈ H̃1(Γ). We use a set

U t = {x : x(t, ·) = x0(·) +

∫ t

0

exp(−s)w(·)ds, w ∈ H̃1(Γ)}, t ∈ [0,∞)

and the functional

(2.1) J t
Γ(x) =

∫

Γ

(H(t, y, x(t, y)) + H∗(t, y,−∂νx(t, y))

−〈x(t, y),−∂νx(t, y)〉)dy, t ∈ [0,∞),

considered on U t, t ∈ [0,∞). That means we are looking for solutions to (1.6) in U t,

t ∈ [0,∞). Therefore, if such a solution belonging to U t, t ∈ [0,∞) , exists it is a

strong solution to (1.6).

Assumptions concerning problem (1.6):

(HΓ) h(·, ·, v) is measurable in [0,∞) × Γ for each v ∈ R, h(t, y, ·) is continuous in

R, for (t, y) ∈ [0,∞) × Γ and satisfies growth condition

(2.2) ‖h(t, ·, x(t, ·))‖L2(Γ) ≤ c(t) ‖x(t, ·)‖α
L2(Γ) , t ∈ [0,∞), x ∈ U t, t ∈ [0,∞),

where α ≥ 1 any fixed, 0 < c(t) ≤ 1, t ∈ [0,∞), h(t, y, w) = 0 only if w = 0 and

H(t, y, x) = 1
2
x2 − xh(t, y, v(t, y)), v(·, ·) any given from U t. Moreover we assume

that

(2.3) 0 < ‖x0‖L2(Γ) < 1.

Remark 2.1. The main restriction on initial data is made on the boundary Γ: 0 <

‖x0‖L2(Γ) < 1 and we would like to stress that x0 ∈ H̃1(Γ), thus we impose a little bit

more regularity on initial condition x0 ∈ H1(Ω).

Proposition 2.2. xΓ(t, ·) ∈ U t, t ∈ [0,∞) is a solution to (1.6) if and only if xΓ(t, ·)

affords a minimum to the functional J t
Γ defined on U t, t ∈ [0,∞) and J t

Γ(xΓ) = 0.

Proposition 2.3. Under assumption (HΓ) there is an xΓ(t, ·) ∈ U t which affords a

minimum to the functional J t
Γ defined on U t, t ∈ [0,∞) and J t

Γ(xΓ) = 0.

Corollary 2.4. The problem (1.6) has a solution xΓ(t, ·) ∈ U t, t ∈ [0,∞).

The next step is to use iteration ideas of Galewski to solve

(2.4)
∂νx(t, y) + x(t, y) = h(t, y, x(t, y)) on (0,∞) × Γ,

x(0, ·) = x0(·) ∈ H̃1(Γ).

To this effect we take for v(t, y) = x0(y) ∈ U t, t ∈ [0,∞) and solve by the above

Corollary 2.4 the problem

(2.5)
∂νx(t, y) + x(t, y) = h(t, y, x0(y)) on (0,∞) × Γ,

x(0, ·) = x0(·) ∈ H̃1(Γ)



WAVE EQUATIONS 357

getting x1(t, ·) ∈ U t, t ∈ [0,∞). Next putting in the right hand side of (2.5) x1(t, ·) ∈

U t, t ∈ [0,∞) we get x2(t, ·) ∈ U t, t ∈ [0,∞) and so on. In this way we receive a

sequence of function {xn(t, ·)} ⊂ U t, t ∈ [0,∞) and we come to the following theorem

Theorem 2.5. The sequence {xn(t, ·)} ⊂ U t, t ∈ [0,∞) is convergent to some

x̄Γ(t, ·) ∈ U t, t ∈ [0,∞) which is a solution to (2.4) and J t
Γ(x̄Γ) = 0, t ∈ [0,∞).

We introduce the definition of a weak solution to (1.8):

Definition 2.6. (weak solution). By a weak solution to (1.8), defined on each

subinterval [0, T ] of [0,∞), we mean a function x ∈ UT , where

UT =

{
x : x ∈ C([0, T ]; H1(Ω)),

∂x

∂t
∈ C([0, T ]; L2(Ω)), x(0, y) = x0(y),

xt(0, y) = x1(y), y ∈ Ω, x(t, y) = x̄Γ(t, y), (t, y) ∈ [0, T ] × Γ
}

,

such that for all ϕ ∈ Uϕ

T∫

0

∫

Ω

(−xtϕt + ∇x∇ϕ)dy dt +

T∫

0

∫

Ω

xtϕdy dt +

T∫

0

∫

Ω

lϕdy dt

= −

∫

Ω

xt(T, y)ϕ0(y)dy +

∫

Ω

xt(0, y)ϕ(0, y)dy,

where

Uϕ =

{
ϕ : ϕ ∈ C([0, T ]; H1(Ω)),

∂ϕ

∂t
∈ C([0, T ]; L2(Ω)),

ϕ(T, y) = ϕ0(y), y ∈ Ω, ϕ(t, y) = 0, (t, y) ∈ [0, T ] × Γ
}

.

Remark 2.7. The weak solution considered in this paper is stronger that e.g. in [4]

where x ∈ Cw([0, T ]; H1(Ω)), ∂x
∂t

∈ C([0, T ]; L2(Ω)) (Cw([0, T ]; Y ) denotes the space

of weakly continuous functions with values in a Banach space Y ).

The main contribution of this paper is a relaxation of assumptions on nolinear-

ities l (but still having the structure of difference of two fuctions: continuous and

monotonic) and h. Moreover, in spite of lack of uniqueness results we have global

existence theorem to (1.1) and continuous dependence of solutions with respect to

initial data in the following sense (because of lack of uniqueness):

Definition 2.8. For given sequences {x0
n} ⊂ H1(Ω) ∩ H̃1(Γ), {x1

n} ⊂ L2(Ω), con-

verging to x̄0 in H1(Ω) ∩ H̃1(Γ), x̄1in L2(Ω), respectively, there is a subsequence of

{xn} - solutions to (1.1) corresponding to {x0
n}, {x

1
n}, which we denote again by {xn}

weakly convergent in H1((0,∞) × Ω) and strongly in L2((0,∞) × Ω) to an element

x ∈ C([0,∞); H1(Ω)) ∩L1(0,∞; H1(Ω)), being a solution to (1.1) corresponding to

x̄0, x̄1.
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To formulate assumptions concerning equation (1.8) we need to recall some the-

orem from [13] - linear case of (1.8) which we use as a starting point to study (1.8).

