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ABSTRACT. In the paper we study an optimal control problem governed by the system of second

order ordinary differential equations in potential form. By means of variational methods we prove

the theorem on the existence of global solutions to a control problem. Moreover, the theorem on

the existence of optimal solution to Bolza problem is presented.
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1. INTRODUCTION

A classical control problem can be described by the following system

(1.1) ẋ (t) = f (t, x (t) , u (t)) , t ∈ [0, T ]

where f : [0, T ] × R
n × U → R

n, U is a fixed subset of R
m, x is an absolutely

continuous function, u ∈ L∞ ([0, T ] , U) = U , and T > 0 is a fixed terminal time. We

seek the control u that steers a solution of system (1.1) from a state x (0) ∈ Z0 to

a state x (T ) ∈ ZT and minimizes a cost functional I (x, u) where Z0, ZT are some

fixed subsets of R
n.

The cost functional may have, for example, the following form

(1.2) I (x, u) = g0 (x (0) , x (T )) +

T
∫

0

f 0 (t, x (t) , u (t)) dt

where f 0 : [0, T ] × R
n × U → R and g0 : R

n × R
n → R. In the theory of optimal

control problem (1.1)–(1.2) is known as an optimal control problem of Bolza type.

Let us denote by X̄ the set of all trajectories of system (1.1) such that there exist

a control u ∈ U for which a corresponding trajectory xu is a global solution on the

interval [0, T ] satisfying the conditions

(1.3) xu (0) ∈ Z0 and xu (T ) ∈ ZT .
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Obviously, only if the set X̄ is nonempty can we look for an optimal control.

Moreover, the assumption on boundness of the set X̄ plays an essential role in the

theorem on the existence of optimal processes to the problem (1.1)–(1.3). However,

for nonlinear systems this kind of assumption cannot be easily verified. There is one

exception to this rule, i.e. the situation where the function f satisfies the condition

(1.4) 〈x, f (t, x, u)〉 =
n
∑

i=1

xif i (t, x, u) ≤ α
(

1 + |x|2
)

for some constant α > 0 (cf. [9, Chapter 9.4]). The condition (1.4) appears in many

papers concerning the problem of the existence of optimal processes (see for example

[4, 5, 6] and references therein).

In the present paper we consider a control problem governed by the system of

second order ordinary differential equations with some potential vector field f . It

should be emphasized that such systems are of Newton type. By means of variational

methods, applying Ky-Fan’s theorem on the existence of saddle points of an appro-

priate functional (cf. [16]) and some results from Γ-convergence theory (see Section 4

for details), we prove under some appropriate assumptions that

- for an admissible control u there is the unique trajectory xu of the control

problem defined on the whole interval [0, T ] (see Theorem 3.1, Section 3),

- the set of all trajectories of the control problem are commonly bounded, i.e.

there exist a constant c > 0 such that |xu (t)| ≤ c for t ∈ [0, T ] and an admissible

control u (see Theorem 3.1, Section 3),

- a trajectory xu depends continuously on the control u with respect to strong

and weak topologies in the set of controls (see Theorems 4.1 and 4.2, Section 4).

It should be stressed that in all aforementioned propositions we have not assumed

that the function on the right hand side of the control problem satisfies the condition

(1.4). Finally, in the last section, we prove the theorem on the existence of optimal

solution to a problem of Bolza type, where a cost functional has the form defined in

(1.2). Moreover, some example illustrating the main result of the paper is provided.

2. FORMULATION OF THE PROBLEM AND SOME BASIC

ASSUMPTIONS

We consider the following system of second order equations

(2.1)







ẍ1 (t) = ϕ1 (t, x1 (t) , x2 (t) , u (t)) ,

ẍ2 (t) = −ϕ2 (t, x1 (t) , x2 (t) , u (t)) ,

with the boundary conditions

(2.2)
x1 (0) = x1

0, x
1 (T ) = x1

T ,

x2 (0) = x2
0, x

2 (T ) = x2
T ,
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where x1
0, x

1
T ∈ R

n1, x2
0, x

2
T ∈ R

n2 are fixed and x1(t) ∈ R
n1 , x2(t) ∈ R

n2, ϕ1 :

[0, T ] × R
n1+n2 ×M → R

n1 , ϕ2 : [0, T ] × R
n1+n2 ×M → R

n2, M ⊂ R
m is compact,

u ∈ U := {u ∈ L∞ ([0, T ] ,Rm) : u (t) ∈M for a.e. t ∈ [0, T ]}.
In what follows, we assume that the vector field ϕ := (ϕ1, ϕ2) is potential, i.e.

there exists a function Φ : [0, T ] × R
n1+n2 ×M → R such that Φx1 = ϕ1 and Φx2 =

ϕ2. For convenience we shall sometimes write x, x0, xT instead of (x1, x2), (x1
0, x

2
0),

(x1
T , x

2
T ), respectively. We require that the functions ϕ and Φ meet the following

assumptions:

(A1): ϕ, Φ are Carathéodory functions, i.e. they are measurable with respect to

t for any (x, u) ∈ R
n1+n2 × R

m and continuous with respect to (x, u) for a.e.

t ∈ [0, T ] ;

(A2): there are functions a0, a1 ∈ C (R+,R+) and b0, b1 ∈ L2 ([0, T ] ,R+) such

that

|ϕ (t, x, u)| ≤ a0 (|x|) b0 (t)

|Φ (t, x, u)| ≤ a1 (|x|) b1 (t)

for a.e. t ∈ [0, T ], and every x ∈ R
n1+n2 , u ∈M ;

