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ABSTRACT. In this paper we prove some sufficient condition for the existence and global uniform

asymptotic stability of C0-solutions for a class of nonlinear retarded differential evolution equation

of the form
{

u′(t) ∈ Au(t) + f(t, u(t), u(t − τ1), . . . , u(t − τn)), t ∈ R+,

u(s) = g(u)(s), s ∈ [−τ, 0 ],

where X is a real Banach space, A is the generator of a nonlinear compact semigroup, f : R+ ×

[D(A)]n+1 → X is continuous and g : Cb([−τ, +∞); D(A)) → C([−τ, 0 ]; D(A)) is nonexpansive.

AMS (MOS) Subject Classification. 34K05, 34K13, 34K20, 34K30

1. INTRODUCTION

Let X be a real Banach space, A : D(A) ⊆ X  X the generator of a nonlinear

semigroup of nonexpansive mappings {S(t) : D(A) → D(A); t ≥ 0}. If a ∈ R,

Cb([ a, +∞); X) denotes the space of all continuous and bounded functions from

[ a, +∞), endowed with the sup-norm ‖ · ‖Cb([ a,+∞);X). Further, Cb([ a, +∞); D(A))

denotes the closed subset in Cb([ a, +∞); X) consisting of all functions u with u(t) ∈

D(A) for each t ∈ [ a, +∞). As usual, C([ a, b ]; X) is the space of all continuous func-

tions from [ a, b ] to X endowed with the sup-norm ‖ · ‖C([ a,b ];X and C([ a, b ]; D(A))

is the closed subset of C([ a, b ]; X) containing all u ∈ C([ a, b ]; X) with u(t) ∈ D(A)

for each t ∈ [ a, b ].

Let 0 = τ0 < τ1 < τ2 < · · · < τn = τ . Let f : R+×
[
D(A)

]n+1

→ X be continuous

and g : Cb([−τ, +∞); D(A)) → C([−τ, 0 ]; D(A)) nonexpansive.

In the present paper we prove some existence and uniform asymptotic stability

results for C0-solution to the following class of nonlinear retarded differential evolution
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equation with nonlocal initial data

(1.1)

{
u′(t) ∈ Au(t) + f(t, u(t), u(t− τ1), . . . , u(t− τn)), t ∈ R+,

u(s) = g(u)(s), s ∈ [−τ, 0 ].

Usually, in (1.1), A is a partial differential operator, linear or not, which drives the

system in the absence of any external reaction, while the perturbed term f represents

the instantaneous response or feedback, i.e. the manner in which the system reacts at

each time t in order to self-correct its behavior according to both the instantaneous

state, u(t), and the previous states, u(t− τ1), u(t− τ2), . . . , u(t − τn).

As function g : Cb([−τ, +∞); D(A)) → C([−τ, 0 ]; D(A)) we can take:

(i) g(u)(s) = u(2π + s), s ∈ [−τ, 0 ] (2π-periodicity condition);

(ii) g(u)(s) = −u(2π + s), s ∈ [−τ, 0 ] (2π-antiperiodicity condition);

(iii) g(u)(s) =

∫ +∞

τ

k(θ)u(s+ θ) dθ, s ∈ [−τ, 0 ], where the k ∈ L1([ τ, +∞), ; R) and
∫ +∞

τ

|k(θ)| dθ = 1 (mean condition).

We notice that (i) ∼ (iii) correspond to particular instances of the general choice

of g as

(1.2) g(u)(s) =

∫ +∞

τ

N(u(s + θ)) dµ(θ),

where N : X → X is a (possible nonlinear) nonexpansive operator and µ is a σ-

finite and complete measure on [ τ, +∞) with µ([ τ, +∞)) = 1 and limδ↓0 µ([ τ, δ +

τ ]) = 0. We emphasize that g given by (1.2) falls also into our general framework.

Furthermore, the case in which µ : Σ → L(X), Σ being the σ-field of Lebesgue

measurable subsets in [ τ, +∞), is an operator-valued measure with limδ↓0 ‖µ([ τ, δ +

τ ])‖L(X) = 0, is also covered by our main results, Theorems 3.2∼3.3.

Problems like (1.1) have been intensively studied in the last years. We begin by

mentioning the paper of Yongxiang Li [25] which is the starting point of our analysis.

More precisely, Yongxiang Li loc. cit. extends some previous results in Yongxiang

Li [24], by proving some existence, uniqueness, global uniform asymptotic stability as

well as regularity results for a particular problem of type (1.1), by assuming that A

is the infinitesimal generator of an analytic compact semigroup in a Hilbert space H ,

while g : Cb([−τ, +∞); X) → C([−τ, 0 ]; X) has the simple form g(u)(s) = u(ω + s)

for some ω > 0 and each s ∈ [−τ, 0 ], which corresponds to an ω-periodicity condi-

tion. For other existence results concerning periodic problems see S. Aizicovici, N. S.

Papageorgiou, V. Staicu [3], R. Caşcaval, I. I. Vrabie [13], N. Hirano [18], N. Hirano,

N. Shioji [19], A. Paicu [27], I. I. Vrabie [31] – for f single-valued and depending

only on u–, and C. Castaing, D. P. Monteiro-Marques [14], V. Lakshmikantham, N.
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S. Papageorgiou [23], A. Paicu [26], N. S. Papageorgiou [29], Shuchuan Hu, N. S. Pa-

pageorgiou [20], [21] – for f multi-valued and depending only on u. For anti-periodic

problems, which are also covered by our main results, see S. Aizicovici, N. H.Ṗavel, I.

I. Vrabie [4] and the references therein. As concern the case of differential equations

or inclusions subjected to nonlocal initial data without delay, we mention here the

pioneering work of L. Byszewski [12]. Some other results in this topic were obtained

by S. Aizicovici, H. Lee [1], S. Aizicovici, M. McKibben [2], J. Garćıa-Falset [16] and

J. Garćıa-Falset, S. Reich [17] – for f single-valued – and S. Aizicovici, V. Staicu [5]

and A. Paicu, I. I. Vrabie [28] – for F multi-valued. All these studies are motivated by

the fact that such kind of problems represent mathematical models for the evolution

of various phenomena. For a model describing the gas flow through a thin transparent

tube expressed as a problem with nonlocal initial conditions, see K. Deng [15].

The paper is divided into 6 sections. Section 2 contains some background mate-

rial, intended to make the paper self-contained. In Section 3 we formulate the main

results, i.e. Theorems 3.2 ∼ 3.4 which are extensions, to the fully nonlinear case and

in a general Banach space frame, of the main results of Yongxiang Li [25]. Moreover,

in the case of periodic conditions and under Lipschitz conditions on f , we show that

there is no need to assume the compactness of the semigroup. Compare our Theo-

rem 3.4 with Theorem 1.2 in Yongxiang Li loc. cit. It should be mentioned that if, in

addition, we assume that X is Hilbert and A is a subdifferential, we can recover most

of the regularity properties of the C0-solution proved by Yongxiang Li loc. cit. via

the analyticity of the generated semigroup. In Section 4 we include six preliminary

lemmas, while in Section 5 we give the complete proofs of the main results. It should

be noticed that the proofs are based on an interplay between compactness arguments

and metric fixed point techniques used in both Paicu, Vrabie [28] and Yongxiang

Li loc. cit. In the last Section 6 we analyze two illustrating examples referring to the

porous medium equation.

2. PRELIMINARIES

We assume familiarity with the theory of m-dissipative operators and nonlinear

evolution equations in Banach spaces, and we refer to Barbu [8], [9], Lakshmikantham–

Leela [22] and Vrabie [31] for details. However, we recall for easy references some basic

concepts and results we will use in the sequel.