Theorem 2.9. Let Q ∈ L1(0,∞; L2 (Ω)), xΓ ∈ U t, t ∈ [0,∞), x0 ∈ H1(Ω) ∩ H̃1(Γ),

x1 ∈ L2 (Ω) with the compatibility condition: xΓ(0, y) = x0(y), y ∈ Γ. Then there

exists x being a unique weak solution to

xtt (t, y) − ∆x(t, y) = Q(t, y),

(2.6) x(0, y) = x0(y), xt(0, y) = x1(y), y ∈ Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ

and such that

x ∈ C([0,∞); H1(Ω)) ∩ L2(0,∞; H1(Ω)) = Ux,

xt ∈ C([0,∞); L2 (Ω)) ∩ L2(0,∞; L2 (Ω)) = Uxt
,

∂ν x̄ ∈ L2 (Σ),

‖x‖Ux
≤ C(‖Q‖L1(0,∞;L2(Ω)) + ‖x̄Γ‖H1(Σ) +

∥∥x0
∥∥

H1(Ω)
+

∥∥x1
∥∥

L2(Ω)
),

‖xt‖Uxt
≤ D(‖Q‖L1(0,∞;L2(Ω)) + ‖x̄Γ‖H1(Σ) +

∥∥x0
∥∥

H1(Ω)
+

∥∥x1
∥∥

L2(Ω)
)

with some C > 0, D > 0 independent on Q and ‖·‖Ux
= ‖·‖C([0,∞);H1(Ω))+‖·‖L2(0,∞;H1(Ω)),

‖·‖Uxt
= ‖·‖C([0,∞);L2(Ω)) + ‖·‖L2(0,∞;L2(Ω)).

Shortly the solution x from the above theorem may be estimated by

(2.7) ‖x‖Ux
≤ C ‖Q‖L1(0,∞;L2(Ω)) + Ew,

(2.8) ‖xt‖Uxt
≤ D ‖Q‖L1(0,∞;L2(Ω)) + Aw,

where Ew = C(‖x̄Γ‖H1(Σ)+‖x0‖H1(Ω)+‖x1‖L2(Ω)) and Aw = D(‖x̄Γ‖H1(Σ)+‖x0‖H1(Ω)+

‖x1‖L2(Ω)) and in the paper we will just use the last estimations. Everywhere below

the constants C and D will always denote those occurring in (2.7), (2.8).

Let us put for x̄Γ ∈ U t, t ∈ [0,∞)

U =
{
x : x ∈ C([0,∞); H1(Ω)) ∩ L2(0,∞; H1(Ω)),

∂x
∂t

∈ C([0,∞); L2(Ω)) ∩ L2(0,∞; L2(Ω)), x(0, y) = x0(y),

xt(0, y) = x1(y), y ∈ Ω, x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ} .

We shall consider U with a topology induced by the norm ‖x‖U = ‖x‖Ux
+ ‖xt‖Uxt

.

Assumptions concerning equation (1.1).

(As) Let F and G of the variable (t, y, x) be given. F and G are measurable in

(t, y) and continuously differentiable with respect to third variable in R, F is convex

in x and satisfies

F (t, y, x) ≥ a(t, y)x + b(t, y),
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for some a, b ∈ L1(0,∞; L2(Ω)), for all x ∈ R and (t, y) ∈ [0,∞) × Ω.Assume that

our original nonlinearity (see (1.8)) has the form

(2.9) l = Fx − Gx

or

l = −Fx − Gx

and that there exist a ball F with center at zero in U , x̂ ∈ F, constants EF , EG, E such

that ‖Fx (x)‖L1(0,∞;L2(Ω)) ≤ EF , ‖Gx (x)‖L1(0,∞;L2(Ω)) ≤ EG, ‖F (x̂)‖L1((0,∞)×Ω) < ∞,

‖G (x)‖L1((0,∞)×Ω) ≤ E (we use the notation Kx (z) = Kx (t, y, z(t, y))), for x ∈ F.

Put

(2.10) XF = {v ∈ U : ‖v‖U ≤ C (EF + EG) + Ew}

Moreover we assume that

(2.11) ‖Fx(x) − Gx(x)‖L1(0,∞;L2(Ω)) ≤ EF + EG

or

‖−Fx(x) − Gx(x)‖L1(0,∞;L2(Ω)) ≤ EF + EG

for x ∈ XF .

In XF × XF define the map XF × XF ∋ (x, w) → H(x, w) = v where v is a

solution to the following problem

vtt(t, y) − ∆v(t, y) = −Fx(t, y, x(t, y)) + Gx (t, y, w (t, y)) in (0,∞) × Ω,

v(0, y) = x0(y), vt(0, y) = x1(y), y ∈ Ω,

v(t, y) = x̄Γ(t, y), (t, y) ∈ Σ.

Let X̄F = H(XF × XF ). Now we are able to formulate the main theorem of the

paper.

Theorem 2.10 (Main theorem). Under (As) there exists x ∈ X̄F such that

J (x) = inf
x∈X̄F

J (x)

and x is a weak solution to (1.8).

Remark 2.11. The known results concerning existence of global solution to (1.1)

(without uniqueness) assume that nonlinearity l is locally Lipschitz and sublinear at

infinity or of polynomial type with additional boundedness for initial data (see e.g.

[7]). We do not assume that l is locally Lipschitz – it needs not to be – instead,

we assume the special structure of l namely that it is difference of two functions:

continuous and monotonic. This structure certainly contains a polynomial type of

nonlinearity. Thus, in that, it extends some results of [7]. Moreover we assume

boundedness of ‖Fx (·)‖L1(0,∞;L2(Ω)), ‖Gx (·)‖L1(0,∞;L2(Ω)) in some ball F ⊂U , which
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restrict behavior of Fx, Gx with respect to t. Some type of boudedness for initial

data is hidden in inequalities (2.3), (2.11) and that we are looking for soluton in

XF . We would like to stress that l is only continuous in x. We have not problems

with subcritical, supercritical or super-supercritical sources as just the special type

of l and the assumption (2.3) (in spite that it is enough general) eliminate such

cases. Moreover we are looking for solutions in bounded set XF , so all solutions

are bounded in the norm of U . This is a case which is often assumed to get global

solution (see [7], [4] and references therein).

We have no uniqueness of solutions to (1.1), but a kind of continuous dependence

on initial data is still possible.

Theorem 2.12. Assume (HΓ) and (As). Let {x0
n}, {x1

n} be given sequences in

H1(Ω) ∩ H̃1(Γ), L2(Ω) respectively, (with 0 < ‖x0

n‖L2(Γ) < 1), converging to x̄0, x̄1 in

H1(Ω) ∩ H̃1(Γ), L2(Ω) and such that ‖x0
n‖H1(Ω) ≤ C(EF + EG) + Ew, ‖x1

n‖L2(Ω) ≤

D(EF + EG) + Aw, n = 1, 2 . . . . Then there is a subsequence of {xn} - solutions to

(1.1) corresponding to {x0
n}, {x

1
n}, which we denote again by {xn} weakly convergent

in H1((0,∞)×Ω) and strongly in L2((0,∞)×Ω) to an element x̄ ∈ U being a solution

to (1.1) corresponding to x̄0, x̄1.

