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ABSTRACT. In this paper, we establish some comparison theorems for the oscillation of second

order neutral difference equations of mixed type

∆ (an∆(xn + bnxn−σ1
+ cnxn+σ2

)α) + qnx
β
n−τ1

+ pnx
β
n+τ2

= 0,

where α and β are ratio of odd positive integers, σ1, σ2, τ1 and τ2 are positive integers. Our results

are new even if pn = cn = 0. Examples are provided to illustrate the results.
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1. INTRODUCTION

In this paper, we shall study the oscillatory behavior of the second order nonlinear

neutral difference equation of mixed type

(1.1) ∆ (an∆ (xn + bnxn−σ1
+ cnxn+σ2

)α) + qnx
β
n−τ1 + pnx

β
n+τ2 = 0,

where n ≥ n0 ∈ N, subject to the following conditions:

(H1) {an} is a positive sequence for all n ≥ n0 and
∞
∑

n=n0

1

an
= ∞;

(H2) {bn} and {cn} are nonnegative sequences such that 0 ≤ bn ≤ b and 0 ≤ cn ≤ c,

where b and c are constants;

(H3) {pn} and {qn} are nonnegative real sequences and not eventually zero for many

values of n;

(H4) σ1, σ2, τ1 and τ2 are nonnegative integers and α and β are ratio of odd positive

integers.

We put zn = (xn + bnxn−σ1
+ cnxn+σ2

)α. By a solution of equation (1.1), we mean a

real sequence {xn} defined for all n ≥ n0−max{σ1, τ1}, and satisfies equation (1.1) for
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all n ≥ n0. As is customary, a solution {xn} of equation (1.1) is said to be oscillatory if

it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

Recently, there has been much research activity concerning the oscillation and

nonoscillation of solutions of various types of second order difference equations be-

cause such equations have applications in various problems of physics, biology, econ-

omy and many other fields. We refer the reader to [1,2] and the references cited

therein.

In [3, 4] the authors studied the oscillation of mixed type equations of the form

(1.2) ∆2 (xn + axn−σ1
+ bxn+σ2

) = qnxn−τ1 + pnxn+τ2

and

(1.3) ∆2 (xn + axn−σ1
+ bxn+σ2

) + qnxn−τ1 + pnxn+τ2 = 0

with {qn} and {pn} are σ1- periodic functions.

In [10] the author discussed the oscillation of mixed type equations of the form

(1.4) ∆2 (xn + axn−σ1
+ bxn+σ2

) ± (qnxn−τ1 + pnxn+τ2) = 0

In [5, 9] the author studied the oscillatory behavior of higher order mixed type

neutral difference equations of the form (1.4). Motivated by the above observation

in this paper we establish sufficient conditions for the oscillation of all solutions of

equation (1.1). The results obtained here generalize and improve the existing litera-

ture [3, 4, 7] . Further when α = 1, cn ≡ 0 and pn ≡ 0, our results improve some of

the results established for the equation

(1.5) ∆ (an∆ (xn + bnxn−σ1
)) + qnxβ

n−τ2 = 0

see, for example [6, 8, 11, 13–15].

In section 2, we present some new sufficient conditions for the oscillation of all

solutions of equation (1.1). In section 3 we provide some examples to illustrate the

main results.

2. OSCILLATION RESULTS

In this section, we establish some new oscillation criteria for equation (1.1).

Throughout this paper, we denote

Q∗

n = Qn + Pn,

Qn = min {qn, qn−σ1
, qn+σ2

} ,

Pn = min {pn, pn−σ1
, pn+σ2

} ,
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and

Rn =
n−1
∑

s=n0

1

as
.

To prove our main results, we need the following lemmas.

Lemma 2.1. Let A ≥ 0, B ≥ 0, γ ≥ 1. Then

(A + B)γ ≤ 2γ−1 (Aγ + Bγ) .

Proof. (i) If A = 0 or B = 0 then the proof is obvious.

(ii) Suppose that A > 0, B > 0. Define the function by

g(u) = uγ, u ∈ (0,∞).

