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ABSTRACT. In this paper a control problem for a controlled linear stochastic equation in a Hilbert

space and an exponential quadratic cost functional of the state and the control is formulated and

solved. The stochastic equation can model a variety of stochastic partial differential equations with

the control restricted to the boundary or to discrete points in the domain. The solution method does

not require solving a Hamilton-Jacobi-Bellman equation and the method provides an explanation

for an additional term in the Riccati equation as compared to the Riccati equation for a control

problem with the corresponding quadratic cost functional. The optimal cost is also given explicitly.

Some examples of controlled stochastic partial differential equations are given.
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1. INTRODUCTION

An important generalization of the linear-quadratic Gaussian (LQG) control

problem is the linear-exponential-quadratic Gaussian (LEQG) control problem par-

ticularly for its application in risk sensitive control and its relation to differential

games. An LEQG problem is similar to an LQG control problem except that the

cost is an exponential of a quadratic functional of the state and the control. The

LEQG problem for finite dimensional linear systems is solved in [15] by determining

a solution to the Hamilton-Jacobi-Bellman (HJB) equation associated with this sto-

chastic control problem. A different approach to the solution of this finite dimensional

problem is given in [6] where a combination of the methods of completion of squares

and absolute continuity of measures is used for the solution. This latter approach

provides an explanation for the additional term of the Riccati equation for the LEQG

problem as compared with the Riccati equation for the associated LQG problem and

this approach is more elementary and direct than solving the HJB equation for the

LEQG problem.

A natural generalization of this LEGQ control problem for systems in finite di-

mensional spaces is to linear stochastic equations in an infinite dimensional Hilbert
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space that can model various types of controlled linear stochastic partial differential

equations. In this paper such a problem is formulated and solved. A semigroup ap-

proach is used where the semigroups are analytic (e.g. [19]). The control is restricted

to discrete points in the domain or to the boundary of the domain to describe a typ-

ical controlled physical system and is the primary reason for restriction to analytic

semigroups. Thus in addition to the infinitesimal generator acting on the state, the

linear transformation acting on the control is also an unbounded operator so that

properties of the solution of the Riccati equation require more refinement than for

distributed control to ensure that the optimal control in the system equation is well

defined.

2. PRELIMINARIES

The controlled linear stochastic system is described by the following stochastic

differential equation

dX(t) = AX(t)dt + BU(t)dt + ΦdW (t)(2.1)

X(0) = X0

where X(t) ∈ H for t ∈ [0, T ], X0 ∈ H , H is a real, separable, infinite dimensional

Hilbert space, and (W (t), t ∈ [0, T ]) is a standard cylindrical Wiener process in H .

The probability space is denoted (Ω,F , P) where P is induced from the standard

cylindrical measure for the Wiener process and F is the P-completion of the Borel

σ-algebra on Ω. Let (F(t), t ∈ [0, T ]) be an increasing P-complete family of sub-σ-

algebras of F such that X(t) is F(t) measurable for each t ∈ [0, T ] and (< l, W (t) >

,F(t), t ∈ [0, T ]) is a real-valued Brownian martingale with local variance |l|2H for each

nonzero l ∈ H . The linear operator A is the infinitesimal generator of an analytic

semigroup on H (e.g. [19]). Thus for some β > 0 the operator −A + βI is strictly

positive so that the fractional powers (−A + βI)γ and (−A∗ + βI)γ and the spaces

Dγ
A = D((−A + βI)γ) and Dγ

A∗ = D((−A∗ + βI)γ) with the graph norm topology for

γ ∈ R can be defined. The linear space D(·) denotes the domain of ·. It is assumed

that B ∈ L(H1, D
ǫ−1
A ) where H1 is a real, separable Hilbert space and ǫ ∈ (0, 1).

The linear operator Φ is assumed to be Hilbert-Schmidt. It is assumed that for each

x ∈ H there is a ux ∈ L2([0, T ], H1) such that

y(·) = S(·)x +

∫ ·

0

S(· − r)Bux(r)dr ∈ L2([0, T ], H)(2.2)

The cost functional J is an exponential of a quadratic functional of X and U that

is given by

J(U) = E exp
[µ
2

∫ T

0

〈QX(s), X(s)〉 + 〈RU(s), U(s)〉ds



STOCHASTIC EQUATIONS 409

+
µ

2
〈MX(T ), X(T )〉

]
(2.3)

where T > 0 is fixed, µ > 0 is fixed, and Q and R are strictly positive, self-adjoint

operators on H and H1 respectively.

