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ABSTRACT. In this paper we give sufficient conditions for the solution map of the differential

inclusion y′ ∈ F (y), with F : K  X a multifunction and K a nonempty subset of a finite

dimensional space X , to be lower semicontinuous. We present an application on the propagation of

the continuity of the state constrained minimum time function associated with the given differential

inclusion and the target zero.
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1. INTRODUCTION

Consider the differential inclusion

(1.1) y′ (t) ∈ F (y (t)) ,

where F : K  X is a multifunction with nonempty values and K is a nonempty

subset of a finite dimensional space X. For every x ∈ K, denote by S (x) the set of

all solutions of (1.1) starting from x. The definition of solution is given below. The

aim of this paper is to establish sufficient conditions for the solution map S of (1.1)

to be lower semicontinuous.

The properties of the solution map of differential inclusions have been extensively

studied in the literature. The first contributions in this area are the papers of Filippov

[8, 9] and Plis [16]. The central assumption of Filippov theorem is the Lipschitz

condition of the right-hand side with respect to the state variable. In Plis’ result it is

required a special uniform continuity condition instead of Lipschitz continuity. There

are many extensions of these results under various frames, with various assumptions

on F : Lipschitz type, one sided Lipschitz, one sided Kamke, continuous-like (see, e.g.,

[10], [17], [21], [7], [13], [12]).
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In [4], it is proved that the solution map of a semilinear differential inclusion is

lower semicontinuous, the assumption on the multifunction F being of continuity type

with a prescribed modulus, as in [16]. In this paper we require a weaker condition on

F then the one in [4], condition introduced in [6], and we prove, under appropriate

assumptions, the lower semicontinuity of the solution map S of (1.1).

Finally, we give an application to the propagation of continuity of the state

constrained minimum time function associated with (1.1) and the target zero. For

other results on the regularity of the minimum time function see [18], [20], [15], [14].

See also [2], [1], [3] for some regularity results of the minimum time function associated

with semilinear control systems in Banach spaces.

We present now some preliminary results. First, let us recall that by a solution

of (1.1) on [0, T ] we mean an absolutely continuous function y : [0, T ] → K which

satisfies (1.1) for almost all t ∈ [0, T ]. A solution of (1.1) on the semi-open interval

[0, T ) is defined similarly. A solution y : [0, T ) → K of (1.1) is called noncontinuable

if there is no other solution ỹ : [0, T̃ ) → K of (1.1), with T < T̃ and satisfying

y (t) = ỹ (t) for all t ∈ [0, T ).

Let K ⊆ X and ξ ∈ K. We say that η ∈ X is tangent to the set K at the point

ξ if

lim inf
h↓0

1

h
dist (ξ + hη; K) = 0.

It is easy to see that η ∈ X is tangent to K at ξ ∈ K if and only if there exist two

sequences (hn)n in R+ and (qn)n in X with hn ↓ 0, limn→∞ qn = η and such that

ξ +hnqn ∈ K for each n ∈ N. The set of all tangent vectors to K at ξ ∈ K is denoted

by TK (ξ) and is called the Bouligand tangent cone to K at ξ.

Definition 1.1. The set K is viable with respect to F if for each ξ ∈ K there exists

T > 0 such that (1.1) has at least one solution y : [0, T ] → K with y (0) = ξ.

The next viability theorem can be found, for instance, in [5].

Theorem 1.2. Let X be finite dimensional, let K ⊆ X be nonempty and locally

closed and let F : K  X be an upper semicontinuous multifunction with nonempty,

compact and convex values. A necessary and sufficient condition in order that K be

exact viable with respect to F is the tangency condition

F (ξ) ∩ TK (ξ) 6= ∅

for each ξ ∈ K.

We recall that a set K is locally closed if for each x ∈ K there exists B (x, r) such

that K ∩ B (x, r) is closed, where by B (x, r) we denoted the closed ball of center x

and radius r in X.
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We present a result concerning the differential inclusion (1.1), which belongs to

Wazewski [19] (see also [6]).

Proposition 1.3. Let the multifunction F be upper semicontinuous with compact and

convex values. Then, for every x ∈ K and for every solution y : [0, σ) → K of (1.1)

with y (0) = x, there exist p ∈ F (x) and a sequence (sn)n in (0, σ) converging to 0

such that the sequence
(

y(sn)−x

sn

)
n

converges to p.

