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ABSTRACT. In this paper, we provide an existence theorem for a unique fixed point for a class
of increasing operators without continuity and compactness, and apply it to discuss existence and

uniqueness of positive solutions of third order boundary value problems with p-Laplacian.
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1. INTRODUCTION

Third order boundary value problems (BVPs) arise in variety of different areas of
applied mathematics and physics. In recent years, many authors have studied them,
see, for example, [1,2,4-9] and the references therein. In this paper, we consider the

following third order BVPs with p-Laplacian:

(1.1) { (dp(u)" +a(t)f(u) =0, 0 <t <1,
u(0) = &u(n) + A, v/ (0) = /(1) =0,

where ¢,(z) = |z|P72z, p>1, £€10,1), n €[0,1], A >0, and a: (0,1) — [0, +00)
and f : (0,+00) — [0,+00) are continuous. We call u € C'[0, 1] a positive solution
of BVP (1.1) if u(t) > 0 for t € [0,1] but wu(t) is not identically vanishing in [0, 1],
and wu(t) satisfies (1.1). In Eq. (1.1), the function a(t) may be singular at ¢ = 0 and

t = 1, and our nonlinear term f(u) may be singular at v = 0.

When the nonlinearity f(x) is regular at x = 0, [7] discuss the uniqueness of
positive solutions and the dependence of positive solutions on the parameter A for
BVP (1.1). However, to the best of our knowledge, for the nonlocal BVPs with
nonhomogeneous BCs, results on the uniqueness of positive solutions are rare in the
literature when nonlinearities involved in the associated problems are singular in the

phase variable.

In this paper, we first present an existence theorem for a unique fixed point for

a class of increasing operators without continuity and compactness, and apply it to
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investigate the existence and uniqueness of positive solutions for the nonlocal singular
BVP (1.1).

Here we briefly recall various basic definitions and facts.

Let F be a real Banach space and P a nonempty convex closed subset of £. We

say P is a cone in F if P satisfies the following two conditions:
(i) Ax € P for any x € P and \ > 0;
(ii) x, —x € P implies x = 6, where 6 is the zero element of E.

The Banach space E can be partially ordered by a cone P, that is, x < y if and
only if y—x € P. Recall that a cone P in E is normal if there exists a constant N > 0
such that ||z|| < N||ly|| when 8 < z < y. The smallest N satisfying the condition is

said to the normality constant of P.

Given h > 0, that is, h > 0 and h # 0, we let
P, = {x|x € FE and there exist A(z), u(z) > 0 such that A(z)h <z < p(z)h}.
It is easy to see that P, C P. It is clear that for any x,y € P, and k > 0, we have

r+1y € P, kr e P, and there exist A, u > 0 such that \z <y < uz.

Consider the linear space C|a, b] of all real-valued continuous functions z(t) de-

fined on [a,b]. Cla,b] is a Banach space when given the norm

= ).
o] = max Ja(t)

Set P = {z|z € Cla,b], x(t) > 0, t € [a,b]}. Then P is a normal cone in C|a, ]
whose normality constant is 1.

Let E be a real Banach space, P a cone in E, D a subset of E. We say an
operator A : D — FE is increasing on D if x1 < xo implies that Ax; < Az, for any
X1, To € D.

See [3] for a detailed exposition.

2. FIXED POINT THEOREMS FOR INCREASING OPERATORS
In this section, we give a fixed point theorem for increasing operators.

Theorem 2.1. Let E be a real Banach space, P a normal cone in E, h > 0, w € Py,
where 0 is the zero element of E. Assume that A : P — P is an increasing operator
satisfying A(tx) > t*Ax for any x € P and t € (0,1) (a > 1). The operator C' is
gwen by Cu = Au+w, u € P. If there exists vy € Py, such that

(i) Cvg < wvg;

(it) Avo < Pw, where 3 € (0, -15);
then
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(a) C has a unique fized point x* in [0,vy], and x* € Py; and there exists vy € P,
with vy, > vy such that C" has no fized points in [0, v)]\[0, vo);

(b) for any xo € [0,v0], writing x,+1 = Cxpy, n=0,1,2,..., we have lim z, =
x*. Moreover, there exist [,y € (0,1) such that ||z, — z*|| < 2N(1 —1")|lvo|, n =
1,2,..., where N is the normality constant of P.