(A3):

(a) for any x2 ∈ H1 ([0, T ] ,Rn2), there is a constant α1 ∈
(

0, 1
2

π2

T 2

)

and functions

β1 ∈ L2 ([0, T ] ,Rn1), γ1 ∈ L1 ([0, T ] ,R), such that

Φ
(

t, x1, x2 (t) , u
)

≥ −α1

∣

∣x1
∣

∣

2
+
(

β1 (t) , x1
)

+ γ1 (t)

for a.e. t ∈ [0, T ], and every x1 ∈ R
n1, u ∈M ,

(b) for any x1 ∈ H1 ([0, T ] ,Rn1), there is a constant α2 ∈
(

0, 1
2

π2

T 2

)

and functions

β2 ∈ L2 ([0, T ] ,Rn2), γ2 ∈ L1 ([0, T ] ,R), such that

Φ
(

t, x1 (t) , x2, u
)

≤ α2

∣

∣x2
∣

∣

2 −
(

β2 (t) , x2
)

+ γ2 (t)

for a.e. t ∈ [0, T ], and every x2 ∈ R
n2, u ∈M ;

(A4):

(a) for any x2 ∈ H1 ([0, T ] ,Rn2), the function

ψ1(x
1) := Φ

(

t, x1, x2(t), u
)

+ α1

∣

∣x1
∣

∣

2
, x1 ∈ R

n1

is convex for a.e. t ∈ [0, T ], and every u ∈M , where α1 is defined in (A3),

(b) for any x1 ∈ H1 ([0, T ] ,Rn1), the function

ψ2(x
2) := Φ

(

t, x1(t), x2, u
)

− α2

∣

∣x2
∣

∣

2
, x2 ∈ R

n2

is concave for a.e. t ∈ [0, T ], and every u ∈M , where α2 is defined in (A3).
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3. CONTROL PROBLEM

We first show that there exists a solution to the system (2.1)–(2.2) in the space

H2 ([0, T ] ,Rn1) ×H2 ([0, T ] ,Rn2) such that

x1 = y + λ1,

x2 = z + λ2,

where y ∈ H1
0 ([0, T ] ,Rn1), z ∈ H1

0 ([0, T ] ,Rn2) and the functions λ1, λ2 are given by

λ1 (t) : =
x1

T − x1
0

T
t+ x1

0,

λ2 (t) : =
x2

T − x2
0

T
t+ x2

0.

Moreover, denote by H the space H1
0 ([0, T ] ,Rn1) ×H1

0 ([0, T ] ,Rn2) with the norm

‖x‖ =
∥

∥

(

x1, x2
)∥

∥ =

√

‖x1‖2 + ‖x2‖2.

The problem of the existence of a solution to the system (2.1) satisfying conditions

(2.2) and some its properties are determined by the following theorem.

Theorem 3.1. Let the functions ϕ, Φ satisfy (A1)–(A4). Then for any u ∈ U and

any x0, xT ∈ R
n1+n2 there exists the unique solution xx0,xT ,u to the system (2.1)–(2.2).

Moreover, for any c > 0 there is a constant c̄ > 0 such that if |xi
0| ≤ c, |xi

T | ≤ c,

i = 1, 2, and u ∈ U , then the unique solution xx0,xT ,u ∈ H2 ([0, T ] ,Rn) satisfies

|xx0,xT ,u (t)| ≤ c̄ for t ∈ [0, T ].

Proof. Fix u ∈ U , x1
0, x

1
T ∈ R

n1, x2 ∈ H1 ([0, T ] ,Rn2). Let

B1
u : H1

0 ([0, T ] ,Rn1) → R

be a functional of the form

B1
u (y) :=

∫ T

0

(

1

2

∣

∣

∣
ẏ (t) + λ̇1 (t)

∣

∣

∣

2

+ Φ
(

t, y (t) + λ1 (t) , x2 (t) , u (t)
)

)

dt.

Let us observe that the functional B1
u is coercive. To demonstrate this, we use (A3),

the Poincaré inequality
∫ T

0

|y (t)|2 dt ≤
(

T

π

)2 ∫ T

0

|ẏ (t)|2 dt

and the Schwarz inequality to obtain the estimate

(3.1) B1
u (y) ≥

(

1

2
− α1

(

T

π

)2
)

‖y‖2 + δ1 ‖y‖ + δ2,

where δ1, δ2 are some constants depending on x1
0, x

1
T and x2. Since

1

2
− α1

(

T

π

)2

> 0,
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the functional B1
u is coercive.