Then g′′(u) = γ(γ − 1)uγ−2 ≥ 0 for u ≥ 0. Thus, g is a convex function. By the

definition of convex function, for λ = 1/2, A, B ∈ (0,∞), we have

g

(

A + B

2

)

≤
g(A) + g(B)

2

This completes the proof.

Lemma 2.2. Assume A ≥ 0, B ≥ 0, 0 < γ ≤ 1. Then

(A + B)γ ≤ Aγ + Bγ .

Proof. (i) If A = 0 or B = 0 then the proof is obvious.

(ii) Assume that A > 0, B > 0. Define

g(A, B) = Aγ + Bγ − (A + B)γ, A, B ∈ (0,∞).

Fix A. Then for 0 < γ < 1

dg(A, B)

dB
= γBγ−1 − γ(A + B)γ−1 = γ[Bγ−1 − (A + B)γ−1] ≥ 0,

Thus, f is nondecreasing with respect to B, which yields g(A, B) ≥ 0. The proof of

the lemma is complete.

Theorem 2.3. Assume that β ≥ 1 and

(2.1) ∆

(

yn + bβ yn−σ1
+

cβ

2β−1
yn+σ2

)

+
Q∗

n

4β−1
R

β/α
n−τ1 y

β/α
n−τ1 ≤ 0

has no eventually positive solution for all sufficiently large n ≥ n0. Then every

solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of gen-

erality, we may assume that there is an integer n1 ≥ n0 such that xn > 0, xn−σ1
>

0, xn+σ2
> 0, xn−τ1 > 0, and xn+τ2 > 0 for all n ≥ n1. Then zn > 0 for all n ≥ n1.

Inview of equation (1.1), we obtain

(2.2) ∆(an∆zn) = −qnxβ
n−τ1 − pnxβ

n+τ2 ≤ 0, n ≥ n1.
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Thus, an∆zn is nonincreasing, and it is easy to conclude that either ∆zn > 0 or

∆zn < 0 eventually. If there exists a n2 ≥ n1 such that ∆zn2
< 0, then from (2.2),

we see that

an∆zn ≤ an2
∆zn2

< 0, n ≥ n2.

Summing the last inequality from n2 to n − 1, we obtain

zn ≤ zn2
+ an2

∆zn2

n−1
∑

s=n2

1

as
.

Letting n → ∞, we obtain zn → −∞ due to (H1) which is a contradiction. Thus,

there is an integer n2 ≥ n1such that

(2.3) ∆zn > 0

for all n ≥ n2. From equation (1.1) for sufficiently large n, we have

∆(an∆zn) + qnxβ
n−τ1 + pnxβ

n+τ2 + bβ∆(an−σ1
∆zn−σ1

) + bβqn−σ1
xβ

n−τ1−σ1

+bβpn−σ1
xβ

n+τ2−σ1
+

cβ

2β−1
∆(an+σ2

∆zn+σ2
) +

cβ

2β−1
qn+σ2

xβ
n−τ1+σ2

(2.4) +
cβ

2β−1
pn+σ2

xβ
n+τ2+σ2

= 0.

Using Lemma 2.1, we have from (2.4)

∆(an∆zn) + bβ∆ (an−σ1
∆zn−σ1

) +
cβ

2β−1
∆ (an+σ2

∆zn+σ2
) +

Qn

4β−1
z

β/α
n−τ1

(2.5) +
Pn

4β−1
z

β/α
n+τ2 ≤ 0.

From (2.3), we have zn+τ2 ≥ zn−τ1 . Then from (2.5), we obtain

(2.6) ∆(an∆zn) + bβ∆ (an−σ1
∆zn−σ1

) +
cβ

2β−1
∆ (an+σ2

∆zn+σ2
) +

Q∗

n

4β−1
z

β/α
n−τ1 ≤ 0.

It follows from (2.2) that

(2.7) zn = zn2
+

n−1
∑

s=n2

as∆zs

as

≥ an∆znRn.

