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1. INTRODUCTION

Stochastic differential inclusions were the subject of several studies (see e.g.:

N. U. Ahmed [2], G. Da Prato, H. Frankowska [4], M. Kisielewicz [9, 10, 11], M. Kisie-

lewicz, M. Michta, M. Motyl [13, 14], J. Motyl [15]). Some of them used in their

research a measure introduced by C. Doléans-Dade in [5]. It was applied in inves-

tigation of of set-valued stochastic integrals and stochastic inclusions driven by a

square-integrable martingale or a Brownian motion, (see e.g. [4, 11, 14]).

One of properties of the Doléans-Dade measure is an isometry property for sto-

chastic integrals. It allows to calculate the distance of integrals by the distance of

integrands. Using this property, we can also estimate the distance, in the case of

set-valued stochastic integrals. This estimate, in turn, applies to study of properties

of the set of solutions of stochastic inclusions.

In the paper we introduce a random measure associated to a semimartingale. It

is related to the Doléans-Dade measure but it is wider. The main advantage of this

measure is “semimartingale measure property” (called SMP-property), which allows

to estimate the distance between set-valued stochastic integrals. The SMP-property is

proved in Lemma 3.1. It allows to study properties of the set of solutions of stochastic

inclusions driven by a semimartingale.

In Section 2 we introduce basic definitions and notations used in the paper.

Section 3 contains the definition of the semimartingale measure and its SMP-property.

In Section 4 we consider some properties of the solution set of a semimartingale

stochastic inclusion.
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2. PRELIMINARIES

Let T ≥ 0 and [0, T ] be an arbitrary closed interval. Let (Ω,F , {Ft}t∈[0,T ], P )

be a completed filtered probability space satisfying the usual hypothesis i.e.: (i) F0

contains all P -null sets of F , (ii) Ft =
⋂

u≥t Fu, all t, 0 ≤ t ≤ T . We consider

a stochastic process x on (Ω,F , P ) as a collection x = (xt)t∈[0,T ] of n-dimensional

random variables xt : Ω → IRn, t ∈ [0, T ]. It is adapted if xt belongs to Ft for each

t ∈ [0, T ]. It is cádlág [cáglád] if it has right continuous with left limits sample paths

[left continuous with right limits sample paths].

Let P({Ft}t∈[0,T ]) denote the smallest σ-algebra on [0, T ] × Ω generated by cáglád

adapted processes. It is generated by a class of all subsets of [0, T ] × Ω of the form

{0}×F0 and (s, t]×F , where F0 ∈ F0 and F ∈ Fs for 0 ≤ s < t ≤ T . If a stochastic

process x is P({Ft}t∈[0,T ])-measurable, it is called predictable.

For a Banach space X by cl(X) and conv(X) we denote spaces of all nonempty

closed and convex, respectively, subsets of X. By dist(a, A) we denote the distance

of a ∈ X to the set A ∈ cl(X). For A, B ∈ cl(X) let h(A, B) = supa∈A dist(a, B) and

H(A, B) = max{h(A, B), h(B, A)} .

A set-valued function G : [0, T ]×Ω → cl(IRn) is (β ⊗F)-measurable if for every

open set O ⊂ IRn, {(t, ω) : G(t, ω) ∩ O 6= ∅} ∈ β ⊗ F .

By a set-valued stochastic process G = (Gt)t∈[0,T ] with values in cl(IRn) we con-

sider a family of F -measurable set-valued mappings Gt : Ω → cl(IRn), each t ∈ [0, T ].

It is adapted to the filtration {Ft}t∈[0,T ] if Gt is Ft-measurable for each t ∈ [0, T ].

A set-valued process G = (Gt)t∈[0,T ] is predictable if it is P({Ft}t∈[0,T ])-measurable

and the family of all such processes is also denoted by P. One has P ⊂ β ⊗F , where

β denotes the Borel σ-algebra on [0, T ].

We denote by | · | an Euclidean norm on IRn. Other norms are denoted with

respect to a space on which they are defined, e.g.: ‖ · ‖L2(Ω) for the norm in L2(Ω).