Proof. We have
Cu € Py, for any u € [0, vy].

For, by w € Py, there exist A, u > 0 such that Ah < w < ph. Hence for any u € [0, vy,
since Au € P, we obtain, relating to the increasing property of A, that

M<w<Au+w=Cu<Avy+w < pw+w= B+ Dw < (B+1)uh

We also have there exists v € (0,1) such that
C(lu) > 1"Cwu for any [ € (0,1) and u € [0, vy].

* is continuous on [0,1] and 3 € (0, =), there

In fact, since the function <p( ) =
exists y € (0,1) such that ;1= > . It is easily verified that

l“’—l
> gl

o o for any 1 € (0,1),

la m > 3,80 Avg < fw < l{j llww In virtue of the increasing property of A, we

have for any u € [0, vo], Au < Avy < L=Lw, that is, [*Au 4+ w > [7(Au + w), hence

-l

hence 4

Cllu) = A(lu) +w > I"Au+w > 1" (Au+ w) = " Cu.

Set vp,11 = Cv,, n=0,1,2,.... By (i), it follows that v; = Cvy < vy. Since
A is increasing, C' is also increasing, hence v, ; < v,, n = 0,1,2,.... Thus v, €
[0,v0], n=0,1,2,....

Next we shall prove (a).

Ezistence. There exists ¢ > 0 such that C'vg > cvy since Cvg,vg € P,. Taking
a sufficiently small number [, € (0,1) such that lg_lc > 1 and setting ug = lovg, we
have Cug = Clovg) > 1JCvy > levy = 17 clgvg > lovg = ug. Set tyq = Cyy, 1 =
0,1,2,.... Since ug < Cug = u1, v1 < vy, ug = lovg < vy and C' is increasing, by

induction, we have u, < U,y1, Upi1 < Up, Up < U, n=20,1,2,... that is,
up Sup <o S U < Su < <o < .

We also have
Uy = CUQ = C(ZO'U()) Z lgC’U() = ngl,
Uy = Cuy > C(IJvy) > (13)7Cvy = 13 s,

and so on and so forth, u, > lgnvn, n=345,....
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Therefore
lgnvn S U, S un-l—p S Un-‘,—p S Un,

for any positive integers n and p. So we have
0 < Upyp — Up < Uy — Zgnvn <(1- lgn)vo,
hence
ltnp = unll < NI =15 )woll = N(1 =15 )|[voll = 0 as n — oo,
which indicates that {u,} is a Cauchy sequence. And we have
0 < v, —Vpyp < U, — lgnvn <(1- lgn)vo,

hence
[Vn4p = Vall = [0 = Vagpll < N(1=13")[[vo]| — 0 as n — o0,

which indicates that {v,} is also a Cauchy sequence. Set & = lim w, and v = lim v,,.
n—oo n—oo

Since
0 < vy —tp < vp— 17 v, < (1 =17 )vp,
v — || < N(1—1")|Jvo]| — 0 as n — oo.

Thus ||a — 0| = lim |Ju, —v,|| = 0, that is, u = v. Write * = u = 0. Since u,, < v,
for any positive i?l?(;.;;ers m and n, x* < wv, asm — oo and u,, < x* asn — oco. Hence
u, < ¥ < v, for any positive integer n. By the increasing property of C, we have
Upr1 < Cx* < vppq. So o* < Co* < z*) that is, Cz* = z*. Thus z* is a fixed point
of C. It is clear that 2* € [0, vp] and z* = Cz* € P,

Uniqueness. Suppose that y* € [0, v] is also a fixed point of C'. Since z*, y* € P,
there exists ¢ > 0 such that z* > qy*. Write qo = sup{q|q > 0, =* > qy*}. It is clear
that ¢o > 0 and z* > qy*. If ¢ < 1, then z* = Ca* > C(qy*) > ¢JCy* = )y,
which is contrary to the definition of gy since ¢j > qo. Therefore gy > 1. So we have
x* > y*. Similarly it follows that y* > x*. Thus x* = y*.