Let F ∗ be the Fenchel conjugate of F . Define a dual to J functional

JD : L2 (0,∞; L2(Ω)) × L2 (0,∞; L2(Ω)) × L2 (0,∞; L2(Ω)) → R,

as:

JD (p, q, z) = −

∫
∞

0

∫

Ω

F ∗(t, y,
(

lim
T→∞

pt (T − t, y) + div q (t, y) + z(t, y)
)
)dy dt

−
1

2

∫
∞

0

∫

Ω

|q (t, y)|2 dy dt +
1

2

∫
∞

0

∫

Ω

∣∣∣ lim
T→∞

p (T − t, y)
∣∣∣
2

dy dt

+
(
x0 (·) , lim

T→∞

p (T, ·)
)

L2 (Ω)
−

∫

Σ

x̄Γ (t, y) (q (t, y) , ν(y)) dy dt,

where ν = (ν1, . . . , νn) is the unit outward normal to Γ. Now we can formulate

theorem which gives us additional informations on solutions to (1.1) important in

classical mechanics. This theorem is absolutely new for problem (1.1).

Theorem 2.13 (Variational principle and duality result). Assume (As). Let x ∈ X̄F

be such that J (x) = infx∈X̄F J (x). Then there exists (p̄, q̄) ∈ L2 (0,∞; L2(Ω)) ×

L2 (0,∞; L2(Ω)) such that for a.e. (t, y) ∈ (0,∞) × Ω,

(2.12) lim
T→∞

p̄(T − t, y) = x̄t(t, y),

(2.13) q̄(t, y) = ∇x̄(t, y),

(2.14) lim
T→∞

p̄t(T − t, y) + div q (t, y) − l (t, y, x̄ (t, y)) = 0
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and

J(x̄) = JD (p̄, q̄, z̄) ,

where

(2.15) z̄ = Gx (t, y, x̄ (t, y)) .

The proofs of theorems are given in Sections 3, 4. They consist of several steps.

First we prove Propositions 1, 2 and Corollary 3, i.e. we solve problem (1.6). Next

we prove Theorem 2.10 (Main theorem). First for nonlinearity l consisting only of

one function Fx, next by iteration method of Galewski for general case.

3. PROOF OF EXISTENCE FOR PROBLEM (1.6)

As mentioned before, the main difficulty of the problem under study is the fact

that the Neumann problem does not satisfy Lopatinski condition and therefore, the

map from the boundary data in L2(Σ) into finite energy space is not bounded (unless

dimension of Ω is equal to one). In order to cope with this problem in [7], [4] a

regularizing term - strongly monotone dissipation is introduced, whose effect is to

‘force’ the Lopatinski condition. We follow, in quite, different way. We convert

the problem (1.6) into variational one and this allow us to omit the meaning of the

dissipation term. However, the price we pay for that is the type of nonlinearity for

the boundary source term h (see (HΓ)).

Being inspired by Brezis-Ekeland [6] (see also [21]) we formulate the variational

principle for problem (1.6).

Proposition 3.1. x̄(t, ·) ∈ U t, t ∈ [0,∞) is a solution to (1.6) if and only if x̄ affords

a minimum to the functional J t
Γ defined on U t, t ∈ [0,∞) and J t

Γ(x̄) = 0, t ∈ [0,∞).

Proof. It is a simple consequence of the equivalence of the following two relations in

(0,∞) × Γ:

(3.1) (i) − ∂ν x̄(t, y) ∈ ∂H(t, y, x̄(t, y)),

(3.2) (ii) H(t, y, x̄(t, y)) + H∗(t, y,−∂ν x̄(t, y)) = 〈x̄(t, y),−∂ν x̄(t, y)〉

and the inequality

H(t, y, x(t, y)) + H∗(t, y,−∂νx(t, y)) ≥ 〈x(t, y),−∂νx(t, y)〉

which holds for all x(t, ·) ∈ U t, t ∈ [0,∞).

Let us notice that the sets U t are nonempty. Instead of consider the functional

(1.5) we will study the functional J t
Γ(x) on U t, t ∈ [0,∞) and suitable Proposition 2.2,

which proof we omit. We prove under hypothesis (HΓ) that there exists a minimum

to the functional J t
Γ defined on U t, t ∈ [0,∞), i.e. the proof of Proposition 2.3.
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Proof. (of Proposition 2.3). Let us notice that J t
Γ(x(t, ·)) is bounded below in U t,

t ∈ [0,∞), in fact, J t
Γ(x(t, ·)) ≥ 0 and weakly lower semicontinuous in U t, t ∈ [0, T ].

Moreover, let us observe, by (HΓ), J t
Γ(x(t, ·)) → ∞ when ‖x(t, ·)‖H1(Γ) → ∞. Really,

it is enough to notice that for t ∈ [0,∞)

(3.3)

∫

Γ

H(t, y, x(t, y))dy =

∫

Γ

(
1

2
x(t, y)2 − x(t, y)h̄(t, y))dy,

∫

Γ

H∗(t, y,−∂νx(t, y))dy =

∫

Γ

1

2

(
∂νx(t, y) + h̄(t, y)

)2
dy(3.4)

≥

∫

Γ

(
1

2

∣∣∣|∂νx(t, y)|2 −
(
h̄(t, y)

)2
∣∣∣)dy

≥
1

2

(
‖∇x(t, ·)ν‖2

L2 −
∥∥h̄(t, ·)

∥∥2

L2

)
.

From (3.3) and (HΓ) we infer that ‖xn(t, ·)‖L2(Γ) is bounded for minimizing sequence

{xn(t, ·)} of J t
Γ and next from (??) that ‖∇xn(t, ·)‖L2(Γ) is bounded. Thus, there is a

subsequence of {xn(t, ·)} (which we again denote by {xn(t, ·)}) such that it is weakly

in H1(Γ) convergent to some xΓ and pointwise convergent to it. Therefore, for each

t ∈ [0,∞),

lim inf
n→∞

J t
Γ(xn(t, ·)) ≥ J t

Γ(xΓ(t, ·)).

Now let us define the dual functional to J t
Γ, t ∈ [0,∞), by

(3.5) J t
ΓD(x) =

∫

Γ

(H(t, y,−x(t, y)) + H∗(t, y, ∂νx(t, y) − g(t, y,−xt(t, y)))

−〈x(t, y), ∂νx(t, y)〉)dy, t ∈ [0,∞).

It is clear that J t
Γ(x(t, ·)) = J t

ΓD(−x(t, ·)) for all x(t, ·) ∈ U t and so

inf
x∈U t

J t
Γ(x(t, ·)) = inf

x∈U t
J t

ΓD(x(t, ·)), t ∈ [0,∞).

By the duality theory for convex functionals (see [8] and [21]) we have that

infx∈U t J t
Γ(x(t, ·)) = − infx∈U t J t

ΓD(x(t, ·)), t ∈ [0,∞). Hence we infer that J t
Γ(xΓ(t, ·)) =

0.