Set yn = an∆zn > 0. From (2.6) and (2.7), we see that {yn}is an eventually positive

solution of

∆

(

yn + bβyn−σ1
+

cβ

2β−1
yn+σ2

)

+
Q∗

n

4β−1
R

β/α
n−τ1 y

β/α
n−τ1 ≤ 0,

which is a contradiction. This completes the proof.
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Theorem 2.4. Assume that β ≥ 1 and

(2.8) ∆un +
Q∗

n R
β/α
n−τ1

4β−1

(

1 + bβ +
cβ

2β−1

) u
β/α
n+σ1−τ1 ≤ 0

has no eventually positive solution for all sufficiently large n ≥ n0. Then every

solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of gen-

erality, we may assume that there is an integer n1 ≥ n0 such that xn > 0, xn−σ1
>

0, xn+σ2
> 0, xn−τ1 > 0, xn+τ2 > 0 for all n ≥ n1. Then zn > 0 for all n ≥ n1.

Proceeding as in the proof of Theorem 2.1, we obtain that yn = an∆zn > 0 is nonin-

creasing and satisfies inequality (2.1). Define

un = yn + bβyn−σ1
+

cβ

2β−1
yn+σ2

> 0.

Then

un ≤

(

1 + bβ +
cβ

2β−1

)

yn−σ1
.

Substituting the above inequality into (2.1), we see that {un} is an eventually positive

solution of (2.8). This contradiction completes the proof.

From Theorem 2.2 and [10] and [12], we establish the following corollaries.

Corollary 2.5. Assume α = β ≥ 1, and σ1 − τ1 < 0 holds. If

(2.9) lim inf
n→∞

n−1
∑

s=n+σ1−τ1

Q∗

s Rs−τ1 > 4β−1

(

1 + bβ +
cβ

2β−1

)(

τ1 − σ1

1 + τ1 − σ1

)1+τ1−σ1

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Theorem 2.2 and a resulting in [10].

Corollary 2.6. Assume 1 ≤ β < α and σ1 − τ1 < 0 holds. If

(2.10)
∞
∑

n=n0

Q∗

s R
β/α
s−τ1 = ∞

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Theorem 2.2 and [12, Theorem 1].

Corollary 2.7. Assume 1 ≤ β < α and σ1 − τ1 < 0 holds. If there exists a λ >
1

(τ1−σ1)
log (β/α) such that

(2.11) lim inf
n→∞

[

Q∗

n R
β/α
n−τ1 exp

(

−eλn
)

]

> 0

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Theorem 2.2 and [12, Theorem 2].
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Theorem 2.8. Assume that β ≥ 1 holds and

(2.12) ∆wn −
Q∗

n+σ1

4β−1

(

1 + bβ +
cβ

2β−1

)

(

n−1+σ1
∑

s=n1

1

as−σ1

)

w
β/α
n+σ1−τ1 ≥ 0

has no eventually positive solution for sufficiently large n1 ≥ n0. Then every solution

of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we obtain (2.2)–(2.6) for all n ≥

n2 ≥ n1. Summing (2.6) from n to ∞ yields

(2.13) an∆zn + bβan−σ1
∆zn−σ1

+
cβ

2β−1
an+σ2

∆zn+σ2
≥

∞
∑

s=n

Q∗

s

4β−1
z

β/α
s−τ1 .

Since an∆zn > 0 and nonincreasing, we have

(2.14) an∆zn+bβan−σ1
∆zn−σ1

+
cβ

2β−1
an+σ2

∆zn+σ2
≤

(

1 + bβ +
cβ

2β−1

)

an−σ1
∆ zn−σ1

.

Inview of (2.13) and (2.14), we have

(2.15) ∆zn−σ1
≥

1
(

1 + bβ +
cβ

2β−1

)

an−σ1

∞
∑

s=n

Q∗

s

4β−1
z

β/α
s−τ1 .

Summing (2.15) from n2 to n − 1, we see that

zn−σ1
≥

n−1
∑

s=n2

1
(

1 + bβ +
cβ

2β−1

)

as−σ1

∞
∑

t=s

Q∗

t

4β−1
z

β/α
t−τ1

≥
1

4β−1

(

1 + bβ +
cβ

2β−1

)

n−1
∑

s=n2

Q∗

s z
β/α
s−τ1

s−1
∑

t=n2

1

at−σ1

.

Thus

zn ≥
1

4β−1

(

1 + bβ +
cβ

2β−1

)

n+σ1−1
∑

s=n2

Q∗

s z
β/α
s−τ1

s−1
∑

t=n2

1

at−σ1

.