We can also obtain that there exists v € P, with v > vy such that C has a

unique fixed point in [, v}]. Since hr{l s=1 _ _1

G s%=s T a-1?

there exists sy > 1 such that

80—1

and -
o — 8§ — So

508 <

> .

so—L qy, hence
85—50

s§ Avg +w < so(Avg + w). Again by (i) and the property of A, it follows that

Write v, = soup. It is clear that v > vy. By (ii), we have Avy < fw <

1 1
Cuy = C(soug) = A(sovg) + w = s§ - S—QA(SOUO) +w < SS‘A(S— - Sovp) + W
0 0

= s§Avy + w < so(Avg + w) = 50Cvy < sov9 = .
We also have Av) = A(sogvg) = s§ - %A(sovo) < SS{A(% - Sovp) = s§Avy < (s§f)w.

Therefore v} satisfies (i) and (ii) which vy satisfies. As the above proof, C' has a
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unique fixed point z* in [#,vy]. Since z* € [0, v] C [0, v}] is a fixed point of C, we

must have z* = z*. Thus C has no fixed points in [0, v{]\[0, vo).
At last, we shall prove (b).

For any xy € [0, v], since 1 = Czg € P, v1 = Cvg € P, and z* € P, there
exists [ € (0,1) such that ["v; < z; = Cxg < Cvy = vy and Vv, < 1* = Cz* < Coy =

v1. By induction, it easily follows that
Do, <@ <v, and v, < 2" <w,, n=1,2,....

Because P is normal and lim v, = lim [""v, = z*, it follows that lim z, = z* by

n—oo n—oo n—oo

the property of normal cones. We also have for any positive integer n,

O0<v,—2p<vp—1"v, <1 =1 )vgand 0 < v, —2* < v, — 1" v, < (1 -1 )y,

hence

lzn =2 || < lJon—all+llva—2"|| < NI|(L=0")ooll+ N[ (1= )wol| = 2N (1=T"") w0l
]

Remark 2.2. In Theorem 2.1, if £ = C[a,b] and P = {z|z € E,x(t) > 0,t € [a,b]},
then “||z, — z*|] < 2N(1 — I")|lvo||” in (b) can be changed into “||z, — z*|| <

(1 —1")||lvo||”. In fact, we have
Do, < < vp and o, < 2 < vp,n = 1,2,....
Foralln=1,2,...,
Ty — 2" <vp — 10, < (1 =10y,

that is,

T (t) — 2 (t) < (1= 1" wo(t), t € [a, b).
Similarly we have

() — zn(t) < (1= 1" wp(t), t € [a,b).
Hence

lzn(t) — 2*(t)] < (1= 1" )vo(t), t € [a,b].
So

2, —a*[| = sup |z, (8)—a* ()] < (1=1") sup wo(t) = (1=1"") sup [jvol|, n=1,2,....
te(a,b] te(a,b] te(a,b]
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3. THIRD ORDER BOUNDARY VALUE PROBLEMS WITH
p-LAPLACIAN

Now we shall discuss a class of third order boundary value problems using the
conclusions in Section 2.

