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ABSTRACT. This work deals with the existence of multiple positive solutions for a ¢—Laplacian
boundary value problem on the half-line. The nonlinearity may exhibit singularities at the solution
and its derivative. New existence results are obtained using the fixed point index theory on cones
of Banach spaces. The singularity is treated by approximation and sequential arguments. Several

examples of applications illustrate the obtained results.
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1. INTRODUCTION

This paper is devoted to the study of the existence of positive solutions to the

following boundary value problem (bvp in short) posed on the positive half-line:

(@) (t) + q(t) f (¢, x(t), 2'(t)) =0, tel,
az(0) — B2’ (0) =0, lim 2/(t)=0

t—+00

(1.1)

where «, 5 > 0 are positive constants, I := (0, +00) denotes the set of positive real
numbers, and RT := [0,4+00). The function ¢ : I — [ is continuous and the
nonlinearity f : Rt x I x I — R* is continuous and satisfies lirg+ f(t,z,y) = +o0
and/or yli%l+ ft,z,y) = 400, i.e. f(t,x,y) may be singular at ?c—}: 0 and/or y = 0.
The map ¢ : R — R is a continuous, increasing homeomorphism such that ¢(0) = 0,
extending the so-called p—Laplacian ¢,(s) = |s|P™'s (p > 1).

Boundary value problems on infinite intervals appear in many phenomena in
applied mathematics and physics (see, e.g., [2] and the references therein). Various
mathematical results for nonlinear bvps can be found in the recent literature (see

[5, 6, 7, 20]) where existence and multiplicity of positive solutions have been obtained.
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In [8], the authors have considered the bvp

{ () — K2 (t) = q(t) f(t.a(t), 2/ (t) =0, tel,
x(0) = z(+00) = 0.

The question of the existence of positive solution was studied when the nonlinearity
is sign-changing; the fixed point index and the upper and lower solutions technique

were combined to prove some existence results.

In [18], the following bvp is studied

(@) @) + ftx) =0, tel,
2(0)=0, lim p(t)z'(t) = b >0,

t——+o00

where p satisfies f0+°O z%

using index fixed point theory when the nonlinearity f = f(t,z,pz’) may present

< +4o00. Existence of one or two solutions are proved

singularities at * = 0 or/and pz’ = 0.
Recently, Lian et al. have studied the following boundary value problem with a

p—Laplacian operator on the half line

(op() (1) + q(0) f(t, x(t), 2'(t)) = 0, tel,
ax(0) — 62'(0) = 0, thm Z'(t) =0.

——-00

The authors have showed the existence of at least three positive solutions using a fixed
point theorem due to Avery and Peterson (see [13]). The nonlinearity is assumed to

have no singularity.

With a multi-point condition at 0, the same bvp is investigated in [12] with a
similar method. Existence results are also obtained for the Sturm-Liouville equation
(p(t)2'(t))'(t) + f(t,z(t),2'(t)) = 0 in [17]. In [14], Liang and Zhang have considered
the equation (¢,(z)) (t) + a(t) f(t, z(t)) = 0 with multi-point condition at the origin
and a Neumann condition at positive infinity. However, the nonlinearity does not
depend on the first derivative. In [15, 16], the operator of derivation is extended to

an increasing homeomorphism ¢.

In [9], the following singular bvp is considered:

{(( D) () +q(®)f(t, () =0, ¢>0,

e 0) =0, lin 2'(t)=0.

The authors have showed the existence of multiple positive solutions using the upper
and lower solution method combined with the fixed point index theory. When the
nonlinearity f also depends on the first derivative, problem (1.2) is discussed in [10];
the authors have proved two existence results: the first one is obtained under a sign

condition, the second one when a Nagumo-type growth condition is assumed.



SINGULAR ¢—LAPLACIAN BVPS 95

In this work, we aim to investigate the question of existence and multiplicity
of positive solutions to problem (1.1) when the nonlinearity depends on the first
derivative and may be singular at x = 0 and/or 2’ = 0 and when the operator of
derivation ¢ is a general increasing homeomorphism. The fixed point index theory on
a cone of a suitable Banach space is employed. Existence of single and twin solutions
is proved. The paper comprises five sections. In Sect. 2, we define a special norm
space, construct a special cone, and give its main properties. In Sect. 3, using the
theory of the fixed point index, we prove existence of one and then two positive
solutions to problem (1.1) when the nonlinearity is assumed to have no singularities.
Similar results are obtained in Sect. 4 when f is singular at x = 0 but not at 2/ = 0.
The cases when f is singular at both x = 0 and at 2’ = 0 are studied in Sect. 5.
The singularity is treated by approximating the fixed point operator and then using
sequential arguments. Each existence theorem is illustrated by means of an example

of application.