Proof. (of Theorem 2.5) Let us take in (1.6) for v(t, y) = x0(y). Then by Corollary 2.4

there exists x1(t, ·) ∈ U t, t ∈ [0,∞) being a solution to (1.6). Putting again in (1.6)

for v(t, y) = x1(t, y) we obtain x2(t, ·) ∈ U t, t ∈ [0, T ] being a solution to (1.6) with

this v. Continuing this substitutions we obtain a sequence xn(t, ·) ∈ U t, t ∈ [0,∞),

n = 0, 1, 2, . . . . We assert that this sequence has the following properties:

(3.6) h(t, y, xn−1(t, y)) = xn(t, y), n = 1, 2, . . . .

Really, by the form of H ,

H∗(t, y,−∂νx(t, y)) =
1

2

(
∂νx(t, y) + h̄(t, y)

)2
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and (3.1), (3.2) we have for the sequence xn(t, ·) ∈ U t, t ∈ [0,∞), n = 0, 1, 2, . . . ,

∂νxn(t, y) − h(t, y, xn−1(t, y)) = −xn(t, y),

∂νxn(t, y) + h(t, y, xn−1(t, y)) = xn(t, y).

Taking into account both equalities we get (3.6). Hence and by the assumption (2.2)

on h and on x0 we infer that ‖xn(t, ·)‖L2(Γ) is bounded. Following in the same way as

in the proof of Proposition 2.3 we obtain that ‖∇xn(t, ·)‖L2 (Γ) is bounded. Thus there

is a subsequence of {xn(t, ·)}, which we again denote by {xn(t, ·)}, that is weakly in

H1(Γ) and pointwise in Γ convergent to some x̄Γ(t, ·). Therefore, by (HΓ), there

exists the limit limn→∞ (−h(t, y, xn−1(t, y)) + xn(t, y)) = −h(t, y, x̄Γ(t, y)) + x̄Γ(t, y)

and so x̄Γ(t, ·) satisfies the equation (2.4) and relation (3.2).

4. PROOF OF EXISTENCE FOR PROBLEM (1.8)

4.1. Auxilliary problem with l(t, y, x) = Fx(t, y, x) − Ḡx(t, y). First consider an-

other equation (with x̄Γ ∈ H1(Σ) being a solution to (2.4))

(4.1)

xtt(t, y) − ∆x(t, y) + Fx(t, y, x(t, y))− Ḡx(t, y) = 0, in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

x(0, ·) = x0(·) ∈ H1(Ω) ∩ H̃1(Γ), xt(0, ·) = x1(·) ∈ L2(Ω),

where Ḡx(t, y) = Gx(t, y, w(t, y)) with w(·, ·) being any fixed function from XF and

corresponding to (4.1) functional

JF (x) =

∫
∞

0

∫

Ω

(
1

2
|∇x(t, y)|2 −

1

2
|xt (t, y)|2

)
dy dt(4.2)

+

∫
∞

0

∫

Ω

F (t, y, x (t, y)) − x (t, y) Ḡx(t, y))dy dt

− lim
T→∞

(
x (T, ·) , x1 (·)

)
L2(Ω)

defined on U . (4.1) is the Euler-Lagrange equation for the action functional JF .

The dual functional, now reads

(4.3)

JF
D (p, q, z)

= −
∫
∞

0

∫
Ω

F ∗ (t, y, (limT→∞ pt (T − t, y) + div q (t, y) + z(t, y))) dy dt

−1
2

∫
∞

0
‖q (t, ·)‖2

L2(Ω) dt + 1
2

∫
∞

0
‖limT→∞ p (T − t, ·)‖2

L2(Ω) dt

+ limT→∞ (x0 (·) , p (T, ·))L2(Ω) −
∫
Σ

x̄Γ (t, y) (q (t, y) , ν(y)) dy dt,

for a.e. t ∈ [0,∞), z(t, y) = Ḡx(t, y), limT→∞ pt (T − t, ·) + div q (t, ·) is an element

of L2(Ω) and F ∗(t, y, ·) is the Fenchel conjugate to x → F (t, y, x)− xḠx (t, y), i.e.

F ∗(t, y, h) = supd∈R
{hd −

(
F (t, y, d)− dḠx (t, y)

)
}, for (t, y) ∈ [0,∞) × Ω, h ∈ R,

hence ∫
∞

0

∫

Ω

F ∗(t, y, lim
T→∞

pt (T − t, y) + div q (t, y) + z(t, y)))dy dt
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= sup
v∈L2((0,∞)×Ω)

{

∫
∞

0

∫

Ω

( lim
T→∞

pt (T − t, y) + divq (t, y))v(t, y)dy dt

−

∫
∞

0

∫

Ω

(F (t, y, v (t, y)) − v (t, y) z(t, y)) dy dt}

and JF
D : UD → R, where

UD =
{

(p, q) : p ∈ C([0,∞); L2(Ω)), lim
T→∞

pt (T − ·, ·)

+div q (·, ·) ∈ L1(0,∞; L2(Ω)) ,

p(0, ·) = x1(·), q ∈ L2(0,∞;
(
L2(Ω)

)n
)
}

.

We prove the following

Lemma 4.1. There exist constants Cw
1 , Cw

2 , Cw
3 , Cw

4 independent on x ∈ XF such

that

‖v‖L2 (0,∞;H1(Ω)) ≤ Cw
2 , ‖vt‖L2 (0,∞;L2(Ω)) ≤ Cw

1 ,

‖vtt‖L2 (0,∞;H−1(Ω)) ≤ Cw
3 , ‖∆v‖L2 (0,∞;H−1(Ω)) ≤ Cw

4 ,

‖v‖Ux
≤ C(EF + EG) + Ew,

‖vt‖Uxt
≤ D(EF + EG) + Aw

where v is the weak solution of the problem

(4.4) vtt(t, y) − ∆v(t, y) = −Fx(t, y, x(t, y)) + Ḡx(t, y) in (0,∞) × Ω,

v(0, y) = x0(y), vt(0, y) = x1(y), y ∈ Ω,

v(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

with x ∈ XF .

Proof. Fix arbitrary x ∈ XF . Since x ∈ U and by the assumptions on F and G, see

(As), it follows that Fx(·, ·, x(·, ·)), Ḡx(·, ·) ∈ L1(0,∞; L2(Ω)). Hence by Theorem 2.9

and (2.7) there exists a unique solution v ∈ U of our problem for the equation (4.4)

satisfying ‖v‖Ux
≤ CE + Ew. Taking into account the definition of the set XF we

get the following estimation, independent on x ∈ XF

‖v‖L2 (0,∞;H1(Ω)) ≤ C(EF + EG) + Ew,

by (2.8)

‖vt‖L2 (0,∞;L2 (Ω)) ≤ D(EF + EG) + Aw

and since for some E1: ‖∆v‖L2 (0,∞;H−1(Ω)) ≤ E1 ‖v‖L2 (0,∞;H1(Ω)) thus

‖vtt‖L2 (0,∞;H−1(Ω)) ≤ E1C(EF + EG)

+E1E
w + (EF + EG).