By L2(Ω), [L∞(Ω)] we denote the space L2(Ω,F , P ; IRn), [L∞(Ω,F , P ; IRn)].

3. SEMIMARTINGALE MEASURE

Let Z = (Zt)t∈[0,T ] denote a one-dimensional semimartingale, Z0 = 0, with de-

composition Z = N + A, where N is a local martingale, A is a cádlág process with

path of finite variation on compacts (FV-process). [Z,Z] is a quadratic variation pro-

cess of Z and |dAt(ω)| denotes a random measure induced by the paths of the process

A (see e.g.: [17]).

Let Hp denote a space of semimartingales with a norm

‖Z‖Hp = inf
Z=N+A

jp(N, A),
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where p = 2 or p = ∞,

jp(N, A) = ‖[N, N ]
1/2
T +

∫ T

0

|dAτ |‖Lp(Ω).

and infimum is taken over all possible decompositions Z = N + A.

Hp is a Banach space (see e.g. [17]).

By H2
n we denote a space of n-dimensional semimartingales Z = (Z1, . . . , Zn),

Z i ∈ H2, i = 1, . . . , n, with a norm

‖Z‖H2
n

= (
∑n

i=1 ‖Z
i‖2

H2)1/2.

Let p = 2. For a semimartingale Z ∈ H2 we define a measure µZ as follows.

Let M be a right continuous and square-integrable martingale. We remind a

construction of a Doléans-Dade measure µM on P. On a rectangle (s, t] × B in

[0, T ] × Ω with B being Fs-measurable, s ≤ t, we define a set function λM

λM((s, t] × B) = E(1IB(Mt − Ms)
2),

where 1IB denotes the characteristic function of B, and extend it to a unique σ-finite

measure µM on P (see e.g.: [3] Section 2.4).

By [17] Cor.II.6.4 this measure can be also defined for a local martingale N ∈ H2.

We denote it by µN .

Now, for an FV-process A we define a measure νA on P as follows.

Let α(ω, dt) denotes a kernel of a random measure defined on [0, T ] by

α(ω, dt) := cA(ω)|dAt(ω)|,

where cA(ω) =
∫ T

0
|dAt(ω)| denotes the total variation of a random measure |dAt(ω)|

induced by the paths of the process A.

Let D be a predictable subset of [0, T ] × Ω. A measure νA is defined by

νA(D) =

∫

Ω

∫ T

0

1ID(ω, t)α(ω, dt)P (dω),

For an H2-semimartingale Z we define a measure µZ = µN + νA.

Let Z ∈ H2 and f : [0, T ] × Ω → IRn. We define a space

L2
µZ

= {f ∈ P :

∫

Ω×[0,T ]

|f |2dµZ < ∞}.

L2
µZ

endowed with a norm

‖f‖L2
µZ

= (
∫

Ω×[0,T ]
|f |2dµZ)

1

2

is a Banach space.

Now we present a property (SMP-property) of the above introduced measure.

SMP-property allows to get similar results for set-valued stochastic integrals driven by
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a semimartingale as for set-valued integrals driven by a square-integrable martingale,

(see e.g.: [16]).

Lemma 3.1. Let Z ∈ H2 and f ∈ L2
µZ

. For s, t ∈ [0, T ], s < t, we have

‖

∫ t

s

fτdZτ‖
2
L2(Ω) ≤ 2

∫

Ω×(s,t]

|f |2dµZ .

Proof. Let Z ∈ H2, f ∈ L2
µZ

and s, t ∈ [0, T ], s < t. Using the inequality (a + b)2 ≤

2(a2 + b2) we get

‖

∫ t

s

fτdZτ‖
2
L2(Ω) = E|

∫ t

s

fτdZτ |
2 = E|

∫ t

s

fτdNτ +

∫ t

s

fτdAτ |
2

≤ 2(E|

∫ t

s

fτdNτ |
2 + E|

∫ t

s

fτdAτ |
2)

= 2(E

∫ t

s

|fτ |
2d[N, N ]τ + E|

∫ t

s

fτdAτ |
2)

≤ 2(E

∫ t

s

|fτ |
2d[N, N ]τ + E|

∫ t

s

|fτ ||dAτ ||
2).