2. PRELIMINARIES

In this section, we first gather together some definitions and lemmas we need in

the rest of the paper.

2.1. Auxiliary results.

Definition 2.1. A nonempty subset P of a Banach space E is called a cone if it is

convex, closed, and satisfies the conditions:
(i) ar e Pfor all z € P and a > 0,

(ii) z € P and —x € Pimply 2 =0.

Definition 2.2. A mapping A : E — FE is said to be completely continuous if it is

continuous and maps bounded sets into relatively compact sets.

The following lemmas will be used to prove our main existence results. More
details on the theory and the computation of the fixed point index on cones in Banach

spaces may be found in [1, 2, 4, 11].

Lemma 2.3. Let Q) be a bounded open set in a real Banach space E, P be a cone of
E, and A: QNP — P be a completely continuous map. Suppose that NAx # v,V €
INP and VA € (0,1]. Then i(A,QNP,P)=1.

Lemma 2.4. Let Q be a bounded open set in a real Banach space E, P be a cone of
E,and A: QNP — P be a completely continuous map. Suppose that Ax £ x,¥x €
OQNP. Theni(A,QNP,P)=0.
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Let
Ci([0,00),R) = {z € C([0,0),R) : tliin x(t) exists}.
For x € Cj([0,00),R), define ||z|, = sup |z(¢)|- This makes C; a Banach space.
teR+

However, the basic space to study problem (1.1) is denoted by

E ={z € C"'([0,00),R), lim 2(t) exists, lim 2'(t) = 0}.

t—+oo 1 4+ t——400

It is clear that E' is a Banach space when furnished with the norm ||z|| = max{||z||1, ||z[|2}

where [|z]|; = sup 9 and |||y = sup |2/(t)].
teR+ teRT

Lemma 2.5 ([3, p. 62]). Let M C C,(R*,R). Then M is relatively compact in
C)(R*,R) if the following three conditions hold:

(a) M is uniformly bounded in C;(R* R).

(b) The functions belonging to M are almost equicontinuous on R™, i.e. equicontinu-

ous on every compact interval of RT.

(¢) The functions from M are equiconvergent, that is, given € > 0, there corresponds
T(e) > 0 such that |z(t) — x(+o00)| < € for anyt > T(e) and x € M.

Then, we easily deduce

Lemma 2.6. Let M C E. Then M s relatively compact in E if the following

conditions hold:
(a) M is bounded in F,

(b) the functions belonging to {u : u(t) = 916(—42, re M} and to{z: z(t) =2'(t), z €
M} are almost equicontinuous on [0, +00),

(c) the functions belonging to {u : u(t) = f(—jz, x € M} and to {z: z2(t) =2'(t), z €
M} are equiconvergent at +oc.

2.2. Related Lemmas.

Definition 2.7. A function z is said to be a solution of problem (1.1) if z € C'(R*,R)
with ¢(z') € AC(RT,R) and (1.1) is satisfied.

We start with a simple observation:

Lemma 2.8. Let x € C(RT,RT) be a positive concave function. Then x is nonde-

creasing on [0, +00).
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Proof. Let t,t' € [0,+00) be such that ¢’ > t and let A = ¢/ —¢. Since x is positive

concave, for all n € N* = {1,2,3,...}, we have

()

z(t+A)

z((1=2)t+ L(t+nN))
(1= L) a(t) + 2a(t + n))
(1—2) ().

AVARLY,

Therefore

2(#) > lim (1 - 1) () = a(b).

n—-—+00

Since ¢ is an increasing homeomorphism, it is easy to prove

Lemma 2.9. If z is a solution of problem (1.1), then x is positive, monotone in-

creasing and concave on [0, 400).

Now, define the positive cone

P={xe€ FE: x(t) >0, concave [0,+00), x(0) > af_ﬁHng and az(0)—pF2'(0) = 0}.

In a series of lemmas, we study the main properties of P.
Lemma 2.10. Let x € P and § € (1,400). Then
1
2(t) 2 glllh, vt e[1/6,6].

Proof. By definition of P, = is nondecreasing on [0, +00). Moreover z/(c0) = 0 im-

plies that the function 916(_42 achieves its maximum at some ¢, € [0, +00). So, by the

concavity of x, we have for t € [1/6, 6]

z(t) > min z(t) = 2(}) = a(GGe L 4+ Lt

te[%,@] 0+0tg 0—1+0tg 6+6tg
6—140tg 1 1
6+0tg :L’( 9—1+0t, ) + 016t x(t0>

o a(te) = 28 = 1z,

AVARLY,

Lemma 2.11. Define the function p by

21) plt) = { et

and let x € P.Then
z(t) = p) |z, Vte|0,+00).