The Riccati equation to solve the LQG problem with the linear stochastic system

(2.1) and the quadratic cost that appears in the exponential function (2.3) is the

following formal equation

−
dP

dt
= A∗P + PA − PBR−1B∗P + Q(2.4)

P (T ) = M(2.5)

The equation (2.4) can be modified to a mathematically meaningful inner product

equation as

−
d

dt
〈Px, y〉 = 〈Ax, Py〉 + 〈Px, Ay〉 − 〈R−1B∗Px, B∗y〉

+ 〈Qx, y〉(2.6)

for x, y ∈ D(A). It is known that there is a unique, nonnegative self-adjoint solution

of (2.6) (cf. [5], [12], [13], [17]).

The family of admissible controls, U , is

U = {U : [0, T ]×Ω → H1|U is adapted to (F(t), t ∈ [0, T ]) and

∫ T

0

|U(t)|pdt < ∞ a.s.}

where p > max{2, 1/ǫ} is fixed.

3. MAIN RESULT

In this section an optimal control is explicitly given for the control problem for

the linear system (2.1) and the cost (2.3). The authors are not aware of any previous

results for an explicit optimal control for an exponential quadratic cost with a linear

stochastic system with boundary or point control in a general Hilbert space.

Theorem 3.1. The optimal control problem given by (2.1) and (2.3) has an optimal

control, (U∗(t), t ∈ [0, T ]), in U that is given by

U∗(t) = −R−1B∗P (t)X(t)(3.1)

where (P (t), t ∈ [0, T ]) is assumed to be the unique, symmetric, positive L(H, D1−ǫ
A∗ )-

valued solution of the following Riccati equation

−
d

dt
〈Px, y〉 = 〈Ax, Py〉+ 〈Px, Ay〉 − 〈R−1B∗Px, B∗Py〉

− µ〈Φ∗Px, Φ∗Py〉 + 〈Qx, y〉(3.2)

〈P (T )x, y〉 = 〈Mx, y〉
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for x, y ∈ D(A) and the optimal cost is

J(U∗) = G(0) exp
[µ
2
〈P (0)X0, X0〉

]
(3.3)

and (G(t), t ∈ [0, T ]) satisfies

−
dG

dt
=

(µ

2
tr(PΦΦ∗)

)
G(3.4)

G(T ) = 1

Proof. To determine an optimal control a combination of a completion of squares and

a Radon-Nikodym derivative for Wiener measure is used. Using the Riccati equation

(3.2) and an Itô formula (Lemma 3.3 [9]) it follows that

1

2
〈P (T )X(T ), X(T )〉 −

1

2
〈P (0)X0, X0〉(3.5)

=
1

2

∫ T

0

(〈(P (t)BR−1B∗P (t) − Q)X(t), X(t)〉

+ 2〈B∗P (t)X(t), U(t)〉)dt +

∫ T

0

〈P (t)ΦdW (t), X(t)〉

−
µ

2

∫ T

0

(〈Φ∗P (t)X(t), Φ∗P (t)X(t)〉 +
1

2
tr(P (t)ΦΦ∗))dt

Let L be the quadratic functional given by

L(U) =
µ

2
(

∫ T

0

(〈QX, X〉 + 〈RU, U〉)dt + 〈MX(T ), X(T )〉)(3.6)

so that the cost functional, J , can be expressed as

J(U) = E exp[L(U)](3.7)

where E is expectation for the measure P. Using (3.5) it follows that

L(U) −
µ

2
〈P (0)X0, X0〉(3.8)

=
µ

2
[

∫ T

0

(〈RU, U〉 + 〈R−1B∗PX, B∗PX〉 + 2〈B∗PX, U〉)dt

+2

∫ T

0

〈PX, ΦdW 〉 − µ

∫ T

0

〈Φ∗PX, Φ∗PX〉dt +

∫ T

0

tr(PΦΦ∗)dt]

=
µ

2

∫ T

0

|R− 1

2 [RU + B∗PX]|2dt

+µ

∫ T

0

〈PX, ΦdW 〉 −
µ2

2

∫ T

0

〈Φ∗PX, Φ∗PX〉dt

+
µ

2

∫ T

0

tr(PΦΦ∗)dt

Thus

E exp[L(U)](3.9)
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= Ẽ exp[
µ

2
〈P (0)X0, X0〉 +

µ

2

∫ T

0

(|R− 1

2 [RU + B∗PX]|2dt

+
µ

2

∫ T

0

tr(PΦΦ∗)dt]

where Ẽ is the (local) expectation with respect to P̃ given by

dP̃ = exp[µ

∫ T

0

〈PX, ΦdW 〉 −
µ2

2

∫ T

0

〈PΦΦ∗X, X〉dt]dP(3.10)