The weak convergence in H1
0 ([0, T ] ,Rn) implies the uniform convergence (see [14,

Lemma 1.2]), and therefore from (A2) and the Lebesgue dominated convergence the-

orem we deduce that B1
u is weakly lower semicontinous. Furthermore, the functional

H1
0 ([0, T ] ,Rn1) ∋ y 7→

∫ T

0

(

1

2
|ẏ (t)|2 − α1 |y (t)|2

)

dt

is strictly convex (see [14] for details), and naturally, the functional

H1
0 ([0, T ] ,Rn1) ∋ y 7→

∫ T

0

(

1

2

∣

∣

∣
ẏ (t) + λ̇1 (t)

∣

∣

∣

2

− α1 |y (t) + λ1 (t)|2
)

dt ∈ R

is strictly convex since its second derivative is a positive definite operator (see [18]

for details). Consequently, by the assumption (A4), the functional

B1
u (y) =

∫ T

0

(

Φ
(

t, y (t) + λ1 (t) , x2 (t) , u (t)
)

+ α1 |y (t) + λ1 (t)|2
)

dt

+

∫ T

0

(

1

2

∣

∣

∣
ẏ (t) + λ̇1 (t)

∣

∣

∣

2

− α1 |y (t) + λ1 (t)|2
)

dt

is strictly convex. Similarly, for fixed u ∈ U , x2
0, x

2
T ∈ R

n2 and x1 ∈ H1 ([0, T ] ,Rn1)

the functional B2
u : H1

0 ([0, T ] ,Rn2) → R defined by

B2
u (z) :=

∫ T

0

(

1

2

∣

∣

∣
ż (t) + λ̇2 (t)

∣

∣

∣

2

− Φ
(

t, x1 (t) , z (t) + λ2 (t) , u (t)
)

)

dt,

is weakly lower semicontinuous, strictly convex and coercive. Thus, for the functional

Au (y, z) =

∫ T

0

(

1

2

∣

∣

∣
ẏ (t) + λ̇1 (t)

∣

∣

∣

2

− 1

2

∣

∣

∣
ż (t) + λ̇2 (t)

∣

∣

∣

2
)

dt(3.2)

+

∫ T

0

Φ (t, y (t) + λ1 (t) , z (t) + λ2 (t) , u (t)) dt

there exists a saddle point (y0, z0) ∈ H (see [16] and [19, Theorem 6]). Additionally,

Au(·, z) is strictly convex for each z ∈ H1
0 ([0, T ] ,Rn2) and Au(y, ·) is strictly concave

for each y ∈ H1
0 ([0, T ] ,Rn1), and therefore the saddle point is unique. To sum up,

there exists exactly one point (y0, z0) ∈ H such that

Au (y, z0) ≤ Au (y0, z0) ≤ Au (y0, z)

for all y ∈ H1
0 ([0, T ] ,Rn1) and z ∈ H1

0 ([0, T ] ,Rn2). It is easily seen that the system

(3.3)







ÿ1 (t) = ϕ1 (t, y (t) + λ1 (t) , z (t) + λ2 (t) , u (t)) ,

z̈2 (t) = −ϕ2 (t, y (t) + λ1 (t) , z (t) + λ2 (t) , u (t)) ,

is the Euler-Lagrange equation for the functional (3.2). By the assumption (A4), the

only solution to the above system is the saddle point of the functional (3.2). Next, it

is easy to check that Au is Gâteaux differentiable and the equation

DGAu (y0, z0) = 0
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implies
∫ T

0

(

ẏ0 (t) + λ̇1 (t) , ḣ (t)
)

dt =

−
∫ T

0

(Φx1 (t, y0 (t) + λ1 (t) , z0 (t) + λ2 (t) , u (t)) , h (t)) dt

for all h ∈ H1
0 ([0, T ] ,Rn1). By the du Bois-Reymond lemma (cf. [14]), we get that

there is a constant vector ĉ ∈ R
n1 such that

ẏ0 (t) + λ̇1 (t) =

∫ t

0

Φx1 (s, y0 (t) + λ1 (t) , z0 (t) + λ2 (t) , u (s)) ds+ ĉ

for a.e. t ∈ [0, T ]. Applying the same reasoning to the function z0, we get that

x1
x1

0
,x1

T
,u

:= y0 + λ1 ∈ H2 ([0, T ] ,Rn1), x2
x2

0
,x2

T
,u

:= z0 + λ2 ∈ H2 ([0, T ] ,Rn2) satisfy the

system (2.1)–(2.2) and (x1
x1

0
,x1

T
,u
, x2

x2

0
,x2

T
,u

) is the unique solution to this system.

Furthermore, choose some c > 0 such that xi
0 and xi

T are bounded as follows

|xi
0| ≤ c and |xi

T | ≤ c, i = 1, 2. Then for each solution (x1
x1

0
,x1

T
,u
, x2

x2

0
,x2

T
,u
) to the system

(2.1)–(2.2), the point (x1
x1

0
,x1

T
,u
−λ1, x

2
x2

0
,x2

T
,u
−λ2) is the saddle point of the functional

(3.2). Defining y0 = x1
x1

0
,x1

T
,u
− λ1, z0 = x2

x2

0
,x2

T
,u
− λ2 and using the estimate in (3.1),

we obtain

Au(y0, z0) = max
z
Au(y0, z) ≥ Au(y0, 0)

≥
(

1

2
− α1

(

T

π

)2
)

‖y0‖2 + δ1 ‖y0‖ + δ2 =: g1(y0),

where now δ1 and δ2 depend on the choice of the constant vector c. Moreover,

Au(y0, z0) = min
y
Au(y, z0) ≤ Au(0, z0)

≤
(

α2

(

T

π

)2

− 1

2

)

‖z0‖2 + γ1 ‖z0‖ + γ2 =: g2(z0)

and again γ1 and γ2 depend on the choice of the constant vector c. The functions

g1 : H1
0 ([0, T ] ,Rn1) → R, −g2 : H1

0 ([0, T ] ,Rn2) → R are coercive and bounded

below, and therefore there exists a constant c̃ > 0 independent of x1
0, x

1
T , x

2
0, x

2
T and

u such that

‖y0‖ ≤ c̃,

‖z0‖ ≤ c̃.