By the Kunita-Watanabe inequality and the definition of µZ-measure we get

‖

∫ t

s

fτdZτ‖
2
L2(Ω) ≤ 2(E

∫ t

s

|fτ |
2d[N, N ]τ + E(

∫ t

s

|dAτ |

∫ t

s

|fτ |
2|dAτ |))

≤ 2E

∫ t

s

|fτ |
2d[N, N ]τ + 2E(cA(ω) ·

∫ t

s

|fτ |
2|dAτ |)

= 2(E

∫ t

s

|fτ |
2d[N, N ]τ + E(

∫ t

s

|fτ |
2α(ω, dt))

= 2(

∫

Ω×(s,t]

|fτ |
2dµN +

∫

Ω×(s,t]

|fτ |
2dνA) = 2(

∫

Ω×(s,t]

|f |2dµZ).

This completes the proof.

Considering a stochastic integral as a stochastic process its SMP-property will

take the following form.

Corollary 3.2. For Z ∈ H2 and f ∈ L2
µZ

we have

‖

∫

fτdZτ‖
2
H2

n
≤ 2‖f‖2

L2
µZ

.

4. STOCHASTIC DIFFERENTIAL INCLUSION

At the beginning of this section we present properties of the set SµZ
(G) and

definitions of set-valued stochastic integrals driven by a semimartingale Z, which are

used in the second part of this section. Thanks to Lemma 3.1 and Corollary 3.2

proofs of these properties are similar to the proofs presented in [16] for the case of

set-valued integrals driven by a square-integrable martingale and therefore they are
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omitted. The second part of this section contains properties of the solution set of the

stochastic inclusion driven by a semimartingale.

Definition 4.1 ([16]). For an H2-semimartingale Z and a predictable set-valued

process G, we define a set SµZ
(G) by

SµZ
(G) := {f ∈ L2

µZ
: f(t, ω) ∈ G(t, ω) µZ-a.e.}.

A predictable set-valued process G is integrable with respect to a semimartingale

measure µZ , if the set SµZ
(G) is nonempty.

G is µ-integrably bounded if there exists a process m ∈ L2
µZ

such that H(G, {0}) ≤

m µZ-a.e..

Lemma 4.2. For an H2-semimartingale Z, Z0 = 0 and a predictable µ-integrably

bounded set-valued process G we get

• the set SµZ
(G) is a nonempty closed and bounded subset of L2

µZ
,

• if G takes on convex values, SµZ
(G) is convex and weakly compact in L2

µZ
.

Definition 4.3 ([16]). Let Z be an H2-semimartingale, Z0 = 0. Let G be a pre-

dictable µ-integrably bounded set-valued process.

A set-valued stochastic integral
∫

GτdZτ of G with respect to Z is defined by
∫

GτdZτ = {
∫

gτdZτ : g ∈ SµZ
(G)}.

For fixed 0 ≤ s < t ≤ T we also define
∫ t

s
GτdZτ = {

∫ t

s
gτdZτ : g ∈ SµZ

(G)}.

Let F : [0, T ] × IRn → cl conv(IRn) be a multifunction (β ⊗F)-measurable.

By L2([0, T ] × Ω; IRn) we denote a space of IRn-valued stochastic processes with

a norm ‖x‖L2([0,T ]×Ω;IRn) = (E
∫ T

0
|xt|

2dt)1/2.

Let S2([0, T ]) denote a space of IRn-valued adapted cádlág processes with a norm

‖x‖S2 = ‖ supt∈[0,T ] |xt|‖L2(Ω).

For any x ∈ S2([0, T ]) and a multifunction F , by F ◦ x−, where xt− = lims↑t xs,

we denote a set-valued process (F (t, xt−(ω)))t∈[0,T ].