Let X be a real Banach space with norm ‖·‖ and let r > 0. We denote by B(0, r)

the closed ball with center 0 and radius r. Let x, y ∈ X and h ∈ R \ {0}. We denote

by

[x, y]h :=
1

h
(‖x + hy‖ − ‖x‖),
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and we recall that there exist the limit

[x, y]+ = lim
h↓0

[x, y]h.

Remark 2.1. For each x, y ∈ X and α > 0, we have

(i) [αx, y]+ = [x, y]+

(ii) |[x, y]+| ≤ ‖y‖.

For other properties of the mapping (x, y) 7→ [x, y]+, see Lakshmikantham–

Leela [22].

An operator A : D(A) ⊆ X  X is called dissipative if for each xi ∈ D(A) and

yi ∈ Axi, i = 1, 2, we have

[x1 − x2, y2 − y1]+ ≥ 0.

It is called m-dissipative if it is dissipative, and, in addition, R(I −λA) = X, for each

λ > 0.

Let f ∈ L1(a, b ; X) and let us consider the evolution equation

(2.1) u′(t) ∈ Au(t) + f(t).

A function u : [ a, b ] → D(A) is called a C0-solution, or integral solution of (2.1)

on [ a, b ], if u ∈ C([ a, b ]; X) and satisfies:

‖u(t) − x‖ ≤ ‖u(s) − x‖ +

∫ t

s

[u(τ) − x, f(τ) + y]+dτ

for each x ∈ D(A), y ∈ Ax and a ≤ s ≤ t ≤ b.

Remark 2.2. If u : [ a, b ] → D(A) is a C0-solution of (2.1) on [ a, b ] then, in view of

(ii) in Remark 2.1, it follows that

‖u(t) − x‖ ≤ ‖u(s) − x‖ +

∫ t

s

‖f(θ) + y‖dθ

for each x ∈ D(A), y ∈ Ax and a ≤ s ≤ t ≤ b.

Theorem 2.3. Let ω > 0 and let A : D(A) ⊆ X  X be an m-dissipative operator

such that A + ωI is dissipative. Then, for each ξ ∈ D(A) and f ∈ L1(a, b ; X),

there exists a unique C0-solution of (2.1) on [ a, b ] which satisfies u(a) = ξ. If

f, g ∈ L1(a, b ; X) and u, v are two C0-solutions of (2.1) corresponding to f and g

respectively, then :

(2.2) ‖u(t) − v(t)‖ ≤ e−ω(t−s)‖u(s) − v(s)‖ +

∫ t

s

e−ω(t−θ)‖f(θ) − g(θ)‖dθ

for each a ≤ s ≤ t ≤ b.

In particular, if x ∈ D(A) and y ∈ Ax, we have

(2.3) ‖u(t) − x‖ ≤ e−ω(t−s)‖u(s) − x‖ +

∫ t

s

e−ω(t−θ)‖f(θ) + y‖dθ
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for each a ≤ s ≤ t ≤ b.

See Barbu [9] Theorem 4.1, p. 128.

Let ξ ∈ X, τ ∈ [ a, b) and f ∈ L1(a, b ; X). We denote by u(·, τ, ξ, f) the unique

C0-solution v : [ τ, b ] → D(A), of the problem (2.1) which satisfies v(τ) = ξ. We

denote by {S(t) : D(A) → D(A), t ≥ 0} the semigroup generated by A on D(A), i.e.,

S(t)ξ = u(t, 0, ξ, 0) for each ξ ∈ X and t ≥ 0. We say that the semigroup generated

by A on D(A) is compact if, for each t > 0, S(t) is a compact operator.

A subset F in L1(a, b ; X) is called uniformly integrable if, for each ε > 0 there

exists δ(ε) > 0 such that, for each measurable subset E in [ a, b ] whose Lebesgue

measure λ(E) < δ(ε), we have
∫

E

‖f(s)‖ ds ≤ ε,

uniformly for f ∈ F.

Remark 2.4. Let F ⊆ L1(a, b; X). It is easy to see that:

(i) if F is uniformly integrable then it is norm bounded in L1(a, b; X) ;

(ii) if F is bounded in Lp(a, b ; X) for some p > 1, then it is uniformly integrable ;

(iii) if there exists k ∈ L1(a, b; R+) such that

‖f(t)‖ ≤ k(t)

for each f ∈ F and a.e. t ∈ (a, b), then F is uniformly integrable.

The following compactness result will be useful in that follows.

Theorem 2.5. Let A : D(A) ⊆ X  X be m-dissipative and such that A generates

a compact semigroup. Let B ⊆ D(A) be bounded and let F be uniformly integrable in

L1(a, b; X). Then, for each c ∈ (a, b), the C0-solutions set

{u(·, a, ξ, f) ; ξ ∈ B, f ∈ F}

is relatively compact in C([ c, b ]; X). If, in addition, B is relatively compact in X,

then the C0-solutions set is relatively compact even in C([ a, b ]; X).

See Baras [7] or Theorem 2.3.3, p. 47, in Vrabie [32].

3. THE MAIN RESULTS

Let a ∈ (−∞, 0 ]. On the linear space Cb([ a, +∞); X), let us consider the family

of seminorms {‖ · ‖k; k = 1, 2, . . .}, defined by

‖u‖k = sup{‖u(t)‖; t ∈ [ a, k ]}
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for each k = 1, 2, . . . , and each u ∈ Cb([ a, +∞); X). Endowed with this fam-

ily of seminorms, Cb([ a, +∞); X) is a separated locally convex space, denoted by

C̃b([ a, +∞); X).

The assumptions we need in that follows are listed below.

(HA) the operator A : D(A) ⊆ X  X satisfies:

(a1) A is m-dissipative, 0 ∈ D(A), 0 ∈ A0 and there exists ω > 0 such that

A + ωI is dissipative ;

(a2) the semigroup generated by A on D(A) is compact ;

(Hf ) the function f : R+ ×
[
D(A)

]n+1

→ X is continuous and:

(f1) there exist ℓk > 0, k = 0, 1, . . . , n, and m > 0 such that

‖f(t, u)‖ ≤

n∑

k=0

ℓk‖uk‖ + m

for each t ∈ R+ and u ∈
[
D(A)

]n+1

, u = (u0, u1, . . . , un) ;

(f2) there exist ℓk > 0, k = 0, 1, . . . , n, and m > 0 such that

‖f(t, u) − f(t, v)‖ ≤
n∑

k=0

ℓk‖uk − vk‖

for each t ∈ R+ and u, v ∈
[
D(A)

]n+1

, u = (u0, u1, . . . , un), v = (v0, v1, . . . , vn)

and

‖f(t, 0, 0, . . . , 0)‖ ≤ m

for each t ∈ [ 0, +∞) ;

(Hc) the constants ℓk, τk, k = 0, 1, . . . , n, and ω > 0 satisfy the so-called nonresonance

conditions :

(c1) ℓ =
n∑

k=0

ℓk < ω ;

(c2) b =

n∑

k=0

eωτkℓk < ω ;

(Hg) the function g : Cb([−τ, +∞); D(A)) → C([−τ, 0 ]; D(A)) satisfies:

(g1) for each u, v ∈ Cb([−τ, +∞); D(A)), we have

‖g(u) − g(v)‖C([−τ,0 ];X) ≤ ‖u − v‖Cb([ 0,+∞);X) ;

(g2) for each u ∈ Cb([−τ, +∞); D(A)), we have

‖g(u)‖C([−τ,0 ];X) ≤ ‖u‖Cb([ 0,+∞);X) ;

(g3) for each bounded set U in Cb([−τ, +∞); D(A)) which is relatively compact

in C̃b([ δ, +∞); X) for each δ ∈ (0, +∞), the set g(U) is relatively compact

in C([−τ, 0 ]; X) ;
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(g4) there exists a > 0 such that for each u, v ∈ Cb([−τ, +∞); D(A)), we have

‖g(u)− g(v)‖C([−τ,0 ];X) ≤ ‖u − v‖Cb([ a,+∞);X).