Hence, putting

Cw
1 = D(EF + EG) + Aw,
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Cw
2 = C(EF + EG) + Ew,

Cw
3 = E1C(EF + EG) + E1E

w + (EF + EG)

and

Cw
4 = E1C(EF + EG) + E1E

w

we infer the first assertion of the lemma. Further by (2.7) we get

‖v‖Ux
≤ C(EF + EG) + Ew,

‖vt‖Uxt
≤ D(EF + EG) + Aw

and we get the last assertion of the lemma.

Proposition 4.2. For every x ∈ XF the weak solution x̃ of the problem

(4.5) x̃tt (t, y) − ∆x̃(t, y) = −Fx(t, y, x (t, y)) + Ḡx(t, y),

x̃(0, y) = x0(y), x̃t(0, y) = x1(y), y ∈ Ω,

x̃(t, y) = x̄Γ(t, y), (t, y) ∈ Σ

belongs to XF .

Proof. Fix arbitrary x ∈ XF , Fx(·, ·, x(·, ·)) ∈ L1(0,∞; L2(Ω)). Hence by Theorem

2.9 there exists a unique weak solution x̃ ∈ U of problem (4.5). Moreover x̃tt −∆x̃ ∈

L1(0,∞; L2(Ω)). By the definition of the set XF , it follows that
∥∥Fx(·, ·, x(·, ·))− Ḡx(·, ·)

∥∥
L1(0,∞;L2(Ω))

≤ EF + EG.

Further by (2.7) we get

‖x̃‖Ux
≤ C(EF + EG) + Ew.

Thus for an arbitrary x ∈ XF there exists an x̃ ∈ XF .

Remark 4.3. Proposition 4.2 apparently may suggest that it is more convenient to

apply a suitable fixed point theorem in order to get the existence of weak solutions

to problem (1.1). Indeed, the above mentioned proposition states that the map Hw

assigning to x ∈ XF a weak solution x̃ ∈ XF of (4.5) has the property Hw(XF ) ⊂ XF .

However this is only starting point in fixed point theory. In order to proceed with the

so called topological method we must prove that the map Hw and set Hw(XF ) possess

suitable properties. However the assumptions (As) do not imply directly (if at all)

neither that Hw is contraction nor that Hw(XF ) is convex or relatively compact. We

have chosen variational approach which ensures not only the existence of solutions

but also certain variational properties of solutions which are absolutely new in that

case.

Let us put X̄F
w = Hw(XF ). Of course, X̄F = ∪w∈XF X̄F

w .
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Lemma 4.4. Each x ∈ X̄F has the weak derivatives xtt and ∆x belonging to L2 (0,∞;

H−1(Ω)). Moreover, sets

Xtt =
{
xtt : x ∈ X̄F

}
, X∆ =

{
∆x : x ∈ X̄F

}

are bounded in L2 (0,∞; H−1(Ω)). Hence each sequence
{
xj

tt

}
from Xtt has subse-

quence converging weakly in L2 (0,∞; H−1(Ω)) to a certain element from set Xtt and

sequence
{
xj

t

}
converges strongly in L2 (0,∞; L2(Ω)).

Proof. It is clear, by Lemma 4.1, that
{
xj

tt

}
from Xtt has a subsequence converging

weakly in L2 (0,∞; H−1(Ω)). By the same lemma corresponding sequence {xj} is also

weakly (up to some subsequence) converging in L2 (0,∞; H1(Ω)) to some element x̄.

By the definition of XF and uniqueness of weak solutions of (4.5) we infer that
{
xj

tt

}

has subsequence weakly convergent to x̄tt. The last, the fact that
{
xj

t

}
is bounded in

L2 (0,∞; L2(Ω)) and known theorem imply that for this subsequent
{
xj

t

}
is convergent

strongly in L2 (0,∞; L2(Ω)) to x̄t.

We observe that functionals JF is well defined on XF . Moreover by (As) and

convexity of F (t, y, ·) we have boundedness of

(4.6) x →

∫
∞

0

∫

Ω

F (t, y, x(t, y))dy dt and x →

∫
∞

0

∫

Ω

G(t, y, x(t, y))dy dt

in XF .

Lemma 4.5. The functional JF attains its minimum in X̄F
w i.e.

inf
x∈X̄F

w

JF (x) = JF (x) ,

where x ∈ X̄F
w .

Proof. By definition of the set X̄F
w and (4.6) we see that the functional JF is bounded

in XF . We denote by {xj} a minimizing sequence for JF in X̄F
w . This sequence has

a subsequence which we denote again by {xj} converging weakly in L2 (0,∞; H1(Ω))

and strongly in L2 (0,∞; L2 (Ω)), hence also strongly in L2 ((0,∞) × Ω;R) to a certain

element x ∈ U . Moreover {xj} is also convergent almost everywhere. Thus by the

construction of the set X̄F
w and uniqueness of weak solutions of (4.5) we observe that

x ∈ X̄F
w . Hence

lim inf
j→∞

JF
(
xj

)
≥ JF (x̄).

Thus

inf
x∈X̄F

JF
(
xj

)
= JF (x̄).
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To consider properly the dual action functional let us put

W 1F
t = {p ∈ C([0,∞); L2 (Ω)) :

pt ∈ L2(0,∞; H−1(Ω)), p(0, ·) = x1 (·)
}

and

W 1F
y =

{
q ∈ L2(0,∞; (L2 (Ω))n) : there exists p ∈ W 1F

t

such that lim
T→∞

pt(T − ·, ·) + div q(·, ·) ∈ L2 (0,∞; L2 (Ω))
}

.

and define a set on which a dual functional will be considered.

Definition of XFd : We say that an element (p, q) ∈ W 1F
t × W 1F

y belongs to

XFd provided that there exists x ∈ X̄F
w such that for a.e. t ∈ (0,∞)

(4.7) − lim
T→∞

pt (T − t, ·) − div q (t, ·) = −Fx(t, ·, x(t, ·)) + Ḡx(t, ·)

with

q (t, ·) = ∇x (t, ·)

or else

(4.8) lim
T→∞

p (T − t, ·) = xt (t, ·) with q (t, ·) = ∇x (t, ·) .

Remark 4.6. The definition of XFd says that for each x ∈ X̄F
w there exist in XFd

two pairs of (p, q): one defined by (4.7), second defined by (4.8).

We observe that neither X̄F
w nor XFd is a linear space. Thus even standard

calculations using convexity arguments are rather difficult. What helps us is a spe-

cial structure of the sets X̄F
w and XFd which despite their nonlinearity makes these

calculations possible.

Now we may state the first step to main result of the paper which is the following

existence theorem.