For an arbitrary admissible control U , the exponential functional in (3.10) may not

be a Radon-Nikodym derivative on [0, T ], but it is a local martingale which suffices to

determine the optimal control. While the Radon-Nikodym derivative depends on the

solution (X(t), t ∈ [0, T ]), the minimization determines a control (U∗(t), t ∈ [0, T ])

that is the absolute minimum. The equation (3.9) is minimized by choosing the

(optimal) control

U∗(t) = −R−1B∗P (t)X(t)(3.11)

For the optimal control the exponential in (3.10) is a Radon-Nikodym derivative from

the absolute continuity results for Gaussian measures. The other terms in (3.9) give

the optimal cost (3.3).

The difference between the Riccati equation (2.6) for the LQG problem and

the Riccati equation (3.2) for the LEQG problem is the term −µ〈Φ∗Px, Φ∗Py〉 that

arises from the quadratic term in the exponential function for the Radon-Nikodym

derivative that transforms the Wiener measure for (ΦW (t), t ∈ [0, T ]) by adding a

drift term that appears in a stochastic integral. For the completion of squares for the

LQG problem the stochastic integral term has expectation zero, so it disappears with

the operation of expectation. For the completion of squares for the LEQG problem

there is an exponential of the stochastic integral term so it does not have expectation

zero. The Radon-Nikodym derivative (exponential martingale) is the natural way to

eliminate this exponential of a stochastic integral.

4. SOME EXAMPLES

Some examples are given that indicate the range of applicability of the optimal

control result. Initially some other work is noted that is related to the equations

in the examples. In [1] a general stochastic initial and boundary value problem for

second order evolution equations is formulated and solved. Existence, uniqueness and

regularity results are verified. In Chapter 3 of [2] abstract boundary value problems

in a Banach space are formulated and solved which allow for noise and inputs to

be distributed or on the boundary. This abstract setting can include the equations

in the following examples. However specific regularity conditions must be verified
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for an application to the optimal control problem in the theorem here. Typically

this verification requires some special features of a particular equation. The specific

regularity conditions to satisfy the conditions of the theorem here are discussed in

the examples.

Example 1. This is a family of examples from elliptic differential operators that

is discussed in more detail in [9]. Let G be a bounded, open domain in R
n with

C∞-boundary ∂G with G locally on one side of ∂G and let L(x, D) be an elliptic

differential operator of the form

L(x, D)f = Σn
i,j=1Diaij(x)Djf + Σn

i=1[bi(x)Dif + Di(di(x)f)] + c(x)f

where the coefficients aij, bi, di, c are elements of C∞(G)

Σaij(x)ξiξj ≥ ν̂|ξ|2(4.1)

where ξ = (ξ1, . . . , ξn) ∈ R
n, x ∈ G, ν̂ > 0 is a constant, and {aij} is symmetric.

Consider a stochastic parabolic control problem formally described by the equations

∂y

∂t
= L(x, D)y(t) + η(t, x)(4.2)

for (t, x) ∈ R+ × G and

∂y

∂ν
+ h(x)y(t, x) = u(t, x)(4.3)

for (t, x) ∈ R+ × ∂G and y(0, x) = y0(x) where ∂
∂ν

= Σn
i,j=1aijνjDi is the out-

ward normal derivative, ν = (ν1, . . . , νn) is the unit outward normal to ∂G, the

process (η(t, x), (t, x) ∈ R+ × G) formally denotes a space dependent white noise,

u ∈ L2([0, T ], L2(∂G)), h ∈ C∞(∂G), and h ≥ 0.

To give a mathematical description to (4.2) and (4.3), a semigroup approach (e.g.

[19]) is used. Let H = L2(G), H1 = L2(∂G) and define the infinitesimal generator as

Af = L(x, D)f so that A : D(A) → H and D(A) = {f ∈ H2(G) : ∂f
∂ν

= 0 on ∂G}.

It is well known that A generates an analytic semigroup (e.g. [19]) and the linear

operator (A − βI) is strictly negative for some β ≥ 0.

