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ABSTRACT. In this paper, a class of semilinear evolution equations with impulses at variable

times and time-varying generating operators in fractional power spaces is considered. Introducing

the reasonable α-mild solution, the existence and uniqueness of α-mild solution are given. At the

same time, modifying the classical definitions of continuous dependence and Gâteaux differentiability,

some results on periodicity, continuous dependence, Gâteaux differentiable of α-mild solution relative

to initial value and parameter also are presented.
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1. INTRODUCTION

It is well known the theory of impulsive evolution equations has become more

important in recent years in some mathematical models of real processes and phe-

nomena studied in physics, chemical technology, population dynamics, biotechnology

and economics (see [1]). There are two typical types of impulsive differential systems

in which are the systems with impulses at fixed times and the systems with impulses

at variable times on the impulsive evolution equations. For the systems with im-

pulses at fixed times, there has been a significant development in impulsive evolution

equations. For the basic theory on impulsive evolution equations on finite dimen-

sional spaces, the reader can refer to Benchohra’s book [2]. Particularly, Ahmed and

Migorski considered optimal control problems of systems governed by impulsive evo-

lution equations (see [3]–[5]). We also gave a series of results on impulsive evolution

equations and optimal control problems such as the semilinear (strongly-nonlinear)
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impulsive evolution equations, impulsive integro-differential equations, impulsive pe-

riodic systems and optimal controls (see [6]–[10]). For the systems with impulses at

variable times, Lakshmikantham and Benchohra studied a class of evolution equations

(1.1)

{

ẋ(t) = f(t, x(t)), t 6= τk(x(t)),

∆x(t) = Ik(x(t)), t = τk(x(t))

in finite dimensional, and some results on the existence of classical solution and the

pulse phenomena are obtained(see [2], [11]). Recently, the existence and uniqueness

of the mild solution of evolution equation with impulses at variable times

(1.2)











ẋ(t) = Ax(t) + f(t, x(t)), {x(t)}
⋂

Y (t) = ∅,

x(0) = x0,

∆x(t) = Ik(x(t)), {x(t)}
⋂

Y (t) = {yk(t)}

was first discussed by us in infinite dimensional spaces (see [9]).

To the best of our knowledge, the evolution equation with impulses at variable

times and time-varying generating operators is not researched. In this paper, we

consider the following semilinear differential equations with impulses at variable times

and time-varying generating operators

(1.3)











ẋ(t) + A(t)x(t) = f(t, x(t)), x(t) 6= y1,

x(0) = x0,

x (t+) = y2, x(t) = y1,

where {A(t)|t ≥ 0} is a family of closed linear operators in Banach space X, y1,

y2 ∈ X. Expressly, when A(t) ≡ A, Peng and Xiang [10] established the existence

and uniqueness of the mild solution.

Constructing suitable function sets, we introduce the reasonable α-mild solutions

for the problem (1.3). The first main result is presented for the existence of α-mild

solution on the problem (1.3). Particularly, when right hand function f is independent

of time t or is periodic on time t very interesting oscillatory property of α-mild solution

is presented. The second main result is proved on the continuous dependence and

Gâteaux differentiable of α-mild solution relative to initial value. In a word, the main

purpose of this study is to establish qualitative theory on a class of evolution equation

with impulse at variable times in fractional power space.

2. EXISTENCE AND PERIODICITY OF SOLUTION

Let X, Y denote a pair of Banach spaces. If X is continuously embedded in Y ,

we write X →֒ Y , if X is compactly embedded in Y , we write X →֒→֒ Y . £(X) is

the class of (not necessary bounded) linear operators in X. £b(X) is a Banch space

of bounded linear operators in X. For A ∈ £(X), let ρ(A) denote the resolvent set

and R(λ, A) the resolvent corresponding to λ ∈ ρ(A).
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Assumption [A]:

(1) Let {A(t)|t ≥ 0} be a family of closed linear operators in X, the domain

D(A(t)) = D of A(t), t ≥ 0 is dense in X and independent of t.

(2) For t ≥ 0, the resolvent R(λ, A(t)) of A(t) exists for all λ with Reλ ≤ 0 and

there exists a constant M > 0 such that

‖R(λ, A(t))‖£(X) ≤
M

|λ| + 1
, for t ≥ 0.