Finally, we have

∣

∣

∣
x1

x1

0
,x1

T
,u (t)

∣

∣

∣
≤ |y0 (t)| + |λ1 (t)| ≤

∫ t

0

|ẏ0 (s)| ds+ 2c

≤
∫ T

0

|ẏ0 (s)| ds+ 2c ≤
√
T ‖y0‖ + 2c ≤

√
T c̃+ 2c =: c̄
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for t ∈ [0, T ]. The same conclusion can be drawn for x2
x2

0
,x2

T
,u

, which completes the

proof.

From the previous theorem and its proof it follows that instead of solving the

system (2.1)–(2.2), we can look for (unique) saddle points of the functional (3.2) and

therefore we can state the following corollary.

Corollary 3.2. A pair (y0, z0) is a saddle point of the functional (3.2) if and only if

the functions

x1 = y0 + λ1,

x2 = z0 + λ2

form a solution to the system (2.1)–(2.2). Moreover, if |xi
0| ≤ c and |xi

T | ≤ c, i = 1, 2,

for some c > 0, there exist balls

B1 (r1) =
{

y ∈ H1
0 ([0, T ] ,Rn1) : ‖y‖ ≤ r1

}

,

B2 (r2) =
{

z ∈ H1
0 ([0, T ] ,Rn2) : ‖z‖ ≤ r2

}

,

such that (y0, z0) ∈ B1 (r1) ×B2 (r2) ⊂ H for all u ∈ U .

4. CONTINUOUS DEPENDENCE ON CONTROLS

Throughout this section we assume that (A1)–(A4) are satisfied. Moreover, in this

part we use the notion of epi/hypo-convergence. This type of convergence for bivariate

functions extends the theory of epi-convergence (Γ-convergence), originally developed

by Wijsman, Mosco and De Giorgi. For more information about epi-convergence we

refer the interested readers to the book of Dal Maso [10]. The definition of epi/hypo-

convergence was introduced by H. Attouch and R. Wets in [1]. A similar notion of

convergence for saddle function was initially presented by E. Cavazzuti under the

name of multiple Γ-convergence in [7, 8] and by G. Greco in [13]. In our paper we use

epi/hypo-convergence theory developed by D. Aze, H. Attouch and R. Wets in [2, 3].

For extensions on applications of Γ-convergence to parabolic and hyperbolic systems

one can see for example [12] and references therein, while for evolution inclusions [11]

and [15].

Now, let us recall the definition of the epi/hypo-convergence. Let X and Y be

topological spaces and let {Fν}ν∈N
be a sequence of functions defined on the product

space X × Y with values in R̄. The topology on X be denoted by τ , whereas the

symbol σ be reserved for the topology on Y . The epi/hypo-limit superior, denoted

by eτ/hσ − lsFν , is defined by

eτ/hσ − lsFν (x, y) = sup
V ∈Nσ(y)

inf
U∈Nτ (x)

lim
ν→∞

sup
u∈U

inf
v∈V

Fν (u, v) ,
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and the hypo/epi limit inferior, denoted by hσ/eτ − liFν , is defined by

hσ/eτ − liFν (x, y) = inf
U∈Nτ (x)

sup
V ∈Nσ(y)

lim
ν→∞

inf
v∈V

sup
u∈U

Fν (u, v) ,

where Nτ (x) stands for the set of all neighbourhoods of x in (X, τ) and analogously

Nσ (y) denotes the set of all neighbourhoods of y in (Y, σ). A function F : X×Y → R

is an epi/hypo-limit of the sequence {Fν}ν∈N
if

eτ/hσ − lsFν ≤ F ≤ hσ/eτ − liFν .

Then we write that F = eτ/hσ − limFν . If (X, τ) and (Y, σ) are metrizable, it is

possible to give a sequential characterization of the epi/hypo-limit (see [3, Corollary

2.2]). Namely, we say that the sequence Fν epi/hypo-converges to F at (x, y) if

(i): to every yν
σ→ y, there corresponds xν

τ→ x such that

F (x, y) ≤ lim
ν→∞

Fν (xν , yν) ,

(ii): to every xν
τ→ x, there corresponds yν

σ→ y such that

lim
k→∞

Fν (xν , yν) ≤ F (x, y) .

Moreover, the sequence Fν is said to be epi/hypo-convergent to F if conditions (i)

and (ii) are satisfied for all (x, y).

Furthermore, a point (xε
0, y

ε
0) is called an ε-saddle point of Fν if

sup
y

Fν (xε
0, y) − ε ≤ Fν (xε

0, y
ε
0) ≤ inf

x
Fν (x, yε

0) + ε.

The set of all ε-saddle points of Fν will be denoted as V ε
Fν

. In the theorem on

continuous dependence of solutions on controls we use the topological set convergence

in the sense of Painlevé-Kuratowski. Symbols τ−Limν→∞Vν and τ−Limν→∞Vν stand

for lower and upper limit, respectively, of the sequence {Vν}ν∈N
in the τ topology. If

w and s denote weak and strong topology in H , respectively, then it is evident (see

[10, Remark 4.11 and Remark 6.4]) that the following inclusions hold

s− Lim
ν→∞

Vν ⊂ s− Lim
ν→∞

Vν , w − Lim
ν→∞

Vν ⊂ w − Lim
ν→∞

Vν

and

s− Lim
ν→∞

Vν ⊂ w − Lim
ν→∞

Vν , s− Lim
ν→∞

Vν ⊂ w − Lim
ν→∞

Vν .