To define the control operator in the stochastic equation, consider the elliptic

problem

(L(x, D) − β)z = 0 on G(4.4)

∂z

∂ν
+ hz = −g on ∂G(4.5)

For g ∈ L2(∂G), there is a unique solution z ∈ H
3

2 (G) [18]. Define B̂ ∈ L(H1, H
3

2 (G))

by the equation, B̂g = −z. For ǫ < 3
4
, B̂ ∈ L(H1, D

ǫ
A) because D

3

4
−γ

A = H
3

2
−2γ(G) for

a sufficiently small γ > 0 [14]. Let yβ(t, x) = e−βty(t, x) and η(t, x)dt = ΦdW (t) for
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some Φ ∈ L(H) and a standard cylindrical Wiener process (W (t), t ∈ [0, T ]) in H .

From (4.4), (4.5) it follows that

dyβ = (L(x, D) − β)yβdt + e−βtΦdW (t)(4.6)

∂yβ

∂ν
+ hyβ = e−βtu = uβ(t) on ∂G(4.7)

yβ(0) = y(0)(4.8)

Formally performing the differentiation ( ∂
∂t

)B̂uβ(t), it follows that

dωβ(t) = ((L(x, D) − β)yβ(t) − B̂vβ(t))dt + e−βtΦdW (t)(4.9)

∂ωβ

∂ν
+ hωβ = 0 on R+ × ∂G(4.10)

where vβ is the formal time derivative of uβ and ωβ(t) = yβ(t) − B̂uβ(t). For (4.6)

the mild solution is

ωβ(t) = Sβ(t)(y(0) + B̂u(0)) +

∫ t

0

Sβ(t − r)ΦeβrdW (r)(4.11)

−

∫ t

0

Sβ(t − r)B̂vβ(r)dr

where Sβ(t) = et(A−βI). Formally integrating by parts in the Lebesgue integral in

(4.11) and canceling the common term e−βt the equality that results is

y(t) = S(t)y(0) +

∫ t

0

S(t − r)Bu(r)dr +

∫ t

0

S(t − r)ΦdW (r)(4.12)

which is a mild solution to a stochastic equation of the form (2.1) where B = Ψ∗ and

Ψ∗ ∈ L(D1−ǫ
A∗ , H1) extends the linear operator B̂∗(A∗ − βI).

Example 2. For this family of examples the stochastic equation (2.1) is modified as

follows.

dX(t) = (A0 + A1 + A0BC)X(t)dt + A0BDU(t)dt + ΦdW (t)(4.13)

X(0) = x(4.14)

where A0 is the infinitesimal generator of analytic semigroup (S0(t), t ∈ [0, T ]), A0 =

A∗
0, B ∈ L(H1, D

ǫ
A) for some ǫ ∈ (0, 1), A∗

1 ∈ L(Dη
A, H) for some η ∈ [0, 1), C ∈

L(H, H1) and D ∈ L(H2, H1) where H1 and H2 are separable Hilbert spaces.

Let A(x, D) be a 2m-order differential operator of the form

A(x, D)y = Σ|p|,|q|≤m(−1)|p|Dp(apq(x)Dqy)(4.15)

where x ∈ O and O is a bounded domain in R
n whose boundary ∂O is infinitely

smooth with x ∈ O on one side of the boundary. The coefficients apq(·) are in C∞(Ō)

for all values of the multi-indices p, q with the lengths |p| ≤ m, |q| ≤ m. Let

Ā(x, D) = Σ|p|=m,|q|=m(−1)mDp(apq(x)Dqy)(4.16)
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for x ∈ O. Assume that Ā(x, D) is uniformly elliptic, that is,

|Σ|p|=|q|=m(−1)mapq(x)λp+q| ≥ ν̄|λ|2m(4.17)

for some ν̄ > 0 where λp+q = λp1+q1

1 · · · λpn+qn
n . Furthermore, let B̃ = (B̃0, . . . , B̃n−1)

be a system of boundary operators.

B̃jφ = Σ|h|≤mj
bjh(x)Dhφ x ∈ ∂O(4.18)

where j = 0, 1, . . . , m − 1, 0 ≤ m0 < m1 < · · · < mm−1 ≤ 2m − 1, bjh, φ ∈

C∞(∂O). Assume that apq = aqp for |p| = |q| = m, so the system (Ā(x, D), Bj , j =

0, 1, . . . , m− 1) is formally self-adjoint, the system (Bj) is normal and covers Ā(x, D)

and there is a Green function for the problem ∂y
∂t

= Ā(x, D)y,By = 0 ([3], [18]).