The next result, proved in [6], will be used later in the paper.

Proposition 1.4. Let the multifunction F be lower semicontinuous with closed and

convex values and let the set K be locally closed. Then F (x) ⊆ TK (x), for every

x ∈ K, if and only if for every x ∈ K and for every p ∈ F (x), there exists a solution

y : [0, σ) → K of the differential inclusion (1.1), with y (0) = x, such that for every

sequence (sn)n in (0, σ) converging to 0, the sequence
(

y(sn)−x

sn

)

n
converges to p.

We end this section by presenting a result on the upper semicontinuity of the

solution map for a differential equation in R, that will play a key role in the proof

of the main result. We recall that a continuous function G : [0,∞) → R with

G (0) = 0 such that the differential equation z′ (t) = G (z (t)) has the null function as

the unique solution with z (0) = 0 is called a Perron function. The following result is

a consequence of [11, Lemma 3.1].

Proposition 1.5. Let G be a Perron function. Then, for any ε > 0 and any θ > 0,

there exists δ = δ (ε, θ) > 0 such that for any ξ ≥ 0, ξ < δ and any z : [0, σz) → R,

noncontinuable solution of z′ = G (z) with z (0) = ξ, we have θ < σz and |z (t)| < ε

for all t ∈ [0, θ].

2. MAIN RESULTS

Before presenting the following result, we mention that we denote by [x, y]+ the

right directional derivative of the norm calculated at x in the direction y, i.e.

[x, y]+ = lim
h↓0

‖x + hy‖ − ‖x‖

h
.

Theorem 2.1. Let X be a finite dimensional space, K a locally closed subset of X,

F : K  X a continuous multifunction, with convex and compact values. Assume

that there exists G : [0,∞) → [0,∞) a continuous function such that

(2.1) sup
p∈F (x)

inf
q∈F (y)

[x − y, p − q]+ ≤ G (‖x − y‖)

for any x, y ∈ K. Moreover, assume that, for any x ∈ K,

(2.2) F (x) ⊆ TK (x) .
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Let x0 ∈ K and let y0 : [0, T ] → K be a solution of (1.1) with y0 (0) = x0. Then, for

any x1 ∈ K, any z0 ≥ 0 with ‖x0 − x1‖ ≤ z0, there exist a noncontinuable solution

y1 : [0, σy) → K of (1.1) with y1 (0) = x1 and z1 : [0, σz) → R a noncontinuable

solution of z′ (s) = G (z (s)) with z1 (0) = z0 such that

‖y1 (s) − y0 (s)‖ ≤ z1 (s) ,

for all s ∈ [0, T ] ∩ [0, σy) ∩ [0, σz).

Proof. Let us take x0 ∈ K and let y0 : [0, T ] → K be a solution of (1.1) with

y0 (0) = x0. Since F is continuous and has compact and convex values, the solution

y0 (·) can be continued up to a noncontinuable one, denoted ỹ0 : [0, σ̃) → K, σ̃ > T .

Consider the space X =R × X × R, the set

K = {(τ, x, λ) ∈ X ; τ ∈ [0, σ̃), x ∈ K, λ ∈ R, ‖ỹ0 (τ) − x‖ ≤ λ}

and the multifunction F : K X defined by

F (τ, x, λ) = {1} × F (x) × {G (λ)} .

First, we shall prove that the tangency condition

(2.3) TK (τ, x, λ) ∩ F (τ, x, λ) 6= ∅

holds for any (τ, x, λ) ∈ K. Assume first that (τ, x, λ) ∈ K with ‖ỹ0 (τ) − x‖ = λ. By

Proposition 1.3, there exist p ∈ F (ỹ0 (τ)) and a sequence (sn)n ⊂ [0, σ̃), sn ↓ 0 such

that the sequence
ỹ0 (τ + sn) − ỹ0 (τ)

sn

converges to p. By (2.1) we have that

inf
q∈F (x)

[ỹ0 (τ) − x, p − q]+ ≤ G (‖ỹ0 (τ) − x‖) = G (λ) .