(3) There exist constants L > 0 and 0 < α ≤ 1 such that

∥

∥(A(t) − A(s))A(τ)−1
∥

∥

£(X)
≤ L|t − s|α, for s, t, τ ≥ 0.

(4) The operators A(t)A−1(s) are uniformly bounded for 0 ≤ s, t < ∞ and there

exists a closed operator A(∞) with domain D such that

lim
t→∞

∥

∥(A(t) − A(∞))A−1(0)
∥

∥

£(X)
= 0.

Let X1 = {D, ‖ · ‖1}, where ‖x‖1 = ‖Ax‖. X1 is a Banach space and X1 →֒ X.

More generally, in a usual way we introduce the fractional power operator Aα(t)

(α ∈ (0, 1)), having dense domain D (Aα(t)), which we also assume to be independent

of t and denote D(A) = D(A(t)), D (Aα) = D (Aα(t)). Let ‖x‖α = ‖Aαx‖ for

x ∈ D (Aα(t)) and denote the Banach space {D (Aα) , ‖ · ‖α} as Xα. Then it is clear

that Xβ →֒ Xα for 0 ≤ α ≤ β ≤ 1.

For the initial value problem

(2.1)

{

ẋ(t) + A(t)x(t) = 0, t ∈ (0, T ],

x(0) = x0,

it is well-known that (2.1) has a unique classical solution x provided that the assump-

tion [A] is satisfied. Further, there exists a unique evolution operator U(t, s) ∈ £b(X),

0 ≤ s ≤ t, such that every solution of the equation (2.1) can be represented in the

form

x(t) = U(t, 0)x0.

For y1, y2 ∈ Xα be fixed, y1 6= y2, define PCy1,y2
([0, T ), Xα) = {x|x is a mapping

from [0, T ) to Xα such that x is continuous at t for x(t) 6= y1, left continuous at t and

exists right limit x(t+) = y2 for x(t) = y1}. For x ∈ PCy1,y2
([0, T ), Xα), if x(t) = y1,

then the time t is called an irregular point of x, t is said to be a regular point of x

otherwise.

We introduce a reasonable α-mild solution in PCy1,y2
([0, T ), Xα) and present the

existence result.
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Definition 2.1. A function x ∈ PCy1,y2
([0, T ), Xα) is said to be a α-mild solution of

the evolution equation (1.3), if x satisfies the following integral equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)f(s, x(s))ds +
∑

x(ti)=y1,0≤ti<t

U(t, ti)(y2 − y1),

where ti is the irregular point of x.

Assumption [F]:

(1) f : [0, +∞) × Xα −→ X is measurable in t on [0, +∞) and locally Lipschitz

continuous in x on Xα, i.e, for every ρ > 0, there exists a constant L(ρ) such that

‖f(t, x) − f(t, y)‖ ≤ L(ρ)‖x − y‖α for x, y ∈ Bρ = {z ∈ Xα|‖z‖α ≤ ρ}.

(2) There exists a constant k > 0, such that

‖f(t, x)‖ ≤ k (1 + ‖x‖α) for every x ∈ Xα and t ≥ 0.

For convenience, we cite the following important existence theorem (see Theorem

3.A of [12]).

Proposition 2.2. Assume that x0 ∈ Xβ (0 < α < β < 1). Under assumptions [A],

[F], the Cauchy problem
{

ẋ(t) + A(t)x(t) = f(t, x(t)), t > 0,

x(0) = x0,

has a unique α-mild solution x ∈ C ([0, +∞), Xα) which satisfies the following integral

equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)f(s, x(s))ds.

Now we turn to discuss the existence of α-mild solution for (1.3).

Theorem 2.3. Suppose that x0, y2 ∈ Xβ, y1 ∈ Xα(α < β) and y1 6= y2. Under the

assumptions [A], [F], the evolution equation (1.3) has a unique α-mild solution x ∈

PCy1,y2
([0, +∞), Xα). Further, the α-mild solution must satisfy one of the following

three case:

Case (I): x ∈ C ([0,∞), Xα),

Case (II): x ∈ PCy1,y2
([0, +∞), Xα) has a unique irregular point,

Case (III): x ∈ PCy1,y2
([0, +∞), Xα) and there exist t1 = inf{t ∈ [0, +∞)|x(t) =

y1} and t2 = inf{t ∈ (t1, +∞)|x(t) = y1} such that x(ti) = y1 (i = 1, 2). Further

there exists a t̃ ≥ 0 such that x is a periodic function on [t̃, +∞), provided that

there exists a T0 > 0 such that A (t + T0) = A(t) for t ≥ 0, t2−t1 = hT0 for some

positive rational number h and one of the following two conditions is satisfied:

(a) f is independent of time t, i.e. f(t, x) = g(x) for all t ≥ 0,
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(b) f (t + T1, x) = f(t, x) for all x ∈ X and t2 − t1 = h1T1 for some positive

rational number h1.