Let x ∈ S2([0, T ]), Z ∈ H∞. Let F (t, ·) be continuous for any t ∈ [0, T ]. If a

process F ◦x− is µ-integrably bounded, then the set SµZ
(F ◦x−) is nonempty in L2

µZ
.

It follows from Lemma 4.2.

Definition 4.4. Let Z be an H∞-semimartingale, Z0 = 0, F : [0, T ] × IRn →

cl conv(IRn) and s, t ∈ [0, T ], s < t. We consider the stochastic inclusion

xt − xs ∈ clL2(Ω)(
∫ t

s
F (τ, xτ−)dZτ) (SI)

with x0 = ξ ∈ L2(Ω,F0, P ; IRn).

A process x ∈ S2([0, T ]) is a solution of the stochastic inclusion (SI), if x0 = ξ

and for any s, t ∈ [0, T ], s < t a random variable xt − xs belongs to the set
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clL2(Ω)(
∫ t

s
F (τ, xτ−)dZτ).

A set of all solutions of the stochastic inclusion (SI) is denoted by

T (ξ, Z, F ) = {x ∈ S2([0, T ]) : x is a solution of (SI)}.

We say that F : [0, T ] × IRn → cl conv(IRn) is a Lipschitz multifunction if there

exists a constant D such that for all t ∈ [0, T ] and x, y ∈ IRn

H(F (t, x), F (t, y)) ≤ D|x − y|.

We say that F : [0, T ]× IRn → cl conv(IRn) is a Carathéodory-type multifunction

if for any x ∈ IRn F (·, x) is β-measurable and for any t ∈ [0, T ] F (t, ·) is continuous.

Assumption 4.5. Let F : [0, T ] × IRn → cl conv(IRn) be a multifunction satisfying

• F : [0, T ] × IRn → cl conv(IRn) is (β ⊗ F)-measurable,

• F : [0, T ] × IRn → cl conv(IRn) is a Lipschitz multifunction,

• for any x ∈ S2([0, T ]) a set-valued process F ◦ x− is µ-integrably bounded.

Now we prove non-emptiness and closedness of the set of solutions T (ξ, Z, F ).

Theorem 4.6. Let Z be an H∞-semimartingale, Z0 = 0. Let F : [0, T ] × IRn →

cl conv(IRn) satisfies the Assumption 4.5. Then for any ξ ∈ L2(Ω,F0, P ; IRn) the set

T (ξ, Z, F ) is nonempty.

Proof. In the proof we will use the Covitz-Nadler Theorem, (see e.g.: [12] Th.II.4.4).

Let N + A be a decomposition of the semimartingale Z, i.e. Z = N + A. Let

us divide the interval [0, T ] by 0 = t0 < t1 < . . . < tk−1 < tk = T . Let ci
Z =

(
∫ ti

ti−1

d[N, N ]τ )
1/2 +

∫ ti
ti−1

|dAτ |, for i = 1, . . . , k. We choose the points ti such that

Dc2‖c
i
Z‖L∞(ω) < 1,

where a constant c2 comes from [17] Th.V.2.2.

First, we construct a solution of the stochastic inclusion (SI) on [0, t1]. For any

ξ ∈ L2(Ω,F0, P ; IRn) and x ∈ S2([0, t1]) we define a map Γ by

Γ(x) = {y ∈ S2([0, t1]) : yt = ξ +

∫ t

0

fτdZτ ,

where f ∈ SµZ
(F ◦ x−), for (t, ω) ∈ [0, t1] × Ω}

Let x be an arbitrary element of S2([0, t1]). Thanks to µ-integrably boundedness of

F ◦ x− and Lemma 4.2 it follows that Γ(x) is nonempty.

Γ(x) is not necessarily a closed set in S2([0, t1]) (in a sense of ‖ · ‖S2-norm).

Let us consider a set clS2(Γ(x)). It is a closure of the set Γ(x) in S2([0, t1]). This

set is a nonempty, bounded and closed subset of S2([0, t1]).