Proof. Let t € [0,400) and distinguish between four cases:
(a) If t = 0, then z(0) > 0 = p(0)||z|];.
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(b) If t € (0,1), then % € (1,400). By Lemma 2.10, we have that x(s) > t||z||{,Vs €
[t,1]. In particular for s =¢t, z(t) > t||z|l, = p(t)||].
(c) If t € (1,+00), then by Lemma 2.10, we have that z(s) > 1[|z|,,Vs € [1,¢]. In
particular for s = ¢, 2(t) > ||z|l, = p(t)||z]:.
(d) Let t = 1 and let {t,}, be a real sequence such that ¢, > 1 and ¢, — 1, as
n — +o00. By the third case, we have z(t,) > inHl, Vn > 1. Then
. ) 1
z(1) = lim a(ty) 2 lim —lzf = llz]h = p(1)llz:.

n—-+00

O

Lemma 2.12. Let « € P. Then |z|1 < M|z|2, where M = max{g,l}. Hence
2]l < Mljz]l2.

Proof. Since x € P, then for every t € [0, 4+00),
(t) 1 L t+ 2
= — d —2'(0) ] < & M
W ([ s+ Za0)) < Ths el < M
This implies that ||z| = max{||z|1, ||z||2} < max{M||z||2, ||z]2} = M| x]|2. O

Lemma 2.13. Let x € P. Then

g
x(t) > p(t xl|, Vt € |0, +00).
()_p()aJrﬁH I [ )
Proof. Since x € P, we have |z|l; = sup Tg > ng = z(0) > a%”xﬂg Hence
teRF
||| < %f“x”l As a consequence
a+
)| = max{|lzlly, |z]l2} < max{]jz]y, - || i} = —||93||1-
Finally, Lemma 2.11 implies that z(t) > p(¢)||z||; > awp( )| z]]- O

Lemma 2.14. Let x € P. Then, for allt € RT, x,(tt > ap(t).

Proof. Since x € P, we have that x is nondecreasing and z’ is nonincreasing. Hence

o) L 2(0) fr0) (BB

PO ZT0) ez =a=a

Lemma 2.15. Let § € C(R*,R*) be such that [ 6(s)ds < +oo and let

z(t) = gqﬁ_l ( /0 " 5(7)617) + /0 t ¢! ( / m 5(7)617) ds.

Then
(o(2"))'(t) +6(t) =0, >0,
az(0) — f2/(0) =0, tEinoo x'(t) =0,

and hence x € P.
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Proof. 1t is easy to check that

(¢(2"))'(t) +6(¢) =0, ¢>0,
az(0) — B2'(0) =0, lim 2/(t) = 0.

t——+o00

By Lemma 2.9, z is positive and concave on [0, +00). Moreover, we have that

o) = 2o ([ tear) an et =07 ([ 60rar).

o0 = Lo ([ toar) = Zjel = ol

Then

and so x € P.

3. THE REGULAR CASE

99

In this section, we suppose that f : RT x R x RT — R* is continuous and there
exists ty > 0 such that f(to,0,0) # 0 so that the trivial solution is ruled out. Let

pt) = f(—g, F(t,z,y) = f(t, (1 +t)x,y), and assume that

(Hy): There exist m € C(RT,R") and g € C(RT x R*,R*) such that
(3.1) F(t,x,y) <m(t)g(z,y), Vt.z,y€RT,

where ¢ is a nondecreasing function in each argument with

/0+OO q(T)m(r)dr < 400

and for each ¢ > 0

(3.2) /0 T < / e c)q(T)m(T)dT) ds < +o0.

(Hy):
c
sup > 1.

=0 Mo~ ([ a(r)m(r)g(e, )dr)
(Hs): There exist positive numbers a < b such that

. F(t,z,y) . .
lim ————= = +o00, uniformly in ¢ € |a,b] and y > 0.
=) y [a, 0] and y

For x € P, define the operator A by

ast) = o (| +°°q<f>f<f,a:<f>,x'<f>>df)

(67

v [ ([ sato) e s

We have

Lemma 3.1. Suppose (H;) holds. Then, the operator A sends P into P and A is

completely continuous.
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Proof. By Lemma 2.15, A(P) C P. We show that A is completely continuous.

Step 1: A is continuous. Let some sequence {2, },>0 C P be such that lirf T, = Xp.