Let £ =CI[0,1], P={zlx € E, z(t) >0, t € [0,1]} and h(t) =1, t € [0,1]. We
have h > 0, where 0 is the zero element of E. And let

t(1 — 0<t<s<1
G(t,s) = (1=s), 0st<s<l,
s(1—1),0<s<t<1
and m = sup fol G(r,s)a(s)ds > 0.
rel0,1]
Now we shall discuss a class of third order boundary value problems using the
conclusions in Section 2.
Let E=C[0,1], P ={z|z € E, z(t) >0, t € [0,1]} and h(t) =1, t € [0,1]. We
have h > 0, where 0 is the zero element of £. And let

Git.s) = t(l—s), 0<t<s<l1,
] s(1—t), 0<s<t<1

and m = sup fol G(r,s)a(s)ds > 0.
rel0,1]

Theorem 3.1. Suppose that f : (0, +00) — [0, +00) is an increasing function satisfy-

ing that f(ku) > ka1 f(u) for any k € (0,1) and u € (0,+00) (a > 1). If there exists
i »

K > m such that f(K) < %[m]rl, writing vo(t) = K, t € [0,1],

then BVP (1) has a unique solution z* in [0,vo], and z* € P,. And there ezists

Uy € Py with vy > vy such that BVP (1) has no solutions in [0, 0y]\[0, vo]. Moreover,
for any xo € [0, vy], setting

taalt) = /t% (/ G Sals) [ (o)) dr
r5 [on ([ v ) ar 2

te€[0,1], n=0,1,2,..., we have the sequence {z,(t)} converges uniformly to x*(t)
in [0,1], and there ezist I,y € (0,1) such that m[g:f] |z, (t) —2* ()| < (1 = 1)K
tel0,

Proof. Define the operators A and C on P as follows.

) = [ ([ o s)a(s)f(u(s))ds) dr

([ ovomonaon)s

(Cu)(t) = (Au)(t)
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t €10,1], u € P, where w(t) = ﬁ, t € 0,1].

It is obvious that w € P,

We have Au € P for any u € P. Since G(r,s) > 0, (r,s) € [0,1] x [0,1], A is an
increasing operator. For any u € P, Au > Af > 60, that is, Au € P.

It is easily verified that A(ku) > k*Au for any k € (0,1) any u € P.

We have C'vy < vg. In fact, for any ¢ € [0, 1],

(Co)(t) = (Avo)(t) + w(t)

= [an( [ ctnsrtrsiss) ar
rrs [on ([ aosasttsnas ) ar+ 12
= [o( [ crsasimias) ar
1-g/¢q(/G” a0 )d”ﬁ

— ql/qﬁq Ydr + f(K e /qu d+—€
&n A 1-&+&n A
< [mf(K)" <1+1—_5)+1_g<(a—1)(1—5+£n) —f 1-¢
A
- ail Q<K_UO()

Next we shall prove that there exists 5 € (0, ﬁ) such that Avy < fw. For any
€ [0,1],

e = [ o[ G Sals) [0 ()ds )

s [a( / Sl anls)ds e < 2

Since (Avp)(t) is continuous on [0, 1], m f{( vp)(t) < =15 - 12, hence there exists
L
—£’

a—1 5
B € (0,-15) such that I{ézﬁc(Avo)( ) < ﬁ so (Avy)(t) < B+ 25 = pw(t) for any
t € [0, 1], that is, Avg < /éw.

Now all conditions of Theorem 2.1 are satisfied. Thus C' has a unique fixed point
x* in [0, vg], and x* € Py; and there exists vy € P, with 7y > vy such that C' has no
fixed points in [0, vo]\[0, vo]. For any zq € [0, vo], writing z,41 = Cx,, n =10,1,2,...,
we have le xr, = x*. Relating to Remark 2.2, there exist I,y € (0,1) such that
low — ] < (1= ") lwoll < (1= 0")E, n=1,2,....

It is easily verified that fixed points of C' are identical to solutions of BVP (1).
So we complete the proof. O
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Remark 3.2. We may give an example. For the following third order BVP with

p-Laplacian

K

[1]
2]

(o))" +u?=0, 0<t <1,
u(0) = su(3) + 3, w'(0) =u/(1) =0,
= 2 satisfies conditions in Theorem 3.1.
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