We show that a map x → clS2(Γ(x)) is a set-valued contraction in S2([0, t1]).
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Let u and v be arbitrary elements of S2([0, t1]). We show that there exists a

constant K ∈ [0, 1) such that

HS2(clS2(Γ(u)), clS2(Γ(v))) ≤ K‖u − v‖S2.

Let y be an arbitrary element of clS2(Γ(u)). For any ǫ > 0 there exists a stochastic

process ỹ ∈ Γ(u) such that ‖y − ỹ‖S2 < ǫ. It can be represented as ỹt = ξ +
∫ t

0
fτdZτ

for some f ∈ SµZ
(F ◦u−) on [0, t1]×Ω. It follows from the definition of the set Γ(u).

From the Filippov Theorem (see e.g.: [12] Th.II.3.12) there exists f̄ ∈ SµZ
(F ◦v−)

such that

|f(t, ω) − f̄(t, ω)| ≤ dist(f(t, ω), F (t, v(t−, ω))) + ǫ,(4.1)

for any t ∈ [0, t1] and a.a. ω ∈ Ω. Let ȳt = ξ +
∫ t

0
f̄τdZτ for t ∈ [0, t1]. From the

definition of the set Γ(v) we get ȳ ∈ Γ(v).

Let us estimate the distance between y and ȳ in S2([0, t1]). We get

J = ‖y − ȳ‖S2 ≤ ‖y − ỹ‖S2 + ‖ỹ − ȳ‖S2 ≤ ǫ + ‖

∫

(fτ − f̄τ )dZτ‖S2.

For an arbitrary f ∈ F ◦ u− we have

dist(f(t, ω), F (t, v(t−, ω))) ≤ H(F (t, ut−), F (t, vt−)),

for any t ∈ [0, t1] and a.a. ω ∈ Ω, so by (4.1) we get

J ≤ ǫ + c2‖c
1
Z‖L∞(ω)‖ sup

t∈[0,t1]

(H(F (t, ut−), F (t, vt−)) + ǫ)‖L2(Ω).

From the Lipschitz condition for the multifunction F we get

J ≤ ǫ + c2‖c
1
Z‖L∞(ω)‖ sup

t∈[0,t1]

(D|ut − vt| + ǫ)‖L2(Ω)

≤ ǫ + Dc2‖c
1
Z‖L∞(ω)‖ sup

t∈[0,t1]

|ut − vt|‖L2(Ω) + c2‖c
1
Z‖L∞(ω)ǫ

≤ Dc2‖c
1
Z‖L∞(ω)‖u − v‖S2 + ǫ1,

where ǫ1 = (c2‖c
1
Z‖L∞(ω) +1)ǫ. Thus there exists a constant K = Dc2‖c

1
Z‖L∞(ω) which

does not depend on the choice of the element y from the set clS2(Γ(u)). Therefore,

‖yt − ȳt‖S2 ≤ K‖u − v‖S2 + ǫ1.

Since ǫ > 0 was arbitrarily chosen, the distance from an element y ∈ clS2(Γ(u))

to the set clS2(Γ(v)) can be estimated by

distS2(y, clS2(Γ(v))) ≤ K‖u − v‖S2.

Thus

HS2(clS2(Γ(u)), clS2(Γ(v))) ≤ K‖u − v‖S2.
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The constant K = Dc2‖c
1
Z‖L∞(ω) is a nonnegative number less than 1, and therefore,

the map clS2(Γ(x)) is a set-valued contraction in S2([0, t1]).

From the Covitz-Nadler Theorem we conclude there exists a process y ∈ S2([0, t1])

such that y ∈ clS2(Γ(y)). For any ǫ > 0 we can choose yǫ ∈ Γ(y) satisfying

‖y − yǫ‖S2 < ǫ.

By the definition of the set Γ(y) there exists f ǫ ∈ SµZ
(F ◦ y−) such that yǫ

t =

ξ +
∫ t

0
f ǫ

τdZτ for any t ∈ [0, t1]. Therefore,

‖ sup
t∈[0,t1]

|yt − (ξ +

∫ t

0

f ǫ
τdZτ)|‖L2(Ω) < ǫ.