Remark 3.1. We emphasize that whenever the function g is defined as in (i) ∼ (ii)

in Introduction and τ < 2π, then g satisfies (g1) ∼ (g4). If g is of the form (iii) it

satisfies (g1) ∼ (g3), and if the support of the measure µ is in (τ, +∞) it satisfies (g4)

as well.

Now we may proceed to the statements of our main results.

Theorem 3.2. If (a1), (a2), (f1), (c1), and (g1) ∼ (g3) are satisfied, then the problem

(1.1) has at least one C0-solution, u ∈ Cb([−τ, +∞); D(A)), satisfying

(3.1) ‖u‖Cb([−τ,+∞);X) ≤
m

ω − ℓ
.

Theorem 3.3. If (a1), (a2), (f2), (c2), and (g1) ∼ (g3) are satisfied, then the problem

(1.1) has at least one C0-solution, u ∈ Cb([−τ, +∞); D(A)), satisfying (3.1). In

addition, each solution of (1.1) is globally asymptotically stable.

In the case of periodic conditions, i.e. g(u)(t) = u(2π + t) for t ∈ [−τ, 0 ],

Theorem 3.3 can be substantially improved in the sense that, in the absence of (a2),

we obtain a unique C0-solution. More precisely, let us consider the periodic problem

(3.2)

{
u′(t) ∈ Au(t) + f(t, u(t), u(t− τ1), . . . , u(t − τn))), t ∈ R,

u(t) = u(t + 2π), t ∈ R.

Theorem 3.4. If (a1), (f2), (c1) are satisfied and f is 2π-periodic with respect to its

first argument, then the problem (3.2) has unique 2π-periodic C0-solution, u : R →

D(A). If, instead of (c1), the stronger condition (c2) is satisfied, then u is globally

asymptotically stable.

Another existence, uniqueness and stability result is stated below.

Theorem 3.5. If (a1), (f2), (c2) and (g4) are satisfied, then the problem (1.1) has

unique C0-solution, u ∈ Cb([−τ, +∞); D(A)), which satisfies (3.1) and is globally

asymptotically stable.

As concerns the regularity of the C0-solutions, we have the following theorem

essentially based on a fundamental regularity result due to Brezis [10]. See Theo-

rem 4.11, p. 156 in Barbu [9].

Theorem 3.6. If, in addition to the hypotheses of Theorem 3.2, we assume that X

is a Hilbert space and A = ∂ϕ is the subdifferential of a l.s.c., proper and convex

function ϕ : H → [ 0, +∞ ], then the C0-solution of the problem (1.1) satisfies:

(i) u(t) ∈ D(A) a.e. for t ∈ [ 0, +∞) ;
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(ii) t 7→ t1/2u′(t) belongs to L2(0, a; H) for each a > 0 ;

(iii) t 7→ ϕ(u(t)) belongs to L1(0, a) ∩ AC([ δ, a ]) for each 0 < δ < a ;

(iv) If, in addition, g(u)(0) ∈ D(ϕ), then t 7→ u′(t) belongs to L2(0, a; H) and t 7→

ϕ(u(t)) belongs to AC([ 0, a ]) for each a > 0.

In the specific case: g(u)(s) = u(2π + s) for each u ∈ Cb([−τ, +∞); D(A)) and

s ∈ [−τ, 0 ], we have g(u)(0) ∈ D(ϕ) and thus (iv) holds.

We briefly explain the idea of proof.

First, we show that, for each starting history ϕ ∈ C([−τ, 0 ]; D(A)), the problem

(3.3)

{
u′(t) ∈ Au(t) + f(t, u(t), u(t− τ1), . . . , u(t − τn)), t ∈ R+

u(s) = ϕ(s), s ∈ [−τ, 0 ]

has at least one C0-solution uϕ ∈ C([ 0, +∞); D(A)). In the hypotheses of Theo-

rem 3.3 this solution is unique.

Second, we consider ε ∈ (0, 1) and we prove that the problem

(3.4)

{
u′(t) ∈ Au(t) + f(t, u(t), u(t− τ1), . . . , u(t − τn)), t ∈ R+

u(s) = (1 − ε)g(u)(s), s ∈ [−τ, 0 ]

has at least one C0-solution uε ∈ C([ 0, +∞); D(A)). In the hypotheses of Theo-

rem 3.3 this solution is unique.

In order to do this – in the case of Theorem 3.2 –, we show that for each fixed

ε ∈ (0, 1), and h ∈ C([ 0, +∞); X) the problem
{

u′(t) ∈ Au(t) + h(t), t ∈ R+

u(s) = (1 − ε)g(u)(s), s ∈ [−τ, 0 ]

has a unique C0-solution, denoted by uh
ε . Then, we prove that F : C([ 0, +∞); X) →

C([ 0, +∞); X), defined by

F (h)(t) = f(t, uh
ε (t), u

h
ε (t − τ1), . . . , u

h
ε (t − τn))

for each h ∈ C([ 0, +∞); X) and t ∈ [ 0, +∞), where uh
ε is the unique C0-solution of

the problem above, maps a suitably defined nonempty, closed and convex subset, K,

in C̃b([ 0, +∞); X) – the space C([ 0, +∞); X) endowed with the uniform convergence

topology on compact intervals – into itself, is continuous and F (K) is relatively com-

pact. Alternatively, under the hypotheses of Theorem 3.3, we show that the operator

Q : v 7→ uv
ε, which associates to v ∈ Cb([−τ, +∞); D(A)) the unique C0-solution uv

ε

of the problem

(3.5)

{
u′(t) ∈ Au(t) + f(t, u(t), u(t− τ1), . . . , u(t − τn)) for t ∈ R+

u(s) = (1 − ε)g(v)(s), s ∈ [−τ, 0 ]



RETARDED EVOLUTION EQUATIONS 425

is a strict contraction on Cb([−τ, +∞); D(A)). So, either F has at least one fixed

point – in the hypotheses of Theorem 3.2 – or Q has a unique fixed point – in the

hypotheses of Theorem 3.3. In both cases, the fixed point defines a C0-solution of

the problem (3.4).

Third, we prove that the set of C0-solutions of the problems (3.5) as ε ∈ (0, 1),

i.e. {uε; ε ∈ (0, 1)} is relatively compact in Cb([−τ, +∞); X).

Fourth, we show that there exists u ∈ Cb([−τ, +∞); D(A)) such that, on a

sequence ε ↓ 0, we have u = limε↓0 uε in Cb([−τ, +∞); X) and u is C0-solution of the

problem (1.1) on [−τ, +∞).

Fifth, we prove that, in the case of Theorem 3.3, under the additional nonreso-

nance condition (c2), each solution of (1.1) is globally asymptotically stable.

4. PRELIMINARY LEMMAS

For the sake of convenience and clarity, we divided the proofs of our main results

into several steps. The next Gronwall-type inequality is Lemma 4.1 in Yongxiang

Li [25].