Next, for any sequence of admissible controls {uk}k∈N0
, let us denote by

Ak = Auk
, k = 0, 1, 2, . . . ,

the sequence of corresponding functionals, where Au is described by (3.2). Moreover,

the symbol xk will be used to denote the unique saddle point of Ak, k = 0, 1, 2, . . ..
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Using this notations, we can now state and prove the theorem on continuous

dependence of solutions on controls concerning the strong topology in the set of

controls.

Theorem 4.1. If {uk}k∈N
⊂ U converges to u0 ∈ U in L2 ([0, T ] ,Rm), then the

sequence of solutions {xk}k∈N
to the system (2.1)–(2.2) converges uniformly to the

solution x0.

Proof. It suffices to show that the corresponding sequence (yk, zk) = (x1
k − λ1, x

2
k −

λ2) of the saddle points of the functional (3.2) converges uniformly to (y0, z0) =

(x1
0 − λ1, x

2
0 − λ2). It is well-known that on the norm bounded set Bi (ri) defined in

Corollary 3.2, the weak topology of H1
0 (Ω,Rni), i = 1, 2 is induced by the metric

of L2 (Ω,Rni) (see [10, Corollary 8.8 and Example 8.9]). By Proposition 5.2 of [10],

Proposition 3.8, Theorem 3.10 and Proposition 3.12 of [2], if follows that if for every

z ∈ H1
0 ([0, T ] ,Rn2) the sequence {Ak (·, z)}k∈N

converges to A0 (·, z) uniformly on

the ball B1 (r1) ⊂ H1
0 ([0, T ] ,Rn1), and for every y ∈ H1

0 ([0, T ] ,Rn1) the sequence

{Ak (y, ·)}k∈N
converges to A0 (y, ·) uniformly on the ball B2 (r2) ⊂ H1

0 ([0, T ] ,Rn2),

then

(4.1) ∅ 6= w − Limk→∞Vk ⊂ V0 ⊂
⋂

ε>0

s− Limk→∞V
ε
k ,

where Vk is the set of all saddle points of the functional Ak and V ε
k is the set of

its all ε-saddle points. In our case all sets Vk are singletons, i.e. Vk = {(yk, zk)} ∈
B1 (r1) ×B2 (r2). Therefore, we can write the first inclusion of (4.1) as follows

(4.2) w − lim
k→∞

(yk, zk) = (y0, z0).

The weak convergence of the subsequence (yk, zk) in H implies uniform convergence

of this subsequence.

Let z ∈ H1
0 ([0, T ] ,Rn2). We start with the proof of the uniform convergence of

the sequence {Ak (·, z)}k∈N
. Suppose, on the contrary, that {Ak (·, z)}k∈N

does not

converge to A0 (·, z) uniformly on B1 (r1). This means that there exists a sequence

{yk}k∈N
⊂ B1 (r1) and a positive constant ε such that

|Ak (yk, z) − A0 (yk, z)| > ε

for infinitely many indices k. Passing to a subsequence, we may assume that yk ⇀ y0

in H1
0 ([0, T ] ,Rn1) and uk(t) → u0(t) for a.e. t ∈ [0, T ].

Let δ := |Ak (yk, z) −A0 (yk, z)|, it is easily seen that

δ ≤
∫ T

0

|Φ (t, yk (t) + λ1 (t) , z (t) + λ2 (t) , uk (t))| dt

−
∫ T

0

|Φ (t, yk (t) + λ1 (t) , z (t) + λ2 (t) , u0 (t))| dt
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≤
∫ T

0

|Φ (t, yk (t) + λ1 (t) , z (t) + λ2 (t) , uk (t))

−Φ (t, y0 (t) + λ1 (t) , z (t) + λ2 (t) , u0 (t))| dt

+

∫ T

0

|Φ (t, yk (t) + λ1 (t) , z (t) + λ2 (t) , u0 (t))

−Φ (t, y0 (t) + λ1 (t) , z (t) + λ2 (t) , u0 (t))| dt

for k ∈ N. From (A2) and the Lebesgue dominated convergence theorem, we conclude

that the above integrals tend to zero, contrary to our supposition. The same reasoning

applies to the uniform convergence of the sequence {Ak (y, ·)}k∈N
, which proves the

theorem.

Now, we consider the weak convergence in the set of the admissible controls. If

we assume that the function Φ is linear with respect to the control u, i.e. Φ has the

form

Φ (t, x, u) = Φ1 (t, x) + Φ2 (t, x) u,

it is possible to draw the same conclusion as in Theorem 4.1. Actually, we arrive at

the following statement.

Theorem 4.2. If {uk}k∈N
⊂ U converges to u0 ∈ U in the weak topology of L2 ([0, T ] ,Rm),

then the sequence of solutions {xk}k∈N
to the system (2.1)–(2.2) converges uniformly

to the solution x0.