Thus for any t ∈ [0, t1]

(4.2) ‖yt − (ξ +

∫ t

0

f ǫ
τdZτ)‖L2(Ω) < ǫ.

Now we show that the above process y is a solution of the stochastic inclusion (SI)

on [0, t1]. We do this by checking that yt − ys ∈ clL2(Ω)(
∫ t

s
F (τ, yτ−)dZτ) for any

s, t ∈ [0, t1], s < t.

By (4.2) we get that for every s, t ∈ [0, t1], s < t

‖yt − ys −

∫ t

s

f ǫ
τdZτ‖L2(Ω) < ǫ.

Since ǫ > 0 was arbitrarily chosen, we obtain

yt − ys ∈ clL2(Ω)(

∫ t

s

F (τ, yτ−)dZτ), for any s, t ∈ [0, t1], s < t.

Let i = 2. The proof is similar to the i = 1 case. We should only change the

interval [0, t1] into (t1, t2] and take the starting point of the constructed solution equal

to yt1 . In a similar way we obtain a process y ∈ S2((t1, t2]) and for an arbitrary ǫ > 0

a process f ǫ ∈ SµZ
(F ◦ y−) such that

‖yt − (yt1 +

∫ t

t1

f ǫ
τdZτ )‖L2(Ω) < ǫ,

for any t ∈ (t1, t2]. The above inequality means that for every s, t ∈ (t1, t2], s < t, the

stochastic process y is an element of the closure in a sense of an L2(Ω)-norm of the

set
∫ t

s

F (τ, yτ−)dZτ ,

Therefore, y is a solution of the inclusion (SI) on the interval (t1, t2].

When we repeat the above construction for i = 2, 3, . . . , k − 1, taking starting

points of the constructed solutions equal to yti , we get solutions of the inclusion (SI)

on the intervals (ti, ti+1].
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The solution of the inclusion (SI) for s, t ∈ [0, T ], s < t is a composition of the

solutions constructed on the intervals [0, t1] and (ti, ti+1], i = 1, . . . , k − 1.

Theorem 4.7. Let Z be an H∞-semimartingale, Z0 = 0, decomposed into a sum

Z = N + A, where N is a local martingale and A is a deterministic FV-process.

Let F : [0, T ] × IRn → cl conv(IRn) satisfies the Assumption 4.5. Then for any

ξ ∈ L2(Ω,F0, P ; IRn) the set T (ξ, Z, F ) is closed in S2([0, T ]).

Proof. Let {xk}k≥1 be a sequence of elements of the set of all solutions of the stochastic

inclusion (SI), which converges to the limit x in S2([0, T ]).

We have to show that the limit x belongs to the set T (ξ, Z, F ), i.e.: for any

s, t ∈ [0, T ], s < t

distL2(Ω)(xt − xs,

∫ t

s

F (τ, xτ−)dZτ) = 0.

Observe that

I = distL2(Ω)(xt − xs,

∫ t

s

F (τ, xτ−)dZτ)

≤ ‖xt − xs − (xk
t − xk

s)‖L2(Ω)

+HL2(Ω)(

∫ t

s

F (τ, xk
τ−)dZτ ,

∫ t

s

F (τ, xτ−)dZτ) = I1 + I2,

and

I1 = ‖xt − xs − (xk
t − xk

s )‖L2(Ω) ≤ 2‖x − xk‖S2 → 0,

while k → ∞.

In order to analyze I2, let g be an arbitrary element of SµZ
(F ◦ xk

−). Using

Lemma 3.1 and [8] Th. 2.2, we get

inf
f∈SµZ

(F◦x−)
‖

∫ t

s

gτdZτ −

∫ t

s

fτdZτ‖
2
L2(Ω) ≤ 2 inf

f∈SµZ
(F◦x−)

∫

(s,t]×Ω

|gτ − fτ |
2dµZ

= 2

∫

(s,t]×Ω

inf
y∈F (τ,xτ−)

|gτ − y|2dµZ = 2

∫

(s,t]×Ω

dist2(gτ , F (τ, xτ−))dµZ .