Lemma 4.1. Let 0 = τ0 < τ1 < · · · < τn = τ , and let x : [−τ, +∞) → R be a

continuous function satisfying

x(t) ≤ x(0) +

∫ t

0

n∑

k=0

bkx(s − τk) ds

for each t ∈ [ 0,∞), where bk > 0, k = 0, 1, . . . , n are given constants. Then

x(t) ≤ ‖x‖C([−τ,0 ];R) ebt

for each t ≥ 0, where b =
∑n

k=0 bk.

Lemma 4.2. If (a1), (a2), (f1) and (c1) are satisfied then, for each starting his-

tory ϕ ∈ C([−τ, 0 ]; D(A)), the problem (3.3) has at least one C0-solution u ∈

C([−τ,∞); D(A)). If, instead of (c1), the stronger nonresonance condition (c2) is

satisfied, then

(4.1) ‖u(t)‖ ≤

[
‖ϕ‖C([−τ,0 ];X) +

m

ω − ℓ

]
e(b−ω)t +

m

ω − ℓ

for each t ∈ [ 0, +∞) and thus u ∈ Cb([−τ, +∞); D(A)).

Proof. Let 0 < λ = τ1 = min{τ1, τ2, . . . , τn}, τ = τn = max{τ1, τ2, . . . , τn}, let ϕ ∈

C([−τ, 0 ]; D(A)) and let g0 : [ 0, λ ] × D(A) → X be given by

g0(t, v) = f(t, v, ϕ(t− τ1), . . . , ϕ(t − τn))
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for each (t, v) ∈ [ 0, λ ] × D(A). Now, let us consider the Cauchy problem
{

v′
1(t) ∈ Av1(t) + g0(t, v1(t)), t ∈ [ 0, λ ]

v1(0) = ϕ(0),

Since f is continuous and has linear growth, it follows that g0 is continuous and has

linear growth. In addition, A generates a compact semigroup and consequently, by

virtue of Theorem 2.1 in Vrabie [30] – see also Theorem 3.8.1, p. 131 in Vrabie [32]

– the Cauchy problem above has at least one C0-solution v1 : [ 0, λ ] → D(A). Next,

fix such a C0-solution v1, let

u1(t) =

{
ϕ(t) if t ∈ [−τ, 0 ]

v1(t) if t ∈ [ 0, λ ]

and let us define the function g1 : [ λ, 2λ ] × D(A) → X by

g1(t, v) = f(t, v, u1(t − τ1), . . . , u1(t − τn))

for t ∈ [ λ, 2λ ]. Let us consider the Cauchy problem
{

v′
2(t) ∈ Av2(t) + g1(t, v2(t)), t ∈ [ λ, 2λ ]

v2(λ) = u1(λ).

Using the very same arguments as before, we conclude that this problem has at least

one C0-solution v2 : [ λ, 2λ ] → D(A). So, we can define the function u2 : [−λ, 2λ ] →

D(A) by

u2(t) =

{
u1(t) if t ∈ [−τ, λ ]

v2(t) if t ∈ [ λ, 2λ ].

Inductively repeating this procedure on [ kλ, (k+1)λ ] for k = 2, 3, . . . , we can define a

function u ∈ C([−τ, +∞); D(A)) which turns out to be a C0-solution of the problem

(3.3).

Finally, we will show that, under the additional condition (c2), we conclude that

u belongs to Cb([−τ, +∞); D(A)).

Taking x = y = 0 in (2.3), and using (f1), we deduce

‖u(t)‖ ≤ e−ωt‖u(0)‖ +

∫ t

0

e−ω(t−s)

[
n∑

k=0

ℓk‖u(s − τk)‖ + m

]
ds.

Set x(t) = eωt
[
‖u(t)‖ − m

ω−ℓ

]
, bk = eωτkℓk, k = 0, 1, . . . , n, and let us observe that

x(t) ≤ x(0) +

∫ t

0

n∑

k=0

bkx(s − τk) ds

for each t ∈ [ 0, +∞). Thus, by Lemma 4.1, we conclude that

x(t) ≤ ‖x‖C([−τ,0 ];R) ebt
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for each t ∈ [ 0, +∞). Then

eωt

[
‖u(t)‖ −

m

ω − ℓ

]
≤ ‖x‖C([−τ,0 ];R) e

bt

which shows that

‖u(t)‖ ≤ ‖x‖C([−τ,0 ];R) e
(b−ω)t +

m

ω − ℓ

for each t ∈ [ 0, +∞).

Since, for t ∈ [−τ, 0 ], x(t) = eωt
[
‖ϕ(t)‖ − m

ω−ℓ

]
, it follows that u satisfies (4.1)

and so u ∈ Cb([−τ, +∞); D(A)). This completes the proof.

Lemma 4.3. If (a1), (f2) and (c1) are satisfied then, for each starting history ϕ ∈

C([−τ, 0 ]; D(A)), the problem (3.3) has a unique C0-solution u : [−τ,∞) → D(A)).

If, instead of (c1), the stronger nonresonance condition (c2) is satisfied, then u satisfies

(4.1) and thus u ∈ Cb([−τ,∞); D(A)).

Proof. The proof repeats the same routine as that in Lemma 4.2, with the special

mention that the compactness argument should be replaced by a standard Lipschitz

technique. Since the uniqueness is obvious, the proof is complete.

Lemma 4.4. If (a1), (f2), (c2) and (g1) are satisfied then, for each ε ∈ (0, 1) the

problem (3.4) has a unique C0-solution uε.

Proof. Let ε ∈ (0, 1). In view of Lemma 4.3, for each v ∈ Cb([−τ, +∞); D(A)), the

Cauchy problem (3.5) has a unique solution uv
ε = Qε(v) ∈ Cb([−τ, +∞); D(A)).

To prove that Qε is a strict contraction, we distinguish between two cases: (1)

t ∈ [−τ, 0 ] and (2) t ∈ (0, +∞). If t ∈ [−τ, 0 ], by (g1), we have

‖Qε(v)(t) − Qε(w)(t)‖ = (1 − ε)‖g(v)(t)− g(w)(t)‖

≤ (1 − ε)‖v − w‖Cb([ 0,+∞);X) ≤ (1 − ε)‖v − w‖Cb([−τ,+∞);X).

Hence

(4.2) ‖Qε(v)(t) − Qε(w)(t)‖ ≤ (1 − ε)‖v − w‖Cb([−τ,+∞);X).

for each t ∈ [−τ, 0 ].

If t ∈ (0, +∞), by (2.2) in Theorem 2.3 and (f2), we get

‖Qε(v)(t) − Qε(w)(t)‖ ≤ (1 − ε)e−tω‖g(v)(0)− g(w)(0)‖

+

∫ t

0

n∑

k=0

eωτkℓke
−ωteω(s−τk)‖Qε(v)(s − τk) − Qε(w)(s − τk)‖ ds.

Denoting x(t) = etω‖Qε(v)(t) − Qε(w)(t)‖ and bk = eωτkℓk, k = 0, 1, . . . , n, and

observing that

x(0) = (1 − ε)‖g(v)(0)− g(w)(0)‖),
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we get

x(t) ≤ x(0) +

∫ t

0

n∑

k=0

bkx(s − τk) ds

for each t ∈ [ 0, +∞). By Lemma 4.1, (f2), (c2) and (g1), we conclude that

‖Qε(v)(t) − Qε(w)(t)‖ ≤ (1 − ε)e(b−ω)t‖v − w‖Cb([ 0,+∞) ;X).