Proof. By the same kind of reasoning as in the proof of the previous theorem it is

enough to demonstrate that for every z ∈ H1
0 ([0, T ] ,Rn2) the sequence {Ak (·, z)}k∈N

converges to A0 (·, z) uniformly on the ball B1 (r1) ⊂ H1
0 ([0, T ] ,Rn1) and, for every

y ∈ H1
0 ([0, T ] ,Rn1) the sequence {Ak (y, ·)}k∈N

converges to A0 (y, ·) uniformly on the

ball B2 (r2) ⊂ H1
0 ([0, T ] ,Rn2). Similarly, as in the proof of Theorem 4.1, we focus

only on the first aforementioned convergence. Let z ∈ H1
0 ([0, T ] ,Rn2) and suppose,

on the contrary, that {Ak (·, z)}k∈N
does not converge to A0 (·, z) uniformly on B1 (r1).

Thus, there exists a sequence {yk}k∈N
⊂ B1 (r1) and a positive constant ε such that

|Ak (yk, z) − A0 (yk, z)| > ε

for infinitely many indices k. Passing to a subsequence, we may assume that yk ⇀ y0

in H1
0 ([0, T ] ,Rn1). Let δ := |Ak (yk, z) −A0 (yk, z)| . It is easy to notice that

δ =

∣

∣

∣

∣

∫ T

0

Φ2 (t, yk (t) + λ1 (t) , z (t) + λ2 (t))uk (t)

−Φ2 (t, yk (t) + λ1 (t) , z (t) + λ2 (t))u0 (t) dt|

≤
∫ T

0

|Φ2 (t, yk (t) + λ1 (t) , z (t) + λ2 (t))

−Φ2 (t, y0 (t) + λ1 (t) , z (t) + λ2 (t))| |uk (t) − u0 (t)| dt
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+

∣

∣

∣

∣

∫ T

0

(Φ2 (t, y0 (t) + λ1 (t) , z (t) + λ2 (t))) (uk (t) − u0 (t)) dt

∣

∣

∣

∣

for k ∈ N. From (A2) and the Lebesgue dominated convergence theorem, we deduce

that the first integral on the right hand side of the above inequality tends to zero (the

sequence{‖uk‖L2}k∈N
is bounded). The weak convergence in L2 ([0, T ] ,Rm) implies

that the second integral from the above inequality also converges to zero.

5. OPTIMAL CONTROL PROBLEM

In the present section, some sufficient conditions for the existence of solutions to

optimal control problem are formulated. Moreover, we assume that an optimal control

problem is governed by the system of second order ordinary differential equations

with boundary conditions (2.1)–(2.2) where the function on the right hand side of the

system is linear with respect to control. Namely, the system has the form

(5.1)



























ẍ1 (t) = ϕ11 (t, x1 (t) , x2 (t)) + ϕ12 (t, x1 (t) , x2 (t))u (t) ,

ẍ2 (t) = −ϕ21 (t, x1 (t) , x2 (t)) − ϕ22 (t, x1 (t) , x2 (t))u (t) ,

x1 (0) = x1
0, x

1 (T ) = x1
T ,

x2 (0) = x2
0, x

2 (T ) = x2
T ,

for a.e. t ∈ [0, T ], where x1
0, x

1
T ∈ R

n1 , x2
0, x

2
T ∈ R

n2 are fixed, ϕ11 : [0, T ] × R
n1+n2 →

R
n1 , ϕ12 : [0, T ] × R

n1+n2 → R
m×n1 ϕ21 : [0, T ] × R

n1+n2 × R
m → R

n2 , ϕ22 : [0, T ] ×
R

n1+n2 → R
m×n2 , x ∈ H2 ([0, T ] ,Rn1+n2) and

(5.2) (ẋ(0), ẋ(T )) :=
(

ẋ1 (0) , ẋ2 (0) , ẋ1 (T ) , ẋ2 (T )
)

∈ R
2(n1+n2),

(5.3) u ∈ U := {u ∈ L∞ ([0, T ] ,Rm) : u (t) ∈M for a.e. t ∈ [0, T ]} ,

where M is a compact subset of R
m, and T > 0, m,n1, n2 ≥ 1. We consider problem

(5.1) with the following cost indicator

(5.4) I (x, u) = g0 (ẋ (0) , ẋ (T )) +

T
∫

0

f 0 (t, x (t) , ẋ (t) , u (t)) dt

where g0 : R
2(n1+n2) → R and f 0 : [0, T ] × R

2(n1+n2) × R
m → R.

On the functions g0 and f 0 we impose the following assumptions:

(A5): the function g0 is lower semicontinuous and coercive;

(A6):

(a) the function f 0 is continuous with respect to (x, ẋ, u), convex with respect

to u and measurable with respect to t,
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(b) for each C > 0, there is a function hC ∈ L1 ([0, T ] ,R+) such that

f 0 (t, x, ẋ, u) ≤ hC (t)

for any |x| ≤ C, |ẋ| ≤ C, u ∈M ⊂ R
m and a.e. t ∈ [0, T ],

(c) there exists a function h0 ∈ L1 ([0, T ] ,R) such that

f 0 (t, x, ẋ, u) ≥ h0 (t)

for x ∈ R
n1+n2, ẋ ∈ R

n1+n2 , u ∈M and a.e. t ∈ [0, T ].

Let D be the set of all admissible pairs, i.e.

D :=
{

(x, u) ∈ H2
(

[0, T ] ,Rn1+n2

)

× U : x satisfies (5.1) for u ∈ U
}

.