Then there exists r > 0 such that ||z,|| <r, Vn > 0. By (H;), we have

q()f (7, 20(7), 20, (7) = f(7, 20(7), 75(7))]

xn(T) / xO(T) /
() - Flr s (7))

< 2q(m)m(7)g(r, 7).

The continuity of f and the Lebesgue dominated convergence theorem imply that

|6((Azn(1)))" — &((Azo(t)))] S/O T A (), 2 (7)) — £ wo(7), xo(7))ldT

and the right-hand side tends to 0 as n — 400, that is ||Az, — Azglls — 0, as

= q(m)|[F(r,

n — +o00; Lemma 2.12 implies that || Az, — Axg|| tends to 0 as n — +o00.

Step 2: Let D be a bounded set. Then there exists r > 0 such that ||z|| < r,Va € D.
We shall proceed in three steps.

(a) A(D) is uniformly bounded. For x € D, we have

[Az|| < M| Az]|
< M sup |(Az)'(t)]

teRt+

<arsup o (| ” ()57, ()

<arswp ot ([ a2 sear)

teR+

<5 ( |  drmmatr rir) <o

Then A(D) is bounded.
(b) For any 7' > 0 and ¢, € [0,7] (t > t'), we have

02O <o ([ amstratnatonar ) | o - 1
Jy ot (S aln) fra(r), /(7)) dr ) ds
* 1+1¢
o (S e (). () dr ) ds
1+
S N
+ IL—I—t - 1—|1—t’ /0+OO ot (/:OO q(T)f(T,ZE(T),ZL'/(T))dT) ds
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S o (7 a0 (o), (7)) dr ) ds
* 14+

101

ft+°° o (f;roo q(7)f(r,2(7), x’(T))dT) ds

14+t

5 ( [ aiean @) | s -

1—+t 1+t,l/m (/OO f(T,x(T),x'(T))dT)ds
1

Sl

1 1

“+oo +00
+ 2‘%% 7 le t’|/0 ¢! (/S q(T)m(7)g(r, T)dT) ds

Also we have

6((Az)'(t)) — o((Az)'(¢'))] =

/t, o) f (7 2(r), 2 (7))dr| < / o(T)m(r)g(r, r)dr.

Then, for all € > 0 and 7" > 0, there exists § > 0 such that for all ¢,#' € [0, 7] and
|t —t'| < d, we have

Az(t)  Az(l)
141 1+

<e and [(Az)'(t) — (Az)'(t')] < e.

(c) For any x € D, we have th+m T(? = tliin (Az)'(t) = 0. Therefore

A A
o) Asl)
zeD 1+1¢ t—+oo 1+t

27 (Jo7 a() [ (. 2(r), @' (7)) dr o (S a(r)f(ry(r), @' (7)dr ) ds

~en 141 1+
267t (J7 atrmim)grrydr) [ o (S5 ar)m(r)g(rr)dr ) ds
= 1+t " L+t
and

zeD

sup (40 (0] =supo~ ( [ i (o), ()i
<o (| i mmnatr ryar)
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which implies that

lim sup |22 i A2 00 Tim sup [(As)(H) — Tim (Az)()] = 0.

t—+ooep | 1L+ 1 t—+oo 1 +¢ t—+00 1cD t—-+o00

By Lemma 2.6, A(D) is relatively compact in E. Hence A : P — P is completely

continuous. O

3.1. Existence of a single solution.

Theorem 3.2. Assume that Assumptions (Hy) — (Hs) hold. Then problem (1.1) has

at least one positive solution.

Proof. From condition (Hy), there exists R > 0 such that

(3.3) i o1

Mo (fiF a(r)m(r)g(R, R)dr)

Let

O ={zelE: |z|]| <R}
We claim that x # AAx for all z € 9Q; NP and A € (0,1]. On the contrary, suppose
that there exist xy € 0 NP and Ay € (0, 1] such that xy = \gAzy. By Lemma 2.12,

we have

B =zl = [[AoAzo

M| Axol|2
Maup 67 ([ 4(r) (7. 2(r), 2! (m)ir ).

ne ()5 atrym(r)g(R, R)) .

which is a contradiction to (3.3). Owing to Lemma 2.3, we deduce that

IAIA

IN

(3.4) (A, NP P) =1.
Hence there exists an xy € 2 NP such that Axy = xy. Since f(ty,0,0) Z 0 and
xo(t) > %p(t)”xoﬂ, xg is a positive solution of (1.1). O

3.2. Two positive solutions.

Theorem 3.3. Assume that (H,)—(Hsz) hold and suppose that ¢~ is super-multiplicative,
that s

(3.5) ¢~ Hay) > ¢~ (2)o 7 (y), Yo,y > 0.