Since F (x) is compact, there exists q ∈ F (x) such that [ỹ0 (τ) − x, p − q]+ ≤ G (λ).

By (2.2) and Proposition 1.4, there exists ỹ (·) solution of (1.1) with ỹ (0) = x

such that qn := (1/sn) (ỹ (sn) − x) converges to q and x + snqn ∈ K, for every n ∈ N.

We have that

‖ỹ0 (τ + sn) − (x + snqn)‖ ≤ ‖ỹ0(τ) − x‖ + sn [ỹ0(τ) − x, p − q]+ + snrn

≤ λ + snG(λ) + snrn,

where rn =
∥∥∥ ey0(τ+sn)−ey0(τ)

sn
− p

∥∥∥ + ‖ey0(τ)−x+sn(p−q)‖−‖ey0(τ)−x‖
sn

− [ỹ0 (τ) − x, p − q]+ +

‖q − qn‖ converges to 0.

So, we obtained that

(τ + sn, x + snqn, λ + snG(λ) + snrn) ∈ K

for every n ∈ N, hence the tangency condition (2.3) holds.

If (τ, x, λ) ∈ K and ‖ỹ0 (τ) − x‖ < λ, then TK (τ, x, λ) = T[0,eσ) (τ) × TK (x) × R.

Since 1 ∈ T[0,eσ) (τ) and F (x) ⊆ TK (x), (2.3) holds too.
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Then, by Theorem 1.2, the set K is viable with respect to F . Since (0, x1, z0) ∈ K,

there exist θ > 0 and a solution w = (t, y, z) of the problem w′ ∈ F (w), on [0, θ],

with w(0) = (0, x1, z0), such that (t(s), y(s), z(s)) ∈ K for all s ∈ [0, θ]. Hence

‖ỹ0 (s) − y (s)‖ ≤ z (s)

for all s ∈ [0, θ]. By a continuation argument, there exists a pair (y, z) : [0, c) → K×R,

y (·) solution of (1.1) with y (0) = x1 and z (·) solution of z′ ∈ G (z) with z (0) = z0

satisfying

(2.4) ‖ỹ0 (s) − y (s)‖ ≤ z (s)

for all s ∈ [0, c), noncontinuable with this property. In conclusion, there exist a

noncontinuable solution y1 : [0, σy) → K of (1.1) with y1 (0) = x1 and z1 : [0, σz) → R

a noncontinuable solution of z′ ∈ G (z) with z1 (0) = z0 such that

(2.5) ‖ỹ0 (s) − y1 (s)‖ ≤ z1 (s)

for all s ∈ [0, min{σ̃, σy, σz}).

Remark 2.2. If, in Theorem 2.1, the set K is closed, then we get the following con-

clusion: for any x1 ∈ K, any z0 ≥ 0 with ‖x0 − x1‖ ≤ z0, there exist a noncontinuable

solution z1 : [0, σz) → R of z′ (s) = G (z (s)) with z1 (0) = z0 and a noncontinuable

solution y1 : [0, σy) → K of (1.1) with y1 (0) = x1, such that σy ≥ min {σ̃, σz}

and (2.5) holds for all s ∈ [0, min{σ̃, σz}). Indeed, if the solution z : [0, c) → R

of z′ ∈ G (z) with z (0) = z0, obtained in the proof of Theorem 2.1, is noncontinu-

able, then σz = c ≤ min {σ̃, σy} and (2.5) holds for s ∈ [0, σz). If z : [0, c) → R is

continuable, then we prove that c = σ̃. To this end, assume by contradiction that

c < σ̃. Then z (·) is bounded on [0, c) and there exists lims↑c z (s) ∈ R. By (2.4)

we have that y (·) is bounded on [0, c) and, since F is compact valued, we have that

there exists y∗ := lims↑c y (s). As K is a closed set, y∗ ∈ K. Moreover, by (2.4)

we get that ‖ỹ0 (c) − y∗‖ ≤ z (c). Applying now Theorem 1.2 for (c, y∗, z (c)) ∈ K

we deduce that (y, z) can be continued to the right of c with property (2.4), which

contradicts the maximality of (y, z). Hence c = σ̃. In conclusion, we have that there

exist z1 : [0, σz) → R, σz > σ̃, a noncontinuable solution of z′ (s) = G (z (s)) with

z1 (0) = z0 and y1 : [0, σy) → K, σy > σ̃, a noncontinuable solution of (1.1) with

y1 (0) = x1, such that (2.5) holds for all s ∈ [0, σ̃).