Remark 5.1. Let (xũ, ũ) be an admissible control, i.e. (xũ, ũ) ∈ D. If

l̃ := I (xũ, ũ) + 1,

it is easy to observe that the set

A =
{

(xu, u) ∈ D : I (xu, u) ≤ l̃
}

is nonempty and we have the following inclusions

A ⊂







(xu, u) ∈ D : g0 (ẋu (0) , ẋu (T )) +

T
∫

0

h0 (t) dt ≤ l̃







=
{

(xu, u) ∈ D : g0 (ẋu (0) , ẋu (T )) ≤ l
}

where l := l̃−
T
∫

0

h0 (t) dt. Since g0 is coercive, there exists a constant c > 0 such that

for every xu

(5.5) |ẋu (0)| ≤ c

where (xu, u) ∈ A.

Moreover, we denote by X a family of all functions xu such that (xu, u) ∈ A and

by Ẋ a family of derivatives of functions from X , i.e. Ẋ := {ẋu : xu ∈ X}.

Lemma 5.2. Let us assume that (A1)–(A2) are satisfied, then the families of func-

tions belonging to sets X and Ẋ are equibounded and equicontinuous.

Proof. From the second part of Theorem 3.1, it follows that there is a constant d > 0

such that for any x ∈ X

(5.6) |x(t)| ≤ d for t ∈ [0, T ]

hence the family X is equibounded. Let x ∈ X be a solution to (5.1) corresponding

to a control u ∈ U . Then, by (A2), (A5), (A6) and (5.5)

|ẋ (t)| ≤ |ẋ (0)| +
∫ T

0

|ϕ (t, x (t) , u (t))| dt ≤ c+

∫ T

0

a0 (|x (t)|) b0 (t) dt ≤ d1,
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where d1 ≥ 0 and

(5.7) ϕ = (ϕ1, ϕ2) := (ϕ11 + ϕ12u, ϕ21 + ϕ22u).

Since X is equibounded, a0 is continuous and d1 is independent of x, the set Ẋ is

equibounded. Furthermore, for each t1, t2 ∈ [0, T ] such that t1 < t2 we have

|x (t2) − x (t1)| ≤
∫ t2

t1

|ẋ (t)| dt ≤ d1 |t2 − t1| ,

|ẋ (t2) − ẋ (t1)| ≤
∫ t2

t1

|ϕ (t, x (t) , u (t))| dt

≤
∫ t2

t1

a0 (|x (t)|) b0 (t) dt ≤ d2

√
t2 − t1,

where d2 > 0 is independent of x, and consequently X and Ẋ are equicontinuous.

Let us recall that a pair (xu∗ , u∗) ∈ H2 ([0, T ] ,Rn1+n2)×U is an optimal process

if it satisfies (5.1) and the inequality I (xu∗ , u∗) ≤ I (xu, u) holds for any pair (xu, u) ∈
D. Using the results from Sections 3 and 4, we now prove a theorem on the existence

of optimal processes to our optimal control problem.

Theorem 5.3. If (A1)–(A6) are satisfied, the function ϕ has the form (5.7) and the

set M ⊂ R
m is compact and convex, then the optimal control problem (5.1)–(5.3)

possesses at least one solution.

Proof. From (A6) and classical theorems on semicontinuity of integral functionals (cf.

[9, 17]), we deduce that the second part of the cost indicator is lower semicontinuous

with respect to the strong topology of H1 ([0, T ] ,Rn1+n2) in x and the weak topology

of L2 ([0, T ] ,Rm) in u. From (A5), we infer that the functional I (x, u) is lower

semicontinuous with respect to the strong topology of H1 ([0, T ] ,Rn1+n2) in x and

the weak topology of L2 ([0, T ] ,Rm) in u. Let
{(

xk, uk
)}

k∈N
⊂ D be a minimizing

sequence to the problem (5.1)–(5.3), i.e.

lim
k→∞

I
(

xk, uk
)

= inf
(x,u)∈D



g0 (ẋ (0) , ẋ (T )) +

T
∫

0

f 0 (t, x (t) , ẋ (t) , u (t)) dt





= inf
(x,u)∈A



g0 (ẋ (0) , ẋ (T )) +

T
∫

0

f 0 (t, x (t) , ẋ (t) , u (t)) dt



 .

Since the set M ⊂ R
m is compact and convex, the sequence

{

uk
}

k∈N
is compact in

the weak topology of L2 ([0, T ] ,Rm). Passing, if necessary to a subsequence, we may

assume that uk ⇀ u0 in L2 ([0, T ] ,Rm). Thus, Theorem 3.1 and Theorem 4.2 ensure

the existence of the unique solution xk for any uk and the uniform convergence of
{

xk
}

k∈N
to x0 corresponding to u0. By Lemma 5.2 and the Arzelà-Ascoli theorem,
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we have the compactness of the sequence
{

(xk, ẋk)
}

k∈N
in the topology of uniform

convergence. Thus we may assume, without loss of generality, that

(5.8) xk
⇉ x0, and ẋk

⇉ v

to some continuous function v. Moreover, by the theorem on differentiation of the

uniformly convergent, with derivatives, sequence term by term, we have ẋ0 = v. Let

us note that, for any measurable set E ⊂ [0, T ] from (A2), we have

∣

∣

∣

∣

∫ k

E

ẍk (t) dt

∣

∣

∣

∣

≤
∫

E

∣

∣ϕ
(

t, xk (t) , uk (t)
)∣

∣ dt ≤
∫

E

a0

(∣

∣xk (t)
∣

∣

)

b0 (t) dt

≤ d3

∫

E

b0 (t) dt ≤ d3

√

µ (E) ‖b0‖L2 ,

for some d3 > 0. Hence the sequence
{

ẍk
}

k∈N
is equiabsolutely integrable. By the

Dunford-Pettis theorem [9, 10.3.i] there is a function η ∈ L1 ([0, T ] ,Rn1+n2) such that