Thus

(4.3) ‖Qε(v)(t) − Qε(w)(t)‖ ≤ (1 − ε)‖v − w‖Cb([−τ,+∞);X)

for each t ∈ [ 0, +∞). From, (4.2) and (4.3), we conclude that

‖Qε(v) − Qε(w)‖Cb([−τ,+∞);X) ≤ (1 − ε)‖v − w‖Cb([−τ,+∞);X),

which shows that Qε is a strict contraction. By virtue of Banach Fixed Point Theorem,

we conclude that Qε has a unique fixed point which is the unique solution of the

problem (3.4).

Lemma 4.5. Let us assume that (a1), (a2) (f1), (c1) and (g1) ∼ (g3) are sat-

isfied. Then, for each ε ∈ (0, 1), the problem (3.4) has at least one C0-solution

uε ∈ Cb([−τ, +∞); D(A)).

In addition, under the assumptions (a1), (f1), (c1) and (g1) each solution uε ∈

Cb([−τ, +∞); D(A)) of the problem (3.4) satisfies

(4.4) ‖uε‖Cb([−τ,+∞);X) ≤
m

ω − ℓ
.

Proof. Let h ∈ Cb([ 0, +∞); X) and let us consider the problem

(4.5)

{
u′(t) ∈ Au(t) + h(t), t ∈ [ 0, +∞)

u(s) = (1 − ε)g(u)(s), s ∈ [−τ, 0 ].

We begin by noticing that this problem has a unique C0-solution uh
ε ∈ Cb([−τ, +∞); D(A)).

Indeed, let h ∈ Cb([ 0, +∞); X) be arbitrary but fixed and let us observe that, for

each v in Cb([−τ, +∞); D(A)), in view of Theorem 2.3, and of (g1), the problem
{

u′(t) ∈ Au(t) + h(t), t ∈ [ 0, +∞)

u(s) = (1 − ε)g(v)(s), s ∈ [−τ, 0 ]

has a unique C0-solution u = S(v) ∈ Cb([−τ, +∞); D(A)). By (g1), we have

‖S(v)(t) − S(w)(t)‖ ≤ (1 − ε)‖v − w‖Cb([ 0,+∞);X)

≤ (1 − ε)‖v − w‖Cb([−τ,+∞);X)

for each v, w ∈ C([−τ, +∞); D(A)) and each t ∈ [−τ, 0 ]. Next, by (2.2) and (g1),

we get

‖S(v)(t) − S(w)(t)‖ ≤ (1 − ε)e−ωt‖g(v) − g(w)‖C([−τ,0 ];X)

≤ (1 − ε)‖v − w‖Cb([ 0,+∞);X) ≤ (1 − ε)‖v − w‖Cb([−τ,+∞);X)
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for each v, w ∈ Cb([−τ, +∞); D(A)) and each t ∈ [ 0, +∞). So, the operator S is a

strict contraction and thus it has a unique fixed point uh
ε . Since uh

ε is a C0-solution of

(4.5) if and only if it is a fixed point of S, it follows that uh
ε is the unique C0-solution

of (4.5).

Let us observe that

(4.6) ‖uh
ε‖Cb([ 0,+∞);X) ≤

1

ω
‖h‖Cb([ 0,+∞);X).

Indeed, we have

(4.7) ‖uh
ε(t)‖ ≤ (1 − ε)e−ωt‖uh

ε‖Cb([ 0,+∞);X) +
1 − e−ωt

ω
‖h‖Cb([ 0,+∞);X),

for each t ∈ [ 0, +∞). We distinguish between three possible cases.

Case 1. If ‖uh
ε‖Cb([ 0,+∞);X) = ‖uh

ε (0)‖, then from (4.7), we deduce

‖uh
ε‖Cb([ 0,+∞);X) ≤ (1 − ε)‖uh

ε‖Cb([ 0,+∞);X)

and so ‖uh
ε‖Cb([ 0,+∞);X) = 0. Clearly, in this case, (4.6) holds.

Case 2. If ‖uh
ε‖Cb([ 0,+∞);X) = ‖uh

ε (t)‖ for some t ∈ (0, +∞), then, again from

(4.7) and the obvious inequality 1 − ε < 1, we get

‖uh
ε‖Cb([ 0,+∞);X) ≤ e−ωt‖uh

ε‖Cb([ 0,+∞);X) +
1 − e−ωt

ω
‖h‖Cb([ 0,+∞);X),

and thus, since 1 − e−ωt > 0, we obtain (4.6).

Case 3. If there is no t ∈ [ 0, +∞) such that ‖uh
ε‖Cb([ 0,+∞);X) = ‖uh

ε(t)‖, then,

there exists at least one sequence (tk)k of positive real numbers, with limk tk = +∞

and limk ‖u
h
ε (tk)‖ = ‖uh

ε‖Cb([ 0,+∞);X). Then, taking t = tk in (4.7) and letting k → ∞,

we complete the proof of (4.6).

From (4.6) and (g2), we deduce

‖uh
ε (t)‖ = (1 − ε)‖g(uh

ε)(t)‖ ≤ (1 − ε)‖uh
ε‖Cb([ 0,+∞);X) ≤

1

ω
‖h‖Cb([ 0,+∞);X)

for each t ∈ [−τ, 0 ] and hence

(4.8) ‖uh
ε‖Cb([−τ,+∞);X) ≤

1

ω
‖h‖Cb([ 0,+∞);X).

Now, let us define the operator F : Cb([ 0, +∞); X) → Cb([ 0, +∞); X) by

F (h)(t) = f(t, uh
ε (t), u

h
ε (t − τ1), . . . , u

h
ε (t − τn))

for each h ∈ Cb([ 0, +∞); X) and each t ∈ [ 0, +∞), uh
ε ∈ Cb([−τ, +∞); D(A)) being

the unique C0-solution of (4.5). At this point let us observe that, by (f1), we deduce

that ‖F (h)(t)‖ ≤
∑n

k=0 ℓk‖u
h
ε(t − τk)‖ + m, while from (4.8), we get

‖F (h)‖Cb([ 0,+∞);X) ≤
ℓ

ω
‖h‖Cb([ 0,+∞);X) + m.
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Now, let

r =
ω

ω − ℓ
m,

and let K = {u ∈ Cb([ 0, +∞); X); ‖u‖Cb([ 0,+∞);X) ≤ r} which is convex and closed

in C̃b([ 0, +∞); X). Let us observe that the operator F maps K into itself. Indeed, if

‖h‖Cb([ 0,+∞);X) ≤ r, from the last inequality we obtain

‖F (h)‖Cb([ 0,+∞);X) ≤
ℓ

ω
r + m ≤ r.

We will show next that F is continuous and compact with respect to the locally

convex space structure. To check the continuity of F let us observe that

‖uh
ε (t) − u

eh
ε (t)‖ ≤ (1 − ε)e−ωt‖uh

ε − u
eh
ε‖Cb([−τ,+∞);X)

+
1 − e−ωt

ω
‖h − h̃‖Cb([ 0,+∞);X),

for each t ∈ [ 0, +∞). Reasoning as in the case of (4.8), we deduce

‖uh
ε − u

eh
ε‖Cb([−τ,+∞);X) ≤

1

ω
‖h − h̃‖Cb([ 0,+∞);X)

which shows that h 7→ uh
ε is Lipschitz continuous. Thus F is continuous from K into

itself with respect to the Banach space structure of Cb([ 0, +∞); X) and consequently,

it is continuous from K with respect to the locally convex space structure.

To prove the compactness, let us observe that, in view of Theorem 2.5, for each

k = 1, 2 . . . , the set {uh
ε ; ‖h‖Cb([ 0,+∞);X) ≤ r} is relatively compact in Cb([ δ, k ]); D(A))

for each δ ∈ (0, k).