Proof. It can be seen from the Proposition 2.2 that if there exists a positive number

δ > 0, such that for any s ≥ 0, the following evolution equation

(2.2)

{

ẋ(t) + A(t)x(t) = f(t, x(t)), t > s,

x(s) = y2,

has a unique α-mild solution x ∈ C ([s, s + δ], Xα) and y(t) 6= y1, for t ∈ [s, s+δ], then

the evolution equation (1.3) has a unique α-mild solution x ∈ PCy1,y2
([0, +∞), Xα).

Since y1 6= y2, we have ‖y1 − y2‖α > 0. Using the strong continuity of evolution

system {U(t, s)|t ≥ s ≥ 0}, there exists a constant δ1 > 0 such that

‖U(t, s)y2 − y2‖α ≤
‖y1 − y2‖α

4
for s ≤ t ≤ s + δ1.

By Proposition 2.2, the Cauchy problem (2.2) has a unique α-mild solution y ∈

C ([s, s + 1], Xα) for every s ≥ 0 and y satisfies the following integral equation

y(t) = U(t, s)y2 +

∫ t

s

U(t, τ)f(τ, y(τ))dτ, t ∈ [s, s + 1].

Further, we have

‖y(t)‖α ≤ ‖U(t, s)y2‖α +

∫ t

s

‖U(t, τ)f(τ, y(τ))‖αdτ

≤ C(β, α)‖y2‖β + kC(α, γ)
1

1 − γ

+kC(α, γ)

∫ t

s

(t − τ)−γ‖y(τ)‖αdτ.

By Gronwall inequality with singularity (see Lemma 2.1 of [12]), there exists M > 0

such that

‖y(t)‖α ≤ M

(

C(β, α)‖y2‖β + kC(α, γ)
1

1 − γ

)

.

Furthermore, there is δ2 > 0 such that
∫ t

s

‖U(t, τ)f(τ, y(τ))‖αdτ ≤
‖y1 − y2‖α

4
for s ≤ t ≤ s + δ2.

Set δ = min{δ1, δ2, 1}, for 0 ≤ t − s < δ, we have

‖y(t) − y1‖α ≥ ‖y2 − y1‖α

−

[

‖U(t, s)y2 − y2‖α +

∫ t

s

‖U(t, τ)f(τ, y(τ))‖αdτ

]

≥
‖y2 − y1‖α

2
,
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i.e, y(t) 6= y1, for t ∈ [s, s + δ]. Thus, the impulsive evolution equation (1.3) has a

unique α-mild solution x ∈ PCy1,y2
([0, +∞), Xα) given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, τ)f(τ, x(τ))dτ +
∑

x(ti)=y1,0≤ti<t

U (t, ti) (y2 − y1) .

We have only three possibilities:

(I) x has not irregular point,

(II) x has a unique irregular point,

(III) x has two irregular points at least.

In case (I) is satisfied, then the α-mild solution x satisfies following integral

equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, τ)f(τ, x(τ))dτ,(2.3)

and x(t) 6= y1 for all t ≥ 0. Hence x ∈ C([0,∞), Xα).

In case (II) is satisfied, then x ∈ PCy1,y2
([0, +∞), Xα) satisfies the following

integral equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, τ)f(τ, x(τ))dτ + U (t, t1) (y2 − y1) ,

and for all t ∈ [0, +∞) and t 6= t1, we have x(t) 6= y1.

For the case (III), without loss of generality, we assume h = h1 = 1 and denote

by T = t2 − t1. Now, we show that x(t + T ) = x(t) for all t ≥ t1.

The condition (a) implies that for t ∈ (t1, t2], the α-mild solution satisfies

x(t) = U (t, t1) y2 +

∫ t

t1

U(t, s)g(x(s))ds.

For t + T ∈ (t2, t2 + (t2 − t1)], we have

x(t + T ) = U (t + T, t1 + T ) y2 +

∫ T+t

T+t1

U(t + T, s)g(x(s))ds

= U (t, t1) y2 +

∫ t

t1

U(t, s)g(x(s + T ))ds.