ẍk ⇀ η (weakly in L1 ([0, T ] ,Rn1+n2)). For arbitrary but fixed point t0 ∈ [0, T ] we

have

ẋk
i (t0) =

∫ t0

0

ẍk
i (t) dt+ ẋk

i (0) =

∫ T

0

χ[0,t0] (t) ẍ
k
i (t) dt+ ẋk

i (0) ,

where ẋk
i denotes the i−th coordinate function and χ[0,t0] denotes the characteristic

function of the interval [0, t0]. Next, passing with k → ∞, we get by (5.8) that

ẋ0 (t0) =

∫ t0

0

η (t) dt+ ẋ0 (0) .

In consequence, ẍ0 (t) = η (t) for a.e. t ∈ [0, T ], ẍk ⇀ ẍ0 (weakly in L1 ([0, T ] ,Rn1+n2))

and f (t, x0 (t) , u0 (t)) = η (t) for a.e. t ∈ [0, T ] and moreover (x0, u0) ∈ A ⊂ D. By

the lower semicontinuity of I, we obtain

inf
(x,u)∈D

I (x, u) = inf
(x,u)∈A

I (x, u) ≤ I
(

x0, u0
) lsc

≤ lim inf
k→+∞

I
(

xk, uk
)

= lim
k→+∞

I
(

xk, uk
)

= inf
(x,u)∈A

I (x, u) .

Thus, inf(x,u)∈D I (x, u) = inf(x,u)∈A I (x, u) = I (x0, u0) and the proof is complete.

Example 5.4. Let us introduce the set of coordinates in R
4 as (x1, y1, x2, y2). Con-

sider the following control system

(5.9)























ẋ1 (t) = y1 (t)

ẏ1 (t) = −x1 (t) + 4t2 (x1 (t))
3
+ x2 (t)u (t) − 2t

ẋ2 (t) = y2 (t)

ẏ2 (t) = −x2 (t) + 2 (x2 (t))
5 − x1 (t) u (t) + t2

with the boundary conditions x1 (0) = x2 (0) = 0, x1 (T ) = x2 (T ) = 1 and the cost

functional

I (x, u) = |ẋ (0)|2 − 2ẋ1 (0) + |ẋ (T )|2 + ẋ2 (T )(5.10)
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+

T
∫

0

(

|x (t)|2 + x1 (t) (u (t))3 + x2 (t) (u (t))2) dt

where x = (x1, x2). For simplicity, we assume that T =
√

2
2
π and M = [−1, 1]. It is

easy to notice that system (5.9) does not satisfy the condition (1.4). Therefore, the

following properties cannot be guaranteed:

(i) for admissible controls exist trajectories defined on the whole interval [0, T ],

(ii) the set of all trajectories are commonly bounded,

and we cannot apply classical Filippov’s theorem on the existence of optimal processes

(cf. [9, Theorem 9.3.i]). It is easy to notice that the system (5.9) can be reformulated

as

(5.11)

{

ẍ1 (t) = −x1 (t) + 4t2 (x1 (t))
3
+ x2 (t) u (t) − 2t, x1 (0) = 0, x1 (T ) = 1,

ẍ2 (t) = −x2 (t) + 2 (x2 (t))
5 − x1 (t) u (t) + t2, x2 (0) = 0, x2 (T ) = 1.

The vector field given by the vector function on the right hand side of equations in

(5.11) is a gradient of the potential Φ defined as

Φ
(

t, x1, x2, u
)

= −1

2

(

x1
)2

+ t2
(

x1
)4

+ x1x2u− 2tx1

−
(

−1

2

(

x2
)2

+
1

3

(

x2
)6

+ t2x2

)

.

Moreover, the functions

ϕ1
(

t, x1, x2, u
)

= Φx1

(

t, x1, x2, u
)

,

ϕ2
(

t, x1, x2, u
)

= Φx2

(

t, x1, x2, u
)

,

ψ1

(

x1
)

= Φ
(

t, x1, x2 (t) , u
)

+ α1

∣

∣x1
∣

∣

2
,

ψ2

(

x2
)

= Φ
(

t, x1 (t) , x2, u
)

− α2

∣

∣x2
∣

∣

2

satisfy assumptions (A1)–(A4) with α1 = α2 = 1
2
. From Theorem 3.1 it follows

that for any admissible control u there is the unique trajectory xu of the system

(5.10) defined on the whole interval [0, T ] and the set of all trajectories are commonly

bounded. Furthermore, it is easy to check that the following functions

g0 (ẋ (0) , ẋ (T )) = |ẋ (0)|2 − 2ẋ1 (0) + |ẋ (T )|2 + ẋ2 (T ) ,

f 0 (t, x, ẋ, u) = |x (t)|2 + x1 (t) (u (t))3 + x2 (t) (u (t))2

satisfy assumptions (A5), (A6). Therefore, by applying Theorem 5.3, we get that the

control problem consisting of system (5.9) or (5.11) and the cost functional (5.10)

possesses an optimal solution.
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