Now, (g3) implies that {(1 − ε)g(uh
ε); ‖h‖Cb([ 0,+∞);X ≤ r} is relatively compact

in C([−τ, 0 ]; X).

Thus, {uh
ε (0); ‖h‖Cb([ 0,+∞);X) ≤ r} = {g(uh

ε)(0); ‖h‖C(b[ 0,+∞);X) ≤ r} is rela-

tively compact in D(A). Again by Theorem 2.5, we conclude that {uh
ε ; ‖h‖C([ 0,+∞);X ≤

r} is relatively compact in C([ 0, k ]; D(A)). So, F is compact in C̃b([ 0, +∞); X) and

hence, by Tychonoff Fixed Point Theorem 1.2.8, p. 6 in Vrabie [32], it has at least

one fixed point h. Obviously uh
ε = uε is a C0-solution of the problem (3.4). By (4.8)

and the fact that every C0-solution of the problem (3.4) is a fixed point of F and

thus belongs to K, it follows that it satisfies (4.4) and the proof is complete.

Lemma 4.6. Let us assume that (a1), (a2), (f1), (c2) and (g1) ∼ (g3) are satis-

fied. Then, {uε; ε ∈ (0, 1)}, whose existence is ensured either by Lemma 4.4 – if

the stronger condition (f2) is satisfied – or by Lemma 4.5, is relatively compact in

C̃b([−τ, +∞); X).

Proof. Let k = 1, 2, . . . , be arbitrary. By (4.4), it follows that {uε; ε ∈ (0, 1)} is

uniformly bounded on [ 0, k ]. From (f1), we get that {f(·, uε(·), uε(· − τ1), . . . , uε(· −

τn)); ε ∈ (0, 1)} is uniformly bounded and thus uniformly integrable on [ 0, k ]. By
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virtue of Theorem 2.5, we deduce that {uε; ε ∈ (0, 1)} is relatively compact in

C([ δ, k ]; X) for each δ ∈ (0, k). Now, (g3) implies that {g(uε); ε ∈ (0, 1)} is relatively

compact in C([−τ, 0 ]; X). Thus, {uε(0); ε ∈ (0, 1)} = {g(uε)(0); ε ∈ (0, 1)} is

relatively compact in D(A). Using once again Theorem 2.5, we conclude that {uε; ε ∈

(0, 1)} is relatively compact in C([ 0, k ]; X). As we already have shown, this set

is relatively compact in C([−τ, 0 ]; X) and consequently it is relatively compact in

C([−τ, k ]; X), as claimed. But k was arbitrary, and this completes the proof.

5. PROOFS OF THE MAIN RESULTS

5.1. Proof of Theorem 3.2.

Proof. By Lemma 4.5, we know that for each ε ∈ (0, 1) the problem (3.4) has at least

one solution uε ∈ Cb([−τ, +∞); D(A)). By Lemma 4.6, the set {uε; ε ∈ (0, 1)} is

relatively compact in C̃b([−τ, +∞); D(A)). So, at least on a sequence of ε’s there

exists

lim
ε↓0

uε = u

uniformly on [−τ, k ] for k = 1, 2, . . . . Passing to the limit on that sequence for ε ↓ 0

in both (3.4) and (4.4), we conclude that u is a C0-solution of the problem (1.1)

satisfying (3.1) and this completes the proof.

5.2. Proof of Theorem 3.3.

Proof. In view of Lemma 4.4, we know that for each ε ∈ (0, 1) the problem (3.4) has a

unique C0-solution uε ∈ Cb([ τ, +∞); D(A)). By Lemma 4.6, the set {uε; ε ∈ (0, 1)}

is relatively compact in C̃b([−τ, +∞); D(A)). Therefore, at least on a sequence of ε’s

there exists

lim
ε↓0

uε = u

uniformly on [−τ, k ] for k = 1, 2, . . . ,. Passing to the limit on that sequence for

ε ↓ 0 in both (3.4) and (4.4), we conclude that u is a C0-solution of the problem (1.1)

satisfying (3.1) and this proves the existence part.

Finally, if v : [−τ, +∞) → D(A) is an arbitrary C0-solution of the evolution

equation
{

v′(t) ∈ Av(t) + f(t, v(t), v(t− τ1), . . . , v(t − τn)), t ∈ [ 0, +∞)

v(t) = ϕ(t), t ∈ [−τ, 0 ],

and u : [−τ, +∞) → D(A) is a C0-solution of the problem (1.1), from (f2) and (2.2),

we get

(5.1) eωt‖u(t) − v(t)‖ ≤ ‖u(0) − v(0)‖ +

∫ t

0

eωs
n∑

k=0

ℓk‖u(s − τk) − v(s − τk)‖ ds
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for each t ≥ 0. On the other hand, from the initial condition and (g2), we have
∫ t

0

eωs
n∑

k=0

ℓk‖u(s − τk) − v(s − τk)‖ ds =
n∑

k=0

∫ τk

0

eωsℓk‖u(s − τk) − v(s − τk)‖ ds

+
n∑

k=0

∫ t

τk

eωsℓk‖u(s − τk) − v(s − τk)‖ ds ≤
n∑

k=0

∫ 0

−τ

eωsℓk‖g(u)(s) − ϕ(s)‖ ds

+

n∑

k=0

∫ t−τk

0

eωsℓke
ωτk‖u(s) − v(s)‖ ds

≤ ℓ
1 − e−ωτ

ω

[
‖u‖Cb([−τ,+∞);X) + ‖ϕ‖C([−τ,0 ];X)

]
+

∫ t

0

eωsb‖u(s) − v(s)‖ ds,

where b =
∑n

k=0 ℓke
ωτk . By (3.1) and the last inequalities, we obtain

∫ t

0

eωs
n∑

k=0

ℓk‖u(s − τk) − v(s − τk)‖ ds ≤ ℓ
1 − e−ωτ

ω

[
m

ω − ℓ
+ ‖ϕ‖C([−τ,0 ];X)

]

(5.2) +

∫ t

0

eωsb‖u(s) − v(s)‖ ds.

Finally, from (5.1) and (5.2), we deduce

eωt‖u(t) − v(t)‖ ≤ M +

∫ t

0

beωs‖u(s) − v(s)‖ ds,

for each t ∈ [ 0, +∞), where

M = ‖u(0) − v(0)‖ + ℓ
1 − e−ωτ

ω

[
m

ω − ℓ
+ ‖ϕ‖C([−τ,0 ];X)

]
.

From Gronwall Lemma 1.5.2, p. 44 in Vrabie [34], we get

‖u(t) − v(t)‖ ≤ e(b−ω)tM

for each t ≥ 0. Since, by (c2), b− ω < 0, it follows that u is asymptotically stable, as

claimed. The proof is complete.

5.3. Proof of Theorem 3.4.

Proof. Let v ∈ C2π(R; D(A)) – the space of all continuous and 2π-periodic functions

from R to D(A) and let us consider the problem

(5.3)

{
u′(t) ∈ Au(t) + f(t, v(t), v(t − τ1), . . . , v(t− τn)), t ∈ R

u(0) = u(2π).