Now we give the main result of the paper on the lower-semicontinuity of the

solution map S.

Theorem 2.3. Let X be a finite dimensional space, K a locally closed subset of X,

F : K  X a continuous multifunction, with convex and compact values. Assume

that there exists G : [0,∞) → [0,∞) a Perron function such that (2.1) holds for any

x, y ∈ K. Moreover, assume that the tangency condition (2.2) is verified for any
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x ∈ K. Then, for every x0 ∈ K, for every y0 : [0, T ] → K solution of (1.1) with

y0 (0) = x0 and for every ε > 0, there exists δ > 0 such that for every x1 ∈ K with

‖x0 − x1‖ < δ, there exists a solution y1 : [0, T ] → K of (1.1) with y1 (0) = x1 such

that

‖y1 (s) − y0 (s)‖ < ε,

for all s ∈ [0, T ].

Proof. Let x0 ∈ K, y0 : [0, T ] → K solution of (1.1) with y0 (0) = x0 and let ε > 0.

The solution y0 (·) can be continued up to a noncontinuable one, denoted ỹ0 : [0, σ̃) →

K, σ̃ > T .

As K is locally closed and y0 is continuous on [0, T ], there exist η < ε and

a compact set M ⊆ K such that B (y0 (s) , η) ∩ K ⊆ M for all s ∈ [0, T ]. Let

δ := δ (η, T ) > 0 given by Proposition 1.5. Let x1 ∈ K with ‖x0 − x1‖ < δ. By

Theorem 2.1, there exist a noncontinuable solution y1 : [0, σy) → K of (1.1) with

y1 (0) = x1 and z : [0, σz) → R, a noncontinuable solution of z′ (s) = G (z (s)), with

z (0) = ‖x0 − x1‖, such that

(2.6) ‖y1 (s) − ỹ0 (s)‖ ≤ z (s)

for all s ∈ [0, min{σ̃, σy, σz}). By Proposition 1.5 we have that σz > T and

(2.7) |z (s)| < η

for all s ∈ [0, T ]. We only have to show that σy > T . Indeed, let us assume by

contradiction that σy ≤ T . By (2.6) we have that y1 (·) is bounded on [0, σy) and,

since F is compact valued, we have that there exists lims↑σy
y1 (s). Denote this limit by

y∗
1. On the other hand, by (2.6) and (2.7) we have that y1 (s) ∈ B (y0 (s) , η)∩K ⊆ M

for all s ∈ [0, σy), and, since M is a compact subset of K, passing to the limit for

s ↑ σy we obtain that y∗
1 ∈ K. Using this observation, since K is viable (by Theorem

1.2), we conclude that y1 can be continued to the right of σy, which contradicts the

fact that y1 is noncontinuable. The proof is complete.

When K is a closed subset of X we obtain a stronger version of Theorem 2.3.

Theorem 2.4. Let X be a finite dimensional space, K a closed subset of X, F : K  

X a continuous multifunction, with convex and compact values. Assume that there

exists G : [0,∞) → [0,∞) a Perron function such that (2.1) holds for any x, y ∈ K.

Moreover, assume that the tangency condition (2.2) is verified for any x ∈ K. Then,

for every ε > 0, there exists δ > 0 such that, for every x0, x1 ∈ K, with ‖x0 − x1‖ < δ

and for every y0 : [0, T ] → K solution of (1.1) with y0 (0) = x0, there exists a solution

y1 : [0, T ] → K of (1.1) with y1 (0) = x1 such that

‖y1 (s) − y0 (s)‖ < ε,
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for all s ∈ [0, T ].

Proof. Fix T > 0 and ε > 0 and δ (ε, T ) > 0 be given by Proposition 1.5. Let

x0, x1 ∈ K with ‖x0 − x1‖ < δ and y0 : [0, T ] → K solution of (1.1) with y0 (0) = x0.