Let

wn =
1

4β−1

(

1 + bβ +
cβ

2β−1

)

n+σ1−1
∑

s=n2

Q∗

s z
β/α
s−τ1

s−1
∑

t=n2

1

at−σ1

> 0.

Then zn ≥ wn, and

∆wn =
1

4β−1

(

1 + bβ +
cβ

2β−1

)Q∗

n+σ1
z

β/α
n+σ1−τ1

n+σ1−1
∑

t=n2

1

at−σ1

∆wn ≥
Q∗

n+σ1

4β−1

(

1 + bβ +
cβ

2β−1

)

(

n+σ1−1
∑

t=n2

1

at−σ1

)

w
β/α
n+σ1−τ1 .
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Hence we find that {wn} is an eventually positive solution of (2.12). This contradiction

completes the proof.

Corollary 2.9. Assume that β = α and σ1 − τ1 > 0, and

lim inf
n→∞

n+σ1−τ1−1
∑

s=n

Q∗

s+σ1

s+σ1−1
∑

t=n1

(

1

at+σ1

)

(2.16) > 4β−1

(

1 + bβ +
cβ

2β−1

)(

σ1 − τ1

1 + σ1 − τ1

)1+σ1−τ1

for all sufficiently large n1 ≥ n0. Then every solution of equation (1.1) is oscillatory.

Next we present oscillation criteria for equation (1.1) when 0 < β < 1.

Theorem 2.10. Assume that 0 < β < 1 and

(2.17) ∆
(

yn + bβyn−σ1
+ cβyn+σ2

)

+ Q∗

n R
β/α
n−τ1 y

β/α
n−τ1 ≤ 0

has no eventually positive solution for all sufficiently large n ≥ n0. Then every

solution of equation (1.1) is oscillatory.

Proof. The proof is exactly the same as in Theorem 2.1 except here we have to use

Lemma 2.2 instead of Lemma 2.1, and therefore the details are omitted.

Theorem 2.11. Assume that 0 < β < 1 and

(2.18) ∆un +
Q∗

n R
β/α
n−τ1

1 + bβ + cβ
y

β/α
n+σ1−τ1 ≤ 0

has no eventually positive solution for all sufficiently large n ≥ n0. Then every

solution of equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.2 by using Lemma 2.2 instead of

Lemma 2.1, and hence the details are omitted.

Similar to Corollaries 2.3 to 2.5, we obtain the following.

Corollary 2.12. Assume α = β < 1, and σ1 − τ1 < 0 holds. If

(2.19) lim inf
n→∞

n−1
∑

s=n+σ1−τ1

Q∗

s Rs−τ1 >
(

1 + bβ + cβ
)

(

τ1 − σ1

1 + τ1 − σ1

)1+τ1−σ1

then every solution of equation (1.1) is oscillatory.

Corollary 2.13. Assume that 1 > β > α, and σ1 − τ1 < 0 holds. If

(2.20)
∞
∑

n=n0

Q∗

n R
β/α
n−τ1 = ∞

then every solution of equation (1.1) is oscillatory.
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Corollary 2.14. Assume that 1 > β > α, and σ1 − τ1 < 0 holds. If there exists a

λ >
1

τ1 − σ1
log(β/α) such that

(2.21) lim inf
n→∞

[

Q∗

n R
β/α
n−τ1 exp

(

−eλn

)

]

> 0

then every solution of equation (1.1) is oscillatory.

Theorem 2.15. Assume that 0 < β < 1, holds and

(2.22) ∆wn −
Q∗

n+σ1

(1 + bβ + cβ)

(

n+σ1−1
∑

s=n1

1

as−σ1

)

w
β/α
n+σ1−τ1 ≥ 0

has no eventually positive solution for sufficiently large n1 ≥ n0. Then every solution

of equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.6 and hence the details are omitted.

Corollary 2.16. Assume that 0 < β < 1 and α = β, σ1 − τ1 > 0 holds. If

(2.23) lim inf
n→∞

n+σ1−τ1−1
∑

s=n

Q∗

s+σ1

s+σ1−1
∑

t=n1

(

1

at−σ1

)

>
(

1 + bβ + cβ
)

(

σ1 − τ1

1 + σ1 − τ1

)1+σ1−τ1

for all sufficiently large n1 ≥ n0 then every solution of equation (1.1) is oscillatory.