Since A is m-dissipative and (f2), (c1) are satisfied, it readily follows that (5.3) has

a unique solution u = Q(v). Let v, w ∈ C2π(R; D(A)). Since, by the periodicity

condition, we have

‖v(· − τk) − w(· − τk)‖C([ 0,2π ];X) = ‖v − w‖C([ 0,2π ];X)
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for k = 1, 2, . . . , n, recalling that A + ωI is dissipative, from Theorem 2.3, it follows

that

‖Q(v)(t) − Q(w)(t)‖ ≤ e−ωt‖Q(v)(0) − Q(w)(0)‖

+e−ωt

∫ t

0

eωs

n∑

k=0

ℓk‖v(s − τk) − w(s − τk)‖ ds

≤ e−ωt‖Q(v) − Q(w)‖C([ 0,2π ];X) +
ℓ

ω

(
1 − e−ωt

)
‖v − w‖C([ 0,2π ];X).

Let us observe that, thanks to the periodicity condition, we may assume with no

loss of generality that

‖Q(v) − Q(w)‖C([ 0,2π ];X) = ‖Q(v)(t) − Q(w)(t)‖

with t > 0. So, from the last inequality we obtain

(
1 − e−ωt

)
‖Q(v) − Q(w)‖C([ 0,2π ];X) ≤

ℓ

ω

(
1 − e−ωt

)
‖v − w‖C([ 0,2π ];X).

Taking into account that t > 0, we get

‖Q(v) − Q(w)‖C([ 0,2π ];X) ≤
ℓ

ω
‖v − w‖C([ 0,2π ];X).

Since by (c1) it follows that 0 < ℓ
ω

< 1, we conclude that Q is a strict contraction. By

Banach Fixed Point Theorem, it follows that Q has a unique fixed point which is the

unique 2π-periodic C0-solution. Since the global asymptotic stability of the solution

under the additional hypotheses (c2) follows exactly as in the case of Theorem 3.3,

the proof is complete.

5.4. Proof of Theorem 3.5.

Proof. We will use two fixed point arguments. First, let v, w ∈ Cb([−τ, +∞); D(A))

be arbitrary but fixed and let us consider the delay equation

(5.4)

{
u′(t) ∈ Au(t) + f(t, v(t), v(t− τ1), . . . , v(t − τn)), t ∈ R+

u(t) = g(w)(t), t ∈ [−τ, 0 ].

which, for any fixed v, has a unique C0-solution u = T (w). We will show that T 2 is

a strict contraction. Let w, w̃ ∈ Cb([−τ, +∞); D(A)), let t ≥ 0. By (g4) in (Hg), we

deduce

‖T (w)(t) − T (w̃)(t)‖ ≤ e−ωt‖g(w) − g(w̃)‖C([−τ,0 ];X) ≤ e−ωt‖w − w̃‖C([a,+∞);X).

So, for t ≥ 0, we have

‖T 2(w)(t) − T 2(w̃)(t)‖ ≤ e−ωt‖g(T (w))− g(T (w̃))‖C([−τ,0 ];X)

≤ e−ωt‖T (w) − T (w̃)‖C([a,+∞);X) ≤ sup
t∈[ a,+∞)

‖T (w)(t) − T (w̃)(t)‖

≤ e−ωa‖w − w̃‖C([a,+∞);X) ≤ e−ωa‖w − w̃‖C([−τ,+∞);X).
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If t ∈ [−τ, 0), again by (g4) in (Hg) and the preceding inequality, we have

‖T 2(w)(t) − T 2(w̃)(t)‖ = ‖g(T (w)(t)− g(T (w̃(t))‖

≤ ‖T (w) − T (w)‖C([a,+∞);X) ≤ e−ωa‖w − w̃‖C([−τ,+∞);X).

Hence T 2 is a strict contraction and accordingly the problem

(5.5)

{
u′(t) ∈ Au(t) + f(t, v(t), v(t− τ1), . . . , v(t − τn)), t ∈ R+

u(t) = g(u)(t), t ∈ [−τ, 0 ]

has a unique solution u which is the unique fixed point of T , i.e. T (u) = u.

Second, let Q : Cb([−τ, +∞); D(A)) → Cb([−τ, +∞); D(A)) be defined by

Q(v) = u, where u ∈ Cb([−τ, +∞); D(A)) is the unique C0-solution of the prob-

lem (5.5). Let v, w ∈ Cb([−τ, +∞); D(A)) and t ≥ 0 be arbitrary. From (2.3) and

(g4), we deduce

‖Q(v)(t) − Q(w)(t)‖ ≤ e−ωt‖Q(v) − Q(w)‖Cb([−τ,+∞);X)

(5.6) +
ℓ

ω
(1 − e−ωt)‖v − w‖Cb([−τ,+∞);X).

We distinguish between three possible cases.

Case 1. If ‖Q(v) − Q(w)‖Cb([−τ,+∞);X) = ‖Q(v)(t0) − Q(w)(t0)‖ for a certain

t0 ∈ [−τ, 0 ] then, by the initial condition and (g4), we get

‖Q(v) − Q(w)‖Cb([−τ,+∞);X) ≤ ‖Q(v) − Q(w)‖Cb([ a,+∞);X).

So, either for some tk → +∞, ‖Q(v)−Q(w)‖Cb([−τ,+∞);X) = lim
k

‖Q(v)(tk)−Q(w)(tk)‖,

situation analyzed in Case 3. below, or there exists t1 ≥ a > 0 such that

‖Q(v) − Q(w)‖Cb([−τ,+∞);X) = ‖Q(v)(t1) − Q(w)(t1)‖ = ‖Q(v) − Q(w)‖Cb([ a,+∞);X)

≤ e−ωt1‖Q(v) − Q(w)‖Cb([−τ,+∞);X) +
ℓ

ω
(1 − e−ωt1)‖v − w‖Cb([−τ,+∞);X).

Since t1 > 0, this yields

(5.7) ‖Q(v) − Q(w)‖Cb([−τ,+∞);X) ≤
ℓ

ω
‖v − w‖Cb([−τ,+∞);X).

But by (c1) 0 < ℓ
ω

< 1, and this proves that Q is a strict contraction.

Case 2. There exists t1 > 0 such that

‖Q(v) − Q(w)‖Cb([−τ,+∞);X) = ‖Q(v)(t1) − Q(w)(t1)‖.

Reasoning as before, we conclude again that Q is a strict contraction.

Case 3. If for each t ∈ [−τ, +∞)

‖Q(v)(t) − Q(w)(t)‖ < ‖Q(v) − Q(w)‖Cb([−τ,+∞);X),
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then there exists (tk)k with limk tk = +∞ and such that

lim
k

‖Q(v)(tk) − Q(w)(tk)‖ = ‖Q(v) − Q(w)‖Cb([−τ,+∞);X).

Setting t = tk in (5.6) and letting k → +∞, we get (5.7). Since the global uniform

asymptotic stability follows as in the case of Theorem 3.3, this completes the proof.

6. EXAMPLES

Example 6.1. Let Ω be a nonempty, bounded and open subset in R
d, d ≥ 1, with

C1 boundary Γ and let let ϕ : D(ϕ) ⊆ R R be maximal monotone with 0 ∈ ϕ(0).

Let us consider the porous medium equation subjected to nonlocal initial conditions

(6.1)





∂u

∂t
(t, x) ∈ ∆ϕ(u(t, x)) − ωu(t, x) + h(t, u)(x) in R+ × Ω

h(t, u)(x) = f(t, x, u(t, x), u(t− τ1, x), . . . , u(t− τn, x)) in R+ × Ω

ϕ(u(t, x)) = 0 on R+ × Γ

u(t, x) =

∫ +∞

τ

N(u(θ + t, ·))(x) dµ(θ) in [−τ, 0 ] × Ω,

where τ = max{τ1, τ2, . . . , τn}.

Let ∆ be the Laplace operator in the sense of distributions over Ω. If ϕ : D(ϕ) ⊆

R R, and u : Ω → D(ϕ), we denote by

Sϕ(u) = {v ∈ L1(Ω); v(x) ∈ ϕ(u(x)), a.e. for x ∈ Ω}.