It is easy to see that by assumption [F](2) there exists ρ > 0 such that ‖x(t)‖α,

‖x(T + t)‖α ≤ ρ for every t ∈ [t1, t2]. Furthermore, we obtain

‖x(t + T ) − x(t)‖α ≤ L(ρ)C(α, γ)

∫ t

t1

(t − s)−γ‖x(s + T ) − x(s)‖αds.

Using Gronwall inequality with singularity, one can verify that

x(t + T ) = x(t) for t ∈ [t1, t2].

Consequently, we have

x(t) = x(T + t) for t ≥ t1.
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Hence x ∈ PCy1,y2
([0, +∞), Xα) is a periodic function on the interval [t1, +∞), and

x satisfies the following integral equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, τ)g(x(τ))dτ +
∑

0≤t1+kT<t,

k=0,1,2,···

U (t, (t1 + kT )) (y2 − y1) .

The condition (b) implies that for t ∈ (t1, t2], then t + T ∈ (t2, t2 + T ] and

x(t + T ) = U (t + T, t2) y2 +

∫ t+T

t2

U(t + T, τ)f(τ, x(τ))dτ

= U (t, t1) y2 +

∫ t

t1

U(t, τ)f(τ + T, x(T + τ))dτ

= U (t, t1) y2 +

∫ t

t1

U(t, τ)f(τ, x(T + τ))dτ.

Furthermore,

x(t + T ) − x(t) =

∫ t

t1

U(t, τ) [f(τ, x(τ + T )) − f(τ, x(τ))] ds.

Similarly as before, x is a periodic function on the interval [t1, +∞), and satisfies the

following integral equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, τ)f(τ, x(τ))dτ +
∑

0≤t1+kT<t,

k=0,1,2,···

U (t − (t1 + kT )) (y2 − y1) .

The proof is completed.

3. CONDITION DEPENDENCE OF SOLUTION

Throughout this section, we shall consider the continuity of α-mild solution x of

(1.3) with respect to the initial value x0 on the interval J = [0, T ]. For this purpose,

we need to consider the following auxiliary Cauchy problem

(3.1)

{

ẋ(t) + A(t)x(t) = f(t, x(t)), t > 0,

x(0) = x0,

whose α-mild solution we denote by x (t; 0, x0) given by

x (t; 0, x0) = U (t, 0) x0 +

∫ t

0

U(t, τ)f (τ, x (τ ; 0, x0)) dτ.(3.2)

Since we can never expect to have the continuity of x(·; 0, x0) with respect to (0, x0)

at t = t∗ where x (t∗; 0, x0) = y1, we introduce approximate α-mild solution and have

to modify the classical definition of continuous dependence.
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Definition 3.1. The function xε (·; s, η) is said to be an approximate α-mild solution

of the following impulsive equation

(3.3)











ẋ(t) + A(t)x(t) = f(t, x(t)), x(t) 6= y1,

x(s) = η,

x (t+) = y2, x(t) = y1,

if xε (·; s, η) satisfies the following impulsive integral equation

xε (t; s, η) = U(t, s)η +

∫ t

s

U(t, τ)f(τ, xε(τ ; s, η)))dτ

+
∑

s≤ti<t,

x(ti;s,η)∈B(y1, ε
2 )

U (t − ti) (y2 − y1)

for some sufficient small ε ≥ 0, where B
(

y1,
ε
2

)

=
{

η ∈ Xα|‖η − y1‖α ≤ ε
2

}

. It is

clear that when ε = 0, the approximate α-mild solution is α-mild solution and α-mild

solution is an approximate α-mild solution. In addition, for any fixed ε > 0, the

impulsive differential equation (1.3) has a unique approximate α-mild solution.

Definition 3.2. The α-mild solution x (·; 0, x0) of (1.3) is said to have continuous

dependence relative to (0, x0) iff (I):

(3.4) lim
θ→0,s→0,η→x0

xθ(t; s, η) = x(t; 0, x0) if x(t; 0, x0) 6= y1,

and (II): given any ε > 0 there is a closed Jε ⊆ J and a δ > 0 such that m (J \ Jε) < ε

and

(3.5) ‖xθ(t; s, η) − x(t; 0, x0)‖α < ε for t ∈ Jε

provided θ + s + ‖η − x0‖β < δ, where m denote the Lebesgue measure.