Proof. The proof is similar to that of Corollary 2.7 and hence we omit the details.

3. EXAMPLES

In this section we present some examples to illustrate the main results.

Example 3.1. Consider the difference equation

(3.1) ∆2 (xn + bxn−σ1
+ cxn+σ2

) +
q

n
xn−τ1 +

p

n
xn+τ2 = 0, n ≥ 1,

where b, c, q and p are positive constants and τ1−σ1 > 0. Here an = 1, bn = b, cn = c,

qn = q
n
, pn = p

n
and α = β = 1. Then Qn = q

(n+σ2)
, Pn = p

n+σ2

and Q∗

n = p+q
(n+σ2)

. Since

lim inf
n→∞

n−1
∑

s=n+σ1−τ1

Q∗

sRs−τ1 = lim inf
n→∞

n−1
∑

s=n+σ1−τ1

(p + q)

(s + σ2)
(s − τ1) = (p + q)(τ1 − σ1)

we conclude that equation (3.1) is oscillatory if

(p + q)(τ1 − σ1) > (1 + b + c)

(

τ1 − σ1

1 + τ1 − σ1

)1+τ1−σ1

due to Corollary 2.3. Suppose that τ1 < σ1. Since

lim inf
n→∞

n+σ1−τ1
∑

s=n

Q∗

s+σ1

(

s+σ1−1
∑

t=n1

1

at−σ1

)

= (p + q)(σ1 − τ1)
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we conclude that equation (3.1) is oscillatory if

(p + q)(σ1 − τ1) > (1 + b + c)

(

σ1 − τ1

1 + σ1 − τ1

)1+σ1−τ1

due to Corollary 2.7.

Example 3.2. Consider the difference equation

(3.2) ∆

(

1

n
∆ (xn + bxn−σ1

+ cxn+σ2
)3

)

+
q

n
xn−τ1 +

p

n
xn+τ2 = 0, n ≥ 1,

where b, c, q and p are positive constants and τ1−σ1 > 0. Here an = 1
n
, α = 3, β = 1.

Then Q∗

n = p+q
(n+σ2)

and Rn = (n−1)n
2

. Since

∞
∑

n=1

Q∗

nR
β/α
n−τ1 =

∞
∑

n=1

(p + q)

(n + σ2)

((n − τ1 − 1)(n − τ1))
1/3

21/3
= ∞.

Then every solution of equation (3.2) is oscillatory due to Corollary 2.4.

Example 3.3. Consider the difference equation

(3.3) ∆

(

1

n
∆ (xn + bxn−1 + cxn+2)

)

+ q exp(e2(n+1))x3
n−2 + px3

n+3 = 0,

where n ≥ 1, b, c, q and p are positive constants. Here α = 1, β = 3, an = 1
n
,

qn = q exp(e2(n+1)), pn = p, σ1 = 1, σ2 = 2, τ1 = 2, τ2 = 3. Choose λ = 2, then

λ > 1
τ1−σ1

log (β/α) and

lim inf
n→∞

[

Q∗

nR
β/α
n−τ1 exp(−eλn)

]

= lim inf
n→∞

[

(

qee2n

+ p
) (n − 2)3(n − 1)3

23
e−e2n

]

> 0.

Hence by Corollary 2.5, every solution of equation (3.3) is oscillatory.

Remark 3.4. The results presented in this paper are new. It is remarkable that our

results possibly valid either pn ≡ 0 or qn ≡ 0 (but not pn ≡ qn ≡ 0) provided that

either bn ≡ 0, cn ≡ 0 or bn ≡ cn ≡ 0. Here we omit the details.

Remark 3.5. It would be interesting to obtain results similar to those presented here

for equations of the type

∆ (an (∆ (xn + bnxn−σ1
+ cnxn+σ2

))α) + qnx
β
n−τ1 + pnx

γ
n+τ2 = 0,

where α, β, γ are ratio of odd positive integers and either
∑

∞

n=n0

1
an

= ∞ or
∑

∞

n=n0

1
an

<

∞.
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