Observe that we get similar result for inff∈SµZ
(F◦xk

−
) ‖

∫ t

s
gτdZτ −

∫ t

s
fτdZτ‖

2
L2(Ω), when

g ∈ SµZ
(F ◦ x−). Moreover,

sup
g∈SµZ

(F◦xk
−

)

inf
f∈SµZ

(F◦x−)
‖

∫ t

s

gτdZτ −

∫ t

s

fτdZτ‖
2
L2(Ω)

≤ 2

∫

(s,t]×Ω

h
2
(F (τ, xk

τ−), F (τ, xτ−))dµZ
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and similar for supf∈SµZ
(F◦x−) infg∈SµZ

(F◦xk
−

) ‖
∫ t

s
gτdZτ −

∫ t

s
fτdZτ‖

2
L2(Ω). Finally, we

get

(I2)
2 ≤ 2

∫

(s,t]×Ω

H2(F (τ, xk
τ−), F (τ, xτ−))dµZ .(4.3)

Using the Lipschitz condition for the set-valued process F , we get

(I2)
2 ≤ 2 · D2

∫

(s,t]×Ω

|xk
τ− − xτ−|

2dµZ

= 2 · D2 ·

(

E

∫ t

s

|xk
τ− − xτ−|

2d[N, N ]τ + E

(

cA ·

∫ t

s

|xk
τ− − xτ−|

2|dAτ |

))

.

Since A is a deterministic FV-process, we get

(I2)
2 ≤ 2 · D2 · max{1, cA} · (E

∫ t

s

|xk
τ− − xτ−|

2d[N, N ]τ

+E

∫ t

s

|xk
τ− − xτ−|

2|dAτ |).

Using Emery’s inequality, we get

(I2)
2 ≤ 2 · D2 · max{1, cA} · ‖|x

k − x|2‖S1 · (‖[N, N ]‖H∞ + ‖|dA|‖H∞)

= 2 · D2 · max{1, cA} · ‖x
k − x‖2

S2 · (‖[N, N ]‖H∞ + ‖|dA|‖H∞),

which tends to 0 while k → ∞, so we have the result.

Theorem 4.7 can be applied only to a stochastic inclusion driven by the semi-

martingale with a deterministic FV-part. From a mathematical point of view this

is a serious restriction. However, real problems are often described by stochastic

inclusions of this type.

Example 4.8 ([16]). Suppose we have a model of a free-arbitrage market defined

on a filtered probability space. The capital of an investor (a writer of a contingent

claim) is defined under a self-financing assumption by a relation

ξt(ω, u) = ξ0(ω, u) +

∫ t

0

θτ (ω, u)dBτ(ω, u) +

∫ t

0

γτ (ω, u)dSτ(ω, u), t ∈ [0, T ],

where (θ, γ) is an investor’s strategy (hedge) process, while B and S are price processes

of a bond (an asset with a predictable price) and stock, respectively (see e.g.: [6] for

details), u denotes a control parameter taken from a given set U of attainable controls.

If the model is based on daily returns of a stock, statistical tests reject hypotheses

about normality distribution made in the model of the Black and Scholes type, (one

of the most commonly used Gaussian model in financial mathematics). It follows that

real prices are usually better characterized by the so-called heavy tailed distributions,

skewness property, effects of clusters and so on. Moreover, an empirical study of the

German stock price data shows that paths should be modeled by a discontinuous

process instead of a continuous one.
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Generalizations of the Gaussian model were proposed in many different manners.

It was allowed in [1], that the price process has jumps and the resulting equation has

the form (in a one dimensional case)

ξt(ω, u) = µtξt−(ω, u)dt + σtξt−(ω, u)dWt(ω, u) + βξt−(ω, u)dNt(ω, u),

where N is a point process counting the number of jumps of size β which the relative

price ξt(ω, u)/ξt−(ω, u) had before time t and W is a standard Wiener process.