For example Dirichlet or Neumann boundary conditions may be considered. With

the above assumptions there is a β > 0 such that −(Ā(x, D) − βI) defined on {y ∈

C∞(B̄),By = 0} extends to an operator A0,D(A0) = {y ∈ H2m(O), B̃y = 0} that is

strictly negative and self-adjoint in H = L2(O). Consider the elliptic problem

Ā(x, D)y + βy = 0 on O(4.19)

B̃y = g on ∂O(4.20)

Let H1 = Hσ0(∂O) × · · · × Hσm−1(∂O) where σj > −(mj + 1
2
) for j = 0, . . . , m − 1

and choose 0 < s < minj(
1
2
, σj + mj + 1

2
), ǫ = s

2m
(cf. [18] for the spaces Hσ(∂O)). It

is known that Hs(O) = Dǫ
A [20]. Denote by B : g 7→ −y the Green mapping for the

elliptic problem (4.19). It is known that B ∈ L(H1, H
s(O)) [18].

Consider a stochastic parabolic problem given heuristically by the equation

∂y

∂t
= −A(x, D)y + N(t, x) (t, x) ∈ R+ ×O y(0, x) = y0(x)(4.21)

B̃y = g(t, x) (t, x) ∈ R+ × ∂O(4.22)

where g(t, ·) ∈ H1 and N represents a space-dependent Gaussian white noise. Let

N(t, ·)dt = ΦdW (t) where W (t) is a standard cylindrical Wiener process in H =

L2(O). Formally there is the equation

∂y(t, x)

∂t
= (−Ā(x, D) − β)y(t, x) + (Ā(x, D) − A(x, D) + β)y(t, x)

+ Φ
dW

dt
(t, x) ∈ R+ ×O

y(0, x) = y0(x) x ∈ O

B̃y(t, x) = g(t, x) (t, x) ∈ R+ × ∂O

Now let v = y + Bg so that

∂v

∂t
= A0v + A1y + Φ

dW

dt
+ B

∂g

∂t
on R+ ×O(4.23)

B̃v = 0 on R+ × ∂O(4.24)
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where A1 is the closure of the operator Ā(x, D) − A(x, D) + βI and A∗
1 ∈ L(Dη

A, H)

for η = (2m − 1)/2m. Formally integrating by parts in the mild solution of (4.23)

the following equality is satisfied

y(t) = S0(t)y0 +

∫ t

0

S0(t − r)A1y(r)dr =

∫ t

0

A0S0(t − r)Bg(r)dr(4.25)

+

∫ t

0

S0(t − r)ΦdW (r)

where S0 is the strongly continuous semigroup on H generated by A0. Let H2 be a

Hilbert space and let C ∈ L(H, H1) and D ∈ L(H2, H1). The function g in (4.22) is

assumed to have the form

g(t, x) = Cy(t) + Du(t)(4.26)

where u ∈ U . Thus the equation (4.25) is the mild solution of an equation of the form

(4.13). Additional information about this example is given in [10].

Example 3. A third example is a structurally damped plate with random loading

and point control (cf. [9] for more details). Consider the following model of a plate

in the deflection ω

ωtt(t, x) + ∆2ω(t, x) − α∆ω(t, x) = δ(x − x0)u(t) + η(t, x)(4.27)

for (t, x) ∈ R+ × G

ω(0, ·) = ω0 ωt(0, ·) = ω1(4.28)

ω|R+×∂G = ∆ω|R+×∂G = 0(4.29)

where α > 0 is a constant, η(t, x) formally represents a space-dependent Gaussian

white noise on the open, bounded, smooth domain G ⊂ R
n for n ≤ 3, and δ(x − x0)

is the Dirac distribution at x0 ∈ G. The cost functional is

J(ω0, ω1, u, T ) =

∫ T

0

(|ω(t)|2H2(G) + |ωt(t)|
2
L2(G) + |u(t)|2)dt(4.30)

The deterministic version of this control problem, that is η ≡ 0, is given in [4],

[16]. Define the linear operator A by the equation Ah = ∆2h where D(A) = {h ∈

H4(G) : h|∂G = ∆h|∂G = 0}. The plate deflection equations are rewritten where

H = D(A1/2) × L2(G) = (H2(G) ∩ H1
0 (G)) × L2(G), H1 = R, and

(
0 I

−A −A1/2

)

(
0

δ(x − x0)u

)

(
0 0

0 Φ1

)

These three arrays represent A, Bu, Φ respectively.
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