We can now prove the following result.

Theorem 3.3. Assume that the hypotheses of Theorem 2.3 hold. Then the α-mild

solution x(·) = x (·; 0, x0) of (1.3) have continuous dependence relative to (0, x0) in

the sense of Definition 3.2.

Proof. By Theorem 2.3, the α-mild solution x(t) = x (t; 0, x0) of (1.3) meets the

warning line y = y1 at most a finite number of times on the interval [0, T ]. Here, we

have two possibilities:

(1) x has not irregular point on the interval [0, T ],

(2) x has one irregular point on the interval [0, T ] at last.

In case (1), we can find δ > 0 such that, for all s + ‖η − x0‖β < δ, the following

equation

(3.6)

{

ẋ(t) + A(t)x(t) = f(t, x(t)), t > s ≥ 0,

x(s) = η,
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has a unique α-mild solution x(·; s, η) ∈ C ([s, T ], Xα) given by

x(t; s, η) = U(t, s)η +

∫ t

s

U(t, τ)f(τ, x(τ ; s, η))dτ.

Furthermore, there exists ρ > 0 such that

sup
0≤t≤T

‖x (t; 0, x0)‖α ≤ ρ, sup
0≤s≤t≤T

‖x(t; s, η)‖α ≤ ρ,

and we have

‖x(t; s, η) − x (t; 0, x0)‖α

≤

[

k(1 + ρ)C(α, γ)
s1−γ

1 − γ
+ C(β, α) ‖η − x0‖β + C(β, α, γ) ‖x0‖α sγ

]

+ C(α, γ)L(ρ)

∫ t

s

(t − τ)−γ ‖x(τ ; s, η) − x (τ ; 0, x0)‖α dτ.

By Gronwall inequality with singularity, there exists M > 0 such that

‖x(t; s, η) − x (t; 0, x0)‖α ≤ M
[

s1−γ + sγ + ‖η − x0‖β

]

−→ 0

as s → 0, η → x0.

For the case (2), if x0 = y1, we only study the α-mild solution x (·; 0+, y2).

Consequently, we may assume that x (·; 0, x0) meets the warning line y = y1, p times

in [0, T ] and let tj , j = 1, 2, . . . , p, be the moments where x(·, 0, x0) hits y1, that is,

0 < t1 < t2 < · · · < tp < T . By Theorem 2.3, we can prove that there exists δ > 0

such that the following differential equation with impulses

(3.7)

{

ẋ(t) + A(t)x(t) = f(t, x(t)), x(t) 6= y1,

x (s) = η, x(t) = y1,

has a unique approximate α-mild solution xθ(·; s, η) corresponding to (s, η) which

satisfies θ + s + ‖η − x0‖β < δ. The approximate α-mild solution xθ(·; s, η) has p

irregular points in [0, T ] and let tj(θ, s, η) ≡ t̄j , j = 1, 2, . . . , p, be the moments where

x(·; s, η) hits y1, that is, 0 < t̄1 < t̄2 < · · · < t̄p < T , and

sup
0≤s≤t≤T

‖xθ(t; s, η)‖α ≤ ρ

for some constant ρ > 0. Given any ε > 0, by the case (1), we have

lim
θ→0
s→0

η→x0

t̄1 = t1

and

lim
s→0

η→x0

xθ(t; s, η) = x (t; 0, x0) for all t ∈

[

0, t1 −
ε

4p

]

for some sufficient small θ. Further, we have

‖xθ(t; s, η) − x (t; 0, x0)‖α
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≤ C(β, α, γ) ‖y2‖β |t
s
1 − t1|

γ + C(α, γ)(2 + ρ)
|ts1 − t1|

1−γ

1 − γ

+ C(α, γ)L(ρ + 1)

∫ t

max{t1,ts1}
‖x(τ ; s, η) − x (τ ; 0, x0)‖α dτ

for all t ∈
[

t1 + ε
4p

, t2 −
ε
4p

]

. By Gronwall inequality with singularity, we have

‖xθ(t; s, η) − x (t; 0, x0)‖α −→ 0 for all t ∈

[

t1 +
ε

4p
, t2 −

ε

4p

]

as s → 0, η → x0. Repeating the preceding argument, for some sufficient small θ,

one can obtain

lim
θ→0
s→0

η→x0

t̄i+1 = ti+1, lim
θ→0
s→0

η→x0

xθ(t; s, η) = x(t; 0, x0) for all t ∈

[

ti +
ε

4p
, ti+1 −

ε

4p

]

,

and

lim
θ→0
s→0

η→x0

xθ(t; s, η) = x(t; 0, x0) for all t ∈

[

tp +
ε

4p
, T

]

,

where i = 1, 2, . . . , p − 1.