Theorem 4.7. There is x ∈ X̄F
w , that infx∈X̄F

w
JF (x) = JF (x). Moreover, there is

(p, q) ∈ XFd such that

(4.9) JF
D (p, q, z) = inf

x∈X̄F
w

JF (x) = JF (x)

and the following system holds, for t ∈ [0,∞),

(4.10) xt (t, ·) = lim
T→∞

p (T − t, ·) ,

(4.11) ∇x (t, ·) = q (t, ·) ,

(4.12) − lim
T→∞

pt (T − t, ·) − div q (t, ·) = −Fx (t, ·, x (t, ·)) + Ḡx(t, ·).
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4.1.1. Variational Principle. We state the necessary conditions. We observe that due

to the construction of the set X̄F
w and by the second Remark following Proposition 4.2

it follows that a minimizing sequence in X̄F
w for the functional JF may be assumed

to be weakly convergent in L2(0,∞; H1 (Ω)) and strongly in L2(0,∞; L2 (Ω)).

Theorem 4.8. Let infx∈X̄F
w

JF (x) = JF (x), where x ∈ L2(0,∞; L2 (Ω)) is a limit,

strong in L2(0,∞; L2 (Ω)) and weak in L2(0,∞; H1(Ω)), of a minimizing sequence

{xj} ⊂ X̄F
w . Then there exist (p̄, q̄) ∈ XFd such that for a.e. t ∈ (0,∞),

(4.13) lim
T→∞

p̄(T − t, ·) = x̄t(t, ·),

(4.14) q̄(t, ·) = ∇x̄(t, ·),

(4.15) − lim
T→∞

p̄t(T − t, ·) − div q (t, ·) + Fx (t, ·, x̄ (t, ·)) − Ḡx(t, ·) = 0

and

JF (x̄) = JF
D (p̄, q̄, z) ,

where z(t, y) = Gx (t, y, w (t, y)).

Proof. Let x̄ ∈ X̄F
w be such that JF (x̄) = infxj∈X̄F

w
JF (xj). Define

(4.16) − lim
T→∞

p̄t(T − t, ·) = div q̄ (t, ·) − Fx (t, ·, x̄ (t, ·)) + Ḡx(t, ·), t ∈ (0,∞)

with q̄ given by

(4.17) q̄(t, y) = ∇x̄(t, y) for all (t, y) ∈ (0,∞) × Ω.

By the definitions of JF , JF
D , relations (4.17), (4.16) and the Fenchel-Young inequality

it follows that

JF (x̄) =

∫
∞

0

∫

Ω

(1

2
|∇x̄(t, y)|2 −

1

2
|x̄t (t, y)|2

+ F (t, y, x̄ (t, y)) − x̄ (t, y) Ḡx(t, y)
)
dy dt

− lim
T→∞

(
x̄ (T, ·) , x1 (·)

)
L2 (Ω)

≤ −

∫
∞

0

∫

Ω

〈
x̄t (t, y) , lim

T→∞

p̄ (T − t, y)
〉

dy, dt

+

∫
∞

0

∫

Ω

〈∇x̄ (t, y) , q̄ (t, y)〉 dy dt −
1

2

∫
∞

0

‖q̄ (t, ·)‖2
L2 (Ω) dt

+
1

2

∫
∞

0

∥∥∥ lim
T→∞

p̄ (T − t, ·)
∥∥∥

2

L2 (Ω)
dt

+

∫
∞

0

∫

Ω

(
F (t, y, x̄ (t, y)) − x̄ (t, y) Ḡx(t, y)

)
dy dt

= −
1

2

∫
∞

0

‖q̄ (t, ·)‖2
L2 (Ω) dt + lim

T→∞

(
x0 (·) , p̄ (T, ·)

)
L2 (Ω)
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−

∫
∞

0

∫

Ω

F ∗

(
t, y, ( lim

T→∞

p̄t (T − t, y) + div q̄ (t, y) + z(t, y))
)

dt

+
1

2

∫
∞

0

∥∥∥ lim
T→∞

p̄ (T − t, ·)
∥∥∥

2

L2 (Ω)
dt −

∫

Σ

x̄Γ (t, y) (q̄ (t, y) , ν(y)) dy dt.

Therefore we get that

(4.18) JF (x̄) ≤ JF
D (p̄, q̄, z) .

Let {pj, qj} ⊂ XFd denote the sequences corresponding to {xj} accordingly to the

definition of the set XFd. It is clear that the above (p, q) is a limit of the sequence

{pj, qj} ∈ XFd. We observe that there are two possible forms for the sequence

{pj, qj} ⊂ XFd corresponding to the sequence{xj} accordingly to the definition of

the set XFd with qj = ∇xj . Namely, for (t, y) ∈ (0,∞) × Ω, j = 1, 2, . . . ,

(4.19) qj (t, y) = ∇xj (t, y) , lim
T→∞

pj (T − t, y) = xj
t (t, y)

or

− lim
T→∞

pj
t (T − t, ·) = div qj (t, ·) − Fx(t, ·, x

j(t, ·)) + Ḡx(t, ·),(4.20)

qj (t, y) = ∇xj (t, y) .

First we investigate the convergence of both sequences. As for the sequence (4.19)

we obviously get, since {xj} converges strongly in U ,
{
xj

t

}
weakly in L2(0,∞; L2 (Ω))

and
{
pj

t

}
weakly in L2(0,∞; H−1(Ω))

xj
t ⇀ xt = p, ∇xj → ∇x = q.

Since xj converges pointwise to x therefore
{
Fx

(
t, y, xj (t, y)

)}
converges pointwise to Fx (t, y, x̄ (t, y))

too. Therefore by the Fenchel-Young equality we have

JF (x̄) = inf
x∈X̄F

w

JF (x) = lim inf
j→∞

JF (xj)

≥ lim inf
j→∞

(∫
∞

0

∫

Ω

(
1

2
|∇xj(t, y)|2 −

1

2

∣∣xj
t (t, y)

∣∣2
)

dy dt

− lim
T→∞

(
xj (T, ·) , x1 (·)

)
L2 (Ω)

)

+ lim inf
j→∞

∫
∞

0

∫

Ω

(
F

(
t, y, xj (t, y)

)
− xj (t, y) z(t, y)

)
dy dt

≥ −
1

2

∫
∞

0

‖q̄ (t, ·)‖2
L2 (Ω) dt +

∫
∞

0

∫

Ω

〈∇x̄ (t, y) , q̄ (t, y)〉 dy dt

+
1

2
lim inf

j→∞

(
lim

T→∞

∫ T

0

‖pj (T − t, ·)‖2
L2 dt

)

+ lim inf
j→∞

(

∫
∞

0

〈
xj (t, ·) , lim

T→∞

pj
t (T − t, ·)

〉

H1,H−1

dt
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+ lim
T→∞

(
x0 (·) , pj (T, ·)

)
)

+

∫
∞

0

∫

Ω

(F (t, y, x̄ (t, y)) − x̄ (t, y) z(t, y)) dy dt

≥ +
1

2

∫
∞

0

∥∥∥ lim
T→∞

p̄ (T − t, ·)
∥∥∥

2

L2(Ω)
dt −

1

2

∫
∞

0

‖q̄ (t, ·)‖2
L2(Ω) dt

+

∫
∞

0

∫

Ω

(F (t, y, x̄ (t, y)) − x̄ (t, y) z(t, y)) dy dt

−

∫
∞

0

∫

Ω

〈
x̄ (t, y) , ( lim

T→∞

p̄t (T − t, y) + div q̄ (t, y)) + z(t, y)
〉

H1,H−1

dy dt

−

∫

Σ

x̄Γ (t, y) 〈q̄ (t, y) , ν(y)〉 dy dt + lim
T→∞

(
x0 (·) , p̄ (T, ·)

)
L2(Ω)

≥ JF
D (p̄, q̄, z) .