Since (Nt)t≥0 can be treated as a Poisson process with some intensity λ (see e.g.:

[17]), then the above problem can be again rewritten equivalently as

ξt = ξ0 +

∫ t

0

fτdZτ ; t ∈ [0, T ],

or

ξt ∈ ξ0 +

∫ t

0

FτdZτ ; t ∈ [0, T ],(4.4)

with fτ (ω, u) = (µτξτ−, στξτ−, β, β), Zτ = (0, Wτ , Nτ −λτ, 0)+(τ, 0, 0, λτ) = Mτ +Aτ

and

F (τ, ω) =
⋃

u∈U

f(τ, ω, u).

The set-valued integral
∫

FτdZτ driven by a semimartingale appears, instead of a

single-valued
∫

fτdZτ , in a natural way, if we consider the control of financial prob-

lems connected with the models as those presented above. We obtain the stochastic

inclusion (4.4), which describes the discussed financial problem. We can analyze it

with respect to the whole set U of attainable controls.

Now we put an another assumption for the multifunction F . It is more general

then Assumption 4.5 but it does not ensure the existence of a solution of the stochastic

inclusion (SI).

Assumption 4.9. Let F : [0, T ] × IRn → cl conv(IRn) be a multifunction satisfying

• F : [0, T ] × IRn → cl conv(IRn) is a Carathéodory-type multifunction,

• for any x ∈ S2([0, T ]) a set-valued process F ◦ x− is µ-integrably bounded.

When we assume that the solution set T (ξ, Z, F ) is non-empty and the multi-

function F satisfies the Assumption 4.9 we get also closedness of the set T (ξ, Z, F )

in S2([0, T ]). It is true for any H2-semimartingale Z which satisfies Assumption 4.10

below.

Assumption 4.10. We assume that Z is an H2-semimartingale such that the mea-

sure µZ is absolutely continuous with respect to λ⊗ P on P, (λ means the Lebesgue

measure on [0, T ]), i.e. µZ ≪ λ ⊗ P .
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Theorem 4.11. Let Z be an H2-semimartingale, Z0 = 0 and satisfies the Assump-

tion 4.10. Let F : [0, T ] × IRn → cl conv(IRn) satisfies the Assumption 4.9. Then for

any ξ ∈ L2(Ω,F0, P ; IRn) the set T (ξ, Z, F ) is closed in S2([0, T ]).

Proof. The proof is similar to the proof of Theorem 4.7 until the inequality (4.3)

(I2)
2 ≤ 2

∫

(s,t]×Ω

H2(F (τ, xk
τ−), F (τ, xτ−))dµZ

Now, we show that H(F (t, xk
t−), F (t, xt−)) → 0 µZ-a.e. Since ‖xk − x‖S2 → 0 when

k → ∞ then for any t ∈ [0, T ], ‖xk
t − xt‖L2(Ω) → 0 when k → ∞. We also get

‖xk − x‖2
L2([0,T ]×Ω;IRn)

=

∫

Ω

∫ T

0

|xk
τ − xτ |

2dτP (dω) =

∫ T

0

∫

Ω

|xk
τ − xτ |

2P (dω)dτ

=

∫ T

0

‖xk
τ − xτ‖

2
L2(Ω)dτ → 0 dτ ⊗ dP -a.e.

By the Assumption 4.10 we obtain ‖xk − x‖ → 0 µZ-a.e. Since xk and x are cádlág

processes we have the same reasoning as above for the processes xk
− and x−. Moreover,

‖xk
− − x−‖S2 ≤ ‖xk − x‖S2 .

By the Assumption 4.10 F (t, ·) is continuous for any t ∈ [0, T ]. So we get that

‖xk
− − x−‖ → 0 µZ-a.e. implies H(F (t, xn

t−), F (t, xt−)) → 0 µZ-a.e. and we have the

result.
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