Let

Jε =

[

0, t1 −
ε

4p

]

⋃

(

p−1
⋃

i=1

[

ti +
ε

4p
, ti+1 −

ε

4p

]

)

⋃

[

tp +
ε

4p
, T

]

,

we have

m (J \ Jε) =
ε

2
< ε

and

lim
s→0

η→x0

xθ(t; s, η) = x(t; 0, x0) for all t ∈ Jε

for some sufficient small θ. The proof is complete.

Remark 3.4. Let x(t, x0), x(t, x0+ε(x̄−x0)) be α-mild solution of (1.1) corresponding

to x0, x0 + ε(x̄ − x0), respectively. x(ti, x0) = y1 implies there exist δ1
i > 0, δ2

i > 0

such that for any ε ∈ [−δ1
i , δ

1
i ], the equation x(t, x0 + ε(x̄ − x0)) = y1 has a unique

solution hi(ε) ∈ [ti − δ2
i , ti + δ2

i ], that is, there is a unique function hi : [−δ1
i , δ

1
i ] −→

[ti − δ2
i , ti + δ2

i ] which is continuous, and moreover hi(0) = ti.

4. GÂTEAUX DIFFERENTIABILITY OF SOLUTION

For the following differential equation with impulses at fixed times

(4.1)











ẋ(t) + A(t)x(t) = f(t, x(t)), t ∈ (0, T ]\Λ,

x(0) = x0,

x
(

t+k
)

= Jk (x (tk)) + x (tk) , tk ∈ Λ,
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where Λ = {tk ∈ [0, T ]|0 = t0 < t1 < t2 < · · · < tn < tn+1 + T}, one can show that

the equation (4.1) has a unique α-mild solution x(·, x0) ∈ PC([0, T ], X) given by

x (t, x0) = U(t, 0)x0 +

∫ t

0

U(t, τ)f (τ, x (τ, x0)) dτ +
∑

0<tk<t

U (t, tk) Jk (x (tk, x0))

provided that the assumption [F] is hold and Jk : Xβi
−→ Xβi

(βi > α) maps bounded

set to bounded set (i = 1, 2, . . . , n) (see Theorem 3.B of [12]). If the functions Jk, f

are continuously Frechet differential at x and fx(·) = fx(·, x(·, x0)) ∈ L1([0, T ],£(X)),

Jkx(x(·, x0)) ∈ £b(Xβi
), α-mild solution x(·, x0) is Gâteaux differentiable, and the

Gâteaux derivative ϕ of x(·, x0) at x0 in the direction x̄−x0 is the α-mild solution of

the following impulsive evolution equation

(4.2)











ϕ̇(t) + A(t)ϕ(t) = fx(t, x(t, x0))ϕ(t), t ∈ (0, T ] Λ,

ϕ(0) = x̄ − x0,

ϕ
(

t+k
)

= Jkx(x(t, x0))ϕ (tk) + ϕ (tk) , tk ∈ Λ.

Let us next consider the impulsive differential equation (1.3). Since in general

we cannot even expect to have continuity of solution of (1.3) at points t for which

satisfy x(t) = y1, we have to introduce a suitable notion for Gâteaux differentiability

of solution with respect to initial values.

Definition 4.1. The α-mild solution x(·) = x (·, x0) of (1.3) is said to be Gâteaux

differentiable relative to x0 if Gâteaux derivative xx0
(t, x0) of x (t, x0) exists at x0 in

the direction x̄ − x0 for all t ∈ [0, T ] such that x (t, x0) 6= y1, otherwise

xx0
(t, x0) = lim

s→t−
xx0

(s, x0) ,(4.3)

where

xx0
(t, x0) = lim

ε→0

x (t, x0 + ε (x̄ − x0)) − x (t, x0)

ε
.(4.4)

Now we are in a position to prove the following result.

Theorem 4.2. Assume that the hypotheses of Theorem 3.2 hold and y1, y2 ∈ X1.