Inequalities JF (x̄) ≥ JF
D (p̄, q̄, z), (4.18) imply equality JF (x̄) = JF

D (p̄, q̄, z). JF (x̄) =

JF
D (p̄, q̄, z), implies by standard convexity argument

1

2

∫
∞

0

∥∥∥ lim
T→∞

p̄ (T − t, ·)
∥∥∥

2

L2 (Ω)
dt +

1

2

∫
∞

0

∫

Ω

|x̄t (t, y)|2 dy dt

=

∫
∞

0

∫

Ω

(
x̄t (t, y) , lim

T→∞

p̄ (T − t, y)
)

L2(Ω)
dy dt.

Hence by Fenchel-Young transform we obtain that limT→∞ p̄ (T − t, y) = x̄t (t, y) i.e.

(4.13).

4.2. Auxilliary problem with l(t, y, x) = −Fx(t, y, x)−Ḡx(t, y). A similar theorem

is true for the problem

(4.21)

xtt(t, y) − ∆x(t, y) − Fx(t, y, x(t, y))− Ḡx(t, y) = 0, in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

x(0, ·) = x0(·), xt(0, ·) = x1(·)

and corresponding to it functional

JF− (x) =

∫
∞

0

∫

Ω

(
1

2
|∇x(t, y)|2 −

1

2
|xt (t, y)|2 − F (t, y, x(t, y))

)
dy dt(4.22)

−

∫
∞

0

∫

Ω

x(t, y)Ḡx(t, y)dy dt − lim
T→∞

(
x (T, ·) , x1 (·)

)
L2(Ω)

defined on U with same hypotheses (As) and the sets XF , X̄F
w , X̄F . Really, Lem-

mas 4.1–4.5 are still valid as sign of F does not change their proofs, also the proof of

the above theorem does not change. Hence we get for (4.21) the following theorem.

Theorem 4.9. There is x ∈ X̄F
w , that infx∈X̄F

w
JF− (x) = JF− (x). There is (p̄, q̄) ∈

L2(0,∞; L2(Ω)) × L2(0,∞; L2(Ω)) such that for a.e. (t, y) ∈ (0,∞) × Ω,

(4.23) lim
T→∞

p̄(T − t, y) = x̄t(t, y),
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(4.24) q̄(t, y) = ∇x̄(t, y),

(4.25) − lim
T→∞

p̄t(T − t, ·) − div q (t, ·) − Fx (t, ·, x̄ (t, ·)) − Ḡx(t, ·) = 0

and

JF−(x̄) = JF−

D (p̄, q̄, z) ,

where

JF−

D (p̄, q̄, z) =

∫
∞

0

∫

Ω

F ∗ (t, y, (p̄t (T − t, y) + div q̄ (t, y) + z(t, y))) dy dt

+
1

2

∫
∞

0

∥∥∥ lim
T→∞

p̄ (T − t, ·)
∥∥∥

2

L2(Ω)
dt −

1

2

∫
∞

0

‖q̄ (t, ·)‖2
L2(Ω) dt

−

∫

Σ

x̄Γ (t, y) (q̄ (t, y) , ν(y))dy dt + lim
T→∞

(
x0 (·) , p̄ (T, ·)

)
L2(Ω)

.

4.3. The case of nonlinearity l = Fx −Gx. Now we consider our original problem

i.e.

(4.26)

xtt(t, y) − ∆x(t, y) − Gx(t, y.x(t, y)) + Fx(t, y, x(t, y)) = 0, in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

x(0, ·) = x0(·), xt(0, ·) = x1(·)

and corresponding to it functional

JFG (x) =

∫
∞

0

∫

Ω

(
1

2
|∇x(t, y)|2 −

1

2
|xt (t, y)|2 − G(t, y, x(t, y))

)
dy dt(4.27)

+

∫
∞

0

∫

Ω

F (t, y, x(t, y))dy dt − lim
T→∞

(
x (T, ·) , x1 (·)

)
L2(Ω)

,

defined in U .

Proof. (of main Theorem and Theorem 2.13) Let us take any x0(·, ·) ∈ X̄F . By

Theorem 4.8 the following problem

(4.28)

xtt(t, y) − ∆x(t, y) − Gx(t, y.x0(t, y)) + Fx(t, y, x(t, y)) = 0, in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

x(0, ·) = x0(·), xt(0, ·) = x1(·)

has a weak solution x1(·, ·) ∈ X̄F

x0
. Next consider

(4.29)

xtt(t, y) − ∆x(t, y) − Gx(t, y.x1(t, y)) + Fx(t, y, x(t, y)) = 0, in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

x(0, ·) = x0(·), xt(0, ·) = x1(·).

By the same argument (4.29) has a weak solution x2(·, ·) ∈ X̄F

x1
. In this way we obtain

a sequence of weak solutions {xn} ⊂ X̄F to problems, in (0,∞) × Ω,

(4.30)

xntt(t, y) − ∆xn(t, y) − Gx(t, y, xn−1(t, y)) + Fx(t, y, xn(t, y)) = 0,

xn(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

xn(0, ·) = x0(·), xnt(0, ·) = x1(·), n = 1, 2, . . . ,
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which satisfy the relations

(4.31) lim
T→∞

pn(T − t, ·) = xnt(t, ·),

(4.32) qn(t, ·) = ∇xn(t, ·),

(4.33) − lim
T→∞

pnt(T − t, ·) − div qn (t, ·) + Fx (t, ·, xn (t, ·)) − Gx(t, ·, xn−1(t, ·)) = 0

and

(4.34) JF (xn, xn−1) = JF
D (pn, qn, zn−1) ,

where

zn−1 = Gx(t, y, xn−1(t, y)),

JF (xn, xn−1) =

∫
∞

0

∫

Ω

(
1

2
|∇xn(t, y)|2 −

1

2
|xnt (t, y)|2 − G(t, y, xn−1(t, y))

)
dy dt

+

∫
∞

0

∫

Ω

F (t, y, xn(t, y))dy dt − lim
T→∞

(
xn (T, ·) , x1 (·)

)
L2 (Ω)

,

JF
D (pn, qn, zn−1) = −

∫
∞

0

∫

Ω

F ∗

(
t, y,

(
lim

T→∞

pnt (T − t, y) + div qn (t, y) + zn−1(t, y)
))

dy dt

−
1

2

∫ T

0

∫

Ω

|qn (t, y)|2 dy dt +
1

2

∫ T

0

∫

Ω

∣∣∣ lim
T→∞

pn (T − t, y)
∣∣∣
2

dy dt

−

∫

Σ

x̄Γ (t, y) (qn (t, y) , ν(y))dy dt + lim
T→∞

(
x0 (·) , pn (T, ·)

)
L2 (Ω)

.