The (i) part in the next result is essentially due to Brezis, Strauss [11] while the

(ii) part to Badii, Diaz, Tesei [6].

Theorem 6.2. Let Ω be a nonempty, bounded and open subset in R
d with C1 boundary

Γ and let ϕ : D(ϕ) ⊆ R R be maximal monotone with 0 ∈ ϕ(0).

(i) Then the operator ∆ϕ : D(∆ϕ) ⊆ L1(Ω) L1(Ω), defined by

{
D(∆ϕ) = {u ∈ L1(Ω); ∃v ∈ Sϕ(u) ∩ W 1,1

0 (Ω), ∆v ∈ L1(Ω)}

∆ϕ(u) = {∆v; v ∈ Sϕ(u) ∩ W 1,1
0 (Ω)} ∩ L1(Ω) for u ∈ D(∆ϕ),

is m-dissipative on L1(Ω).

(ii) If, in addition, ϕ : R → R is continuous on R and C1 on R \ {0} and there exist

two constants C > 0 and a > 0 if d ≤ 2 and a > (d − 2)/d if d ≥ 3 such that

ϕ′(r) ≥ C|r|a−1

for each r ∈ R \ {0}, then ∆ϕ generates a compact semigroup.
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Theorem 6.3. Let Ω be a nonempty, bounded and open subset in R
d with C1 boundary

Γ, let ω > 0 and let ϕ : R → R be continuous on R and C1 on R \ {0} and for which

there exist two constants C > 0 and a > 0 if d ≤ 2 and a > (d − 2)/d if d ≥ 3 such

that

ϕ′(r) ≥ C|r|a−1

for each r ∈ R \ {0}. Let f : R+ × Ω × R
n+1 → R be such that :

(F1) the function (t, x, u) 7→ f(t, x, u) is continuous on R+ × Ω × R
n+1 ;

(F2) there exist ℓk > 0, k = 0, 1, . . . , n and m > 0 such that

|f(t, x, u)| ≤

n∑

k=0

ℓk|uk| + m

for each (t, x, u) ∈ R+ × Ω × R
n+1 ;

(F4)
∑n

k=0 ℓk < ω.

Let N : L1(Ω) → L1(Ω) be a nonexpansive operator with N(0) = 0 and let µ be a finite

and complete measure on [ τ, +∞) with limδ↓0 µ([ τ, δ + τ ]) = 0 and µ([ 0, +∞)) = 1.

Then the problem (6.1) has at least one C0-solution u ∈ Cb([−τ, +∞); L1(Ω)).

Proof. Let X = L1(Ω) and let A : D(A) ⊆ X  X be defined as A = ∆ϕ where

∆ϕ is defined as in Theorem 6.2. Let f : R+ × L1(Ω) → L1(Ω) be defined as

f(t, u)(x) = f(t, x, u(x)) for each t ∈ R+ each u ∈ L1(Ω) and a.e. for x ∈ Ω and

g : C([ 0, 2π ]; L1(Ω) → C([−τ, 0 ]; L1(Ω) be defined by

[g(u)(t)](x) =

∫ +∞

0

N(u(θ + t, ·))(x) dµ(θ)

for each t ∈ [−τ, 0 ], each u ∈ L1(Ω) and a.e. for x ∈ Ω. With the notations above

the problem (6.1) can be rewritten in the abstract form (1.1). In view of Theorem 6.2

A satisfies (a1) and (a2). Moreover from (F1) and (F2), we deduce that f satisfies

(f1) while from the fact that N is nonexpansive, N(0) = 0, limδ↓0 µ([ τ, τ + δ ]) = 0,

we conclude that g satisfies (g1), (g2) and (g3). So Theorem 3.2 applies and this

completes the proof.

Theorem 6.4. Let Ω be a nonempty, bounded and open subset in R
d with C1 boundary

Γ, let ω > 0 and let ϕ : R → R be continuous on R and C1 on R \ {0} and for which

there exist two constants C > 0 and a > 0 if d ≤ 2 and a > (d − 2)/d if d ≥ 3 such

that

ϕ′(r) ≥ C|r|a−1

for each r ∈ R \ {0}. Let f : R+ × Ω × R
n+1 → R be such that :

(F1) the function (t, x, u) 7→ f(t, x, u) is continuous on R+ × Ω × R
n+1 ;
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(F̃2) there exist ℓk > 0, k = 0, 1, . . . , n such that

|f(t, x, u) − f(t, x, v)| ≤

n∑

k=0

ℓk|uk − vk|

for each (t, x, u), (t, x, v) ∈ R+ × Ω × R
n+1 ;

(F3) t 7→
∫
Ω
|f(t, x, 0)| dx is bounded on R+ ;

(F4)
∑n

k=0 ℓk < ω.

Let N : L1(Ω) → L1(Ω) be a nonexpansive operator with N(0) = 0 and let µ be a finite

and complete measure on [ τ, +∞) with limδ↓0 µ([ τ, δ + τ ]) = 0 and µ([ 0, +∞)) = 1.

Then the problem (6.1) has at least one C0-solution u ∈ Cb([−τ, +∞); L1(Ω)). If,

instead of (F4) the stronger nonresonance condition

(F5)
∑n

k=0 ℓke
ωτk < ω ;

is satisfied, then each C0-solution of (6.1) is globally asymptotically stable.

Proof. The proof follows the same lines as the preceding one except that instead of

Theorem 3.2, we have to use Theorem 3.3.

Example 6.5. Finally, let us consider the nonlinear parabolic equation subjected to

periodic conditions

(6.2)





∂u

∂t
(t, x) ∈ ∆ϕ(u(t, x)) − ωu(t, x) + h(t, u)(x) in R × Ω

h(t, u)(x) = f(t, x, u(t, x), u(t− τ1, x), . . . , u(t − τn, x)) in R × Ω

ϕ(u(t, x)) = 0 on R × Γ

u(t, x) = u(t + 2π, x) in R × Ω.

Here, the equation could be degenerate since ϕ : D(ϕ) ⊆ R  R is allowed to

be non-strictly increasing. Moreover, if this is the case, the semigroup generated by

A = ∆ϕ is not compact. See Remark 2.7.1, p. 72 in Vrabie [32].

Theorem 6.6. Let Ω be a nonempty, bounded and open subset in R
d with C1 boundary

Γ, let ω > 0 and let ϕ : D(ϕ) ⊆ R  R be maximal monotone with 0 ∈ ϕ(0). Let

f : R×Ω×R
n+1 → R be 2π-periodic with respect to its first argument and such that :

(F1) the function (t, x, u) 7→ f(t, x, u) is continuous on R × Ω × R
n+1 ;

(F2) there exist ℓk > 0, k = 0, 1, . . . , n such that

|f(t, x, u) − f(t, x, v)| ≤
n∑

k=0

ℓk|uk − vk|

for each (t, x, u), (t, x, v) ∈ R+ × Ω × R
n+1 ;

(F3) t 7→
∫
Ω
|f(t, x, 0)| dx is bounded on R+ ;

(F4)
∑n

k=0 ℓk < ω.
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Then the problem (6.2) has unique 2π-periodic C0-solution u ∈ C(R; L1(Ω)). If,

instead of (F4) the stronger nonresonance condition

(F5)
∑n

k=0 ℓke
ωτk < ω ;

is satisfied, then each C0-solution of (6.2) is globally asymptotically stable.

Proof. The conclusion follows from Theorem 3.4.
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