By Remark 2.2, there exist y1 : [0, σy) → K a noncontinuable solution of (1.1) with

y1 (0) = x1 and z1 : [0, σz) → R a noncontinuable solution of z′ (s) = G (z (s)) with

z1 (0) = ‖x0 − x1‖, satisfying σy ≥ min {T, σz} and ‖y0 (s) − y1 (s)‖ ≤ z1 (s) for all

s ∈ [0, min{T, σz}). By Proposition 1.5, we have that T < σz, hence T ≤ σy too, and

|z1 (s)| < ε for all s ∈ [0, T ]. This achieves the proof.

3. APPLICATION

In this section we prove a result on the propagation of continuity of the state

constrained minimum time function.

Let F : X  X be a multifunction with nonempty values and consider the

differential inclusion

(3.1) y′ (t) ∈ F (y (t)) .

Let K be a closed nonempty subset of X with 0 ∈ K. The K-constrained minimum

time function T : K → [0, +∞] is defined by

T (x) = inf{T ≥ 0; ∃y(·) solution of (3.1) satisfying y(t) ∈ K ∀t ∈ [0, T ],

y(0) = x, y(T ) = 0}.

If no solution from x can reach zero then T (x) = +∞. We denote by R the set of

all points x ∈ K such that T (x) < +∞.

We shall consider the following hypothesis:

(H) For any ε > 0 there exists η (ε) > 0 such that any point x ∈ X\{0} with

‖x‖ < η (ε) can be transferred to 0 by solutions of (1.1) in a time t ≤ ε.

We say that the control system (1.1) which satisfies (H) is small time locally

controllable. In [14] it is proved that if F is upper semicontinuous with convex and

compact values and there exist r, c, γ > 0 such that, for all x ∈ K ∩ B (0, r),

inf
u∈F (x)∩TK(x)

〈x, u〉 ≤ c ‖x‖2 − γ ‖x‖ ,

then T (·) is locally proto-Lipschitz, that is, on a neighborhood of the origin in K,

T (x) ≤ M ‖x‖ for some M > 0, which clearly implies (H).

Theorem 3.1. Let X be a finite dimensional space, K a closed subset of X with

0 ∈ K, F : X  X a continuous multifunction, with convex and compact values.

Assume that there exists G : [0,∞) → [0,∞) a Perron function such that (2.1) holds

for any x, y ∈ K. Moreover, assume that the tangency condition (2.2) is verified for

any x ∈ K. Assume that (H) holds and that 0 ∈ F (0). Then the reachable set R is
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open in K and the minimum time function T (·) is locally uniformly continuous on

R.

Proof. Let x ∈ R and ε > 0. Let z1, z2 in K intersected with the closed ball of center

x and radius δ (η (ε) , T (x)) (given by Proposition 1.5) and such that

(3.2) ‖z1 − z2‖ < δ (η (ε) , T (x) + ε) .

Let yx be the optimal solution for x, that is yx (0) = x and yx (T (x)) = 0. By

Theorem 2.4, there exists y1 : [0, T (x)] → K a solution of (3.1) with y1 (0) = z1 such

that

‖y1 (t) − yx (t)‖ < η(ε),

for all t ∈ [0, T (x)]. It follows that ‖y1 (T (x))‖ < η (ε). By (H) we have that

y1 (T (x)) ∈ R which implies that z1 ∈ R and T (y1 (T (x))) < ε. Applying now

Bellman optimality principle, we obtain that

(3.3) T (z1) ≤ T (x) + ε.

Now let yz1
be the optimal solution for z1. As 0 ∈ F (0), we can extend yz1

on the

whole interval [0,∞), putting yz1
(t) = 0 for t > T (z1). Applying again Theorem

2.4, this time for z1, z2 and yz1
, and taking into account (3.2), there exists yz2

:

[0, T (x) + ε] → K solution of (3.1) with yz2
(0) = z2 such that

‖yz2
(t) − yz1

(t)‖ < η (ε)

for every t ∈ [0, T (x) + ε]. Taking t = T (z1), by (3.3), we have

‖yz2
(T (z1))‖ < η (ε) .

By (H) and by Bellman optimality principle we obtain that T (z2) ≤ T (z1) + ε.

Switching the roles of z1 and z2 we obtain that

|T (z1) − T (z2)| ≤ ε,

which proves the theorem.
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