Since xn−1(·, ·) ∈ X̄F

xn−2
therefore xn satisfies the estimations of Lemma 4.1. Hence

the sequence {xn} is weakly convergent in L2 (0,∞; H1 (Ω)) to some x(·, ·) ∈ X̄F

and strongly in L2 (0,∞; L2 (Ω)) (see also Lemma 4.4). Moreover {xnt} is convergent

strongly in L2 (0,∞; L2 (Ω)) and {pnt} weakly in L2 (0,∞; H−1(Ω))

xnt → xt = p, ∇xj → ∇x = q.

Following the same way as in the proof of Theorem 4.8 we obtain that the sequence

of relations (4.31)-(4.34) converges to the relations:

lim
T→∞

p̄(T − t, ·) = x̄t(t, ·),

q̄(t, ·) = ∇x̄(t, ·),

− lim
T→∞

p̄t(T − t, ·) − div q (t, ·) + Fx (t, ·, x̄ (t, ·)) − Gx(t, ·, x̄ (t, ·)) = 0

and for z̄ (t, y) = Gx(t, y, x̄ (t, y))

JFG(x̄) = JF
D (p̄, q̄, z̄) .

Thus x̄ is a weak solution to (4.26) and so we have proved our main theorem and

Theorem 2.13).
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4.4. The case of nonlinearity l = −Fx−Gx. Now we consider our original problem

i.e.

xtt(t, y) − ∆x(t, y) − Gx(t, y.x(t, y)) − Fx(t, y, x(t, y)) = 0, in (0,∞) × Ω,

x(t, y) = x̄Γ(t, y), (t, y) ∈ Σ,

x(0, ·) = x0(·), xt(0, ·) = x1(·),

and corresponding to it functional

JFG (x) =

∫
∞

0

∫

Ω

(
1

2
|∇x(t, y)|2 −

1

2
|xt (t, y)|2 − G(t, y, x(t, y))

)
dy dt

−

∫
∞

0

∫

Ω

F (t, y, x(t, y))dy dt − lim
T→∞

(
x (T, ·) , x1 (·)

)
L2(Ω)

,

defined in U .

The justification of this case is identical as in the former section the case l =

Fx − Gx taking into account the result of the section ”Simply case II”.

4.5. Proof of stability - Theorem 2.12. In this section we prove some stability

results to our nonlinear case i.e. Theorem 2.12. To this effect let us assume we are

given a sequence {x0
n} in H̃1(Γ) converging to x̄0 in H̃1(Γ). Let {x̄Γn} be a sequence

of solutions to (1.6) corresponding to {x0
n}. Then by Theorem 2.5 and its proof we

know that J t
Γ(x̄Γn) = 0, t ∈ [0,∞), n = 1, 2, . . . and that J t

Γ(x) ≥ 0 for all x ∈ U t,

t ∈ [0,∞) (moreover J t
Γ is weakly lower semicontinuous in U t, t ∈ [0,∞)). Therefore

the sequence {x̄Γn} is bounded in H̃1(Γ) and hence it has a subsequence (which

we shall denote again by {x̄Γn}) converging weakly in H̃1(Γ) to some x̄Γ ∈ H̃1(Γ)

and J t
Γ(x̄Γ) = 0 on U t, t ∈ [0,∞). The last implies that x̄Γ is a solution to (1.6)

corresponding to x̄0.

Next let us assume that {x0
n}, {x

1
n} given sequences in H1(Ω) ∩ H̃1(Γ), L

2

(Ω),

respectively and such that ‖x0
n‖C([0,T ];H1(Ω)) ≤ C(EF + EG) + Ew, ‖x1

n‖C([0,T ];L2(Ω)) ≤

C(EF + EG) + Ew, n = 1, 2 . . . converging to x̄0, x̄1 in H1(Ω) ∩ H̃1(Γ), L
2

(Ω),

respectively and x0
n(y) = x̄Γn(0, y) on Γ, n = 1, 2, . . . . Thus we assume hypotheses

(HΓ), (As) to be considered and satisfied.

In consequence, all the assertions of Theorem 2.13 are true for all n with estima-

tions independent on n. Because, we have nonlinear problem we cannot expect the

same type of continuous dependence as in [13] for linear case.

First note that for each x0
n, x1

n there exists a solution x̄n ∈ X̄F ⊂ U to (1.1)

determined by x0
n and x1

n, n = 1, 2, . . . . Therefore, choosing suitable subsequence, let

x̄ ∈ X̄F be a weak limit in H1((0,∞) × Ω) and strong in L2 ((0,∞) × Ω) of {x̄n}.

We know also that for all n, JFG(x̄n) = JF
D (p̄n, q̄n, z̄n) where {p̄n, q̄n, z̄n} denote the

sequences corresponding to {x̄n} and satisfying

x̄nt (t, ·) = lim
T→∞

p̄n (T − t, ·) ,
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∇x̄n (t, ·) = q̄n (t, ·) ,

lim
T→∞

p̄nt(T − t, ·) + div q̄n (t, ·) − l (t, ·, x̄n (t, ·)) = 0,

z̄n(t, y) = Gx(t, y, x̄n(t, y)).

{x̄n} is weakly convergent in H1((0,∞)×Ω) and strongly in L2 (0,∞; L2 (Ω)), x̄nt →

xt = p, ∇x̄n → ∇x = q in L2 (0,∞; L2 (Ω)), therefore x̄n converges pointwise to x.

Hence {p̄nt + div q̄n} converges pointwise to p̄t + div q̄. Thus we infer that

JFG(x̄) = lim
n→∞

JFG(x̄n) = lim
n→∞

JF
D (p̄n, q̄n, z̄n) = JF

D (p̄, q̄, z̄)

with

z̄(t, y) = Gx(t, y, x̄(t, y))

and in consequence

xt (t, ·) = lim
T→∞

p (T − t, ·) ,

∇x (t, ·) = q (t, ·) ,

lim
T→∞

pt (T − t, ·) + div q (t, ·) − l (t, ·, x (t, ·)) = 0

and so we get the assertion of the theorem.
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