If the function f is continuously Frechet differential at x and fx(·) = fx(·, x) ∈

L1([0, T ],£(X)), {f (t, y1) , f(t, y2)|t ∈ [0, T ]} ⊂ X is a bounded set, then the α-mild

solution x (·, x0) of (1.3) is Gâteaux differentiable at x0 in the direction x̄− x0 ∈ Xβ

and furthermore, its Gâteaux derivative ∂
∂x0

x (·, x0) is the α-mild solution of the fol-

lowing impulsive differential equation

(4.5)



































ϕ̇(t) + A(t)ϕ(t) = fx(t, x(t))ϕ(t), x(t) 6= y1,

ϕ (t+) = h′
t(0)

[

A(t)y1 − A(t)y2 + f (t, y1)

−f (t+, y2)

]

+ ϕ(t), x(t) = y1,

ϕ(0) = x̄ − x
0
,
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provided that when x(t, x0) = y1, there exists function ht ∈ C1 such that x(ht(ε), x0 +

ε(x̄ − x0)) = y1 for all ε with |ε| being sufficiently small and ht(ε) ∈ O(t) which is a

neighborhood of t.

Proof. Consider the following differential equation

(4.6)

{

u̇(t) + A(t)u(t) = f(t, u(t)), t > 0,

u(0) = u0 ∈ Xβ.

By Proposition 2.1, this equation has a unique α-mild solution u (·, u0) given by

u (t, u0) = U(t, 0)u0 +

∫ t

s

U(t, τ)f (τ, u (τ, u0)) dτ.

Since the function f is continuously Frechet differentiable, u (·, u0) is Gâteaux differ-

entiable at u0 in the direction ū − u0 ∈ Xβ and

v (·, u0) = uu0
(t, u0)

is the α-mild solution of the following differential equation

(4.7)

{

v̇(t) + A(t)v(t) = fu(t, u(t))v(t), t > 0,

v(0) = ū − u0.

For any x0 ∈ Xβ, Theorem 2.3 tells us that the α-mild solution x(t) = x (t, x0)

of (1.3) meets the warning line y = y1 at most finite number of times on the interval

[0, T ] and therefore we suppose that x(t) meets y = y1 at tj , j = 1, 2, . . . , p, where

0 < t1 < t2 < · · · < tp < T . Let t ∈ [0, t1) be fixed. Then x(t, x0 + ε(x̄ − x0)) does

not hit the warning line y = y1 for all ε which being sufficiently small and therefore

x (t, x0 + ε (x̄ − x0)) = u (t, x0 + ε (x̄ − x0)) which implies that

xx0
(t, x0) = ux0

(t, x0)

exists. Let

xε(t) =
x (t, x0 + ε (x̄ − x0)) − x (t, x0)

ε
,(4.8)

for t ∈ [0, t1], we have

lim
ε→0

xε(t) =
∂

∂x0

x (t, x0) ≡ ϕ(t)

which satisfies the following integral equation

ϕ(t) = U(t, 0) (x̄ − x0) +

∫ t

0

U(t, τ)fx (τ, x(τ)) ϕ(τ)dτ.

Set h1 = ht1 , if h1(ε) > t1, we have

lim
ε→0

x (h1(ε), x0 + ε (x̄ − x0)) − x (t1, x0)

ε

= lim
ε→0

x (h1(ε), x0 + ε (x̄ − x0)) − x (t1, x0 + ε (x̄ − x0))

ε
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+ lim
ε→0

x (t1, x0 + ε (x̄ − x0)) − x (t1, x0)

ε

= ḣ1(0) [−A (t1) x (t1, x0) + f (t1, x (t1, x0))] + ϕ (t1)

= ḣ1(0) [−A (t1) y1 + f (t1, y1)] + ϕ (t1) .

If h1(ε) < t1, we also have

lim
ε→0

x (h1(ε), x0 + ε (x̄ − x0)) − x (t1, x0)

ε
= ḣ1(0) [−A (t1) y1 + f (t1, y1)] + ϕ (t1) .

Hence, xε (h1(ε)) is differentiable at ε = 0, and

lim
ε→0

x (h1(ε), x0 + ε (x̄ − x0)) − x (t1, x0)

ε
(4.9)

= ḣ1(0) [−A (t1) y1 + f (t1, y1)] + ϕ (t1) .

Furthermore, if h1(ε) > t1, we have

lim
ε→0

xε(h
+
1 (ε)) = lim

ε→0

x
(

h+
1 (ε), x0 + ε (x̄ − x0)

)

− x (h1(ε), x0)

ε

= lim
ε→0

x (h1(ε), x0 + ε (x̄ − x0)) − x (t1, x0)

ε
(4.10)

− lim
ε→0

U (h1(ε), t1) y2 − y2

ε

− lim
ε→0

1

ε

∫ h1(ε)

t1

U (h1(ε), τ) f (τ, x (τ, x0)) dτ

= −ḣ1(0)
[

A (t1) y1 + A (t1) y2 − f (t1, y1) + f
(

t+1 , y2

)]

+ ϕ (t1) .

At the same time, if h1(ε) < t1, we have

lim
ε→0

xε(t
+
1 ) = lim

ε→0

x (t1, x0 + ε (x̄ − x0)) − x
(

t+1 , x0

)

ε

= lim
ε→0

U (t1, h1(ε))
x (t1, x0 + ε (x̄ − x0)) − x (t1, x0)

ε
(4.11)

+ lim
ε→0

U (t1, h1(ε)) y2 − y2

ε

+ lim
ε→0

1

ε

∫ t1

h1(ε)

U (t1, τ) f (τ, x (τ, x0 + ε (x̄ − x0))) dτ

= −ḣ1(0)
[

A (t1) y1 + A (t1) y2 − f (t1, y1) + f
(

t+1 , y2

)]

+ ϕ (t1) .

For t ∈ (t1, t2], we also have

lim
ε→0

xε(t) =
∂

∂x0

x (t, x0) ≡ ϕ(t).



390 Y. PENG, W. WEI, AND X. XIANG

Obviously, ϕ is the α-mild solution of the following Cauchy problem

(4.12)























ϕ̇(t) + A(t)ϕ(t) = fx(t, x (t, x0)) ϕ(t), t1 < t ≤ t2,

ϕ
(

t+1
)

= −ḣ1(0)

[

A (t1) y1 + A (t1) y2

+f
(

t+1 , y2

)

− f (t1, y1)

]

+ ϕ (t1) .

By repeating the same argument for t ∈ (tm, tm+1), m = 1, 2, . . . , p, we can see

that xx0
(t, x0) = ϕ(t) exists for all t 6= tm, m = 1, 2, . . . , p, and is α-mild solution of

the following equation

(4.13)























ϕ̇(t) + A(t)ϕ(t) = fx(t, x (t, x0))ϕ(t), tm < t ≤ tm+1,

ϕ (t+m) = −ḣm(0)

[

A (tm) y1 + A (tm) y2

+f (t+m, y2) − f (tm, y1)

]

+ ϕ (tm) .

Thus, the α-mild solution x (·, x0) of (1.3) is Gâteaux differentiable with respect to

the initial values x0 and its Gâteaux derivative satisfies the impulsive equation (4.5).

The proof is complete.

Similarly, we can also show the following theorem.

Theorem 4.3. Assume that the hypotheses of Theorem 2.3 hold and y1, y2 ∈ X1,

g ∈ Lp([0, T ], X) (p > 1). If the function f is continuously Frechet differentiable at

x and fx(·) = fx(·, x) ∈ L1([0,∞),£(X)), {f (t, y1) , f (t, y1) |t ∈ [0,∞)} ⊂ X is a

bounded set, then the following differential equation with impulses at variable times

(4.14)











ẋ(t) + A(t)x(t) = f(t, x(t)) + g(t), x(t) 6= y1,

x(0) = x0,

x (t+) = y2, x(t) = y1,

has a unique α-mild solution x(·, g) which is Gâteaux differentiable at g in the direc-

tion ḡ − g and furthermore, ∂
∂g

x(·, g) is the mild solution of the following impulsive

differential equation

(4.15)



































ẏ(t) + A(t)y(t) = fx(t, x(t))y(t) + ḡ(t) − g(t), x(t) 6= y1,

y (t+) = −h′
t(0)

[

A(t)y1 + A(t)y2 − f (t, y1)

+f (t+, y2)

]

+ y(t), x(t) = y1,

y(0) = 0,

provided that α < p−1
p

, and when x(t, g) = y1, there exist function ht ∈ C1 such that

x(ht(ε), g+ε(ḡ−g)) = y1 for all ε with |ε| being sufficiently small, ht(ε) ∈ U(t) which

is a neighborhood of t.
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