Then problem (1.1) has at least two positive solutions.

Remark 3.4.
(a) If ¢ is sub-multiplicative, then ¢! is super-multiplicative.

(b) The p—Laplacian is super-multiplicative and sub-multiplicative, hence multiplica-

tive.
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Proof. Choosing the same R as in the proof of Theorem 3.2, we get

(3.6) i(A, Q9 NP, P) =1,

and thus there exists z( solution of problem (1.1) in €. Let 0 < a < b < +00 be as
a(ats)

in (H3) and set N =1+ (Z}( Zf;)zds) where ¢ = min¢q) ,B'(t)o%ﬁ By (Hj3), there exists

an R' > — + R such that
F(t,z,y) > N¢(x), YVt € [a,b], Vx> R, Vy € RT.

Define the open ball

O ={reFE: ||z| <R/c}.
We show that Az £ x for all z € 92, NP. Suppose on the contrary that there exists
Ty € 029 NP such that Axg < xy. Since ¢ € PN 0y, we have

w0 Bz iy 50 = o vien
Then, for all t € [a, b], the following estimates hold:
2l > 4w
> o (J an) P (r, 52wl (r)dr )
> bt I a(r)No (3 )dr )
> Q(Htw I} a(r)No(R')dr )
> 25t (6(R))(N [ q(7)dr)
> H 2 (N [ o))
> F

*
Passing to the supremum over ¢ yields ||zol|; > R%. Hence ||zo|| > R%, contradicting

|l zo]| = R%. Finally, Lemma 2.4 yields

(3.7) i(A,Q NP, P) = 0,
while (3.6) and (3.7) imply that

(3.8) i(A, (Q\ ) NP, P) = —1.

Then A has another fixed point yo € (Q5 \ Q) NP. Moreover yo(t) > O%ﬁﬁ(t)R and
R < |lyol| < &. By (3.3) we have ||z| < R, which implies that |lzo|| < R < ||yol|

and thus z and yo are two distinct positive solutions of (1.1). O

Example 3.5. Consider the boundary value problem

{ (@' (@)r) + ((«'(¢ )) ) + fertlE AU 0) _ g

(3.9) az(0) — B2/(0) =0, lim 2/(t) =0,

t—-+o00

where p and r (p < r) are two odd numbers. f(t,z,y) = %, o(t) =tP +t7,

and ¢(t) = de™" where 0 < ¢ < 1 is a positive constant. Then ¢ is continuous,
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increasing, and ¢(0) = 0. Moreover F(t,z,y) = f(t,(1 + t)x,y) = 2P + y". Now, we

check the main assumptions.

(Hy): Let g(z,y) = 2P +y" and m(t) = 1. Then F(t,z,y) < m(t)g(z,y), for all
t,z,y € RT. Moreover

+o0o +o0o
/ q(r)m(r)dr = / de TdT =0 < 400
0 0

and, for any positive constant ¢, we have

1= 6 (P aomelgteonr) as

fo*“’ ¢~ (3(cP + ¢)e ) ds

< 1(c”+c) ~)ds
< “L((ce™m)P + (ce™7)"))ds
< “p(ce r)ds
= f0+oo cerds < oo.
(Hg):
‘ilig Mo=1([,F> a(rym(r)g(c,c)dr) - ‘igg M¢=H(5(cP+c"))
> sup <

es0 Mo—1((c57)P+(c57)7)
D Mot ((et))

1
MoT

If 0 < 6 < (57)", then all conditions of Theorem 3.2 hold which implies that problem

(3.9) has at least one positive solution.

Example 3.6. Consider the boundary value problem

((/(t)5) + det <~’02(t>+(1+82+xt')22(t>+(1+t>2) _0,

az(0) — B2'(0) =0, lim 2/(t) =0,

t——+o00

(3.10)

where f(t,z,y) = (x2+(1+(tl)+t 1+t , gb( ) = ¢5, and q(t) = de~t and § is a positive

constant. Then ¢ is continuous, increasing, and ¢(0) = 0. Moreover F(t,z,y) =
ft, (1 +t)z,y) = 2> + y* + 1. We check the main assumptions.

(Hy): Let g(z,y) = 2> +y* + 1 and m(t) = 1. Then F(t,z,y) < m(t)g(x,y) for
all t,z,y € RT,

+0o0o +0o0o
/ q(m)m(7)dr = / de Tdr =06 < +o0
0 0
and for each ¢ > 0, we have

f0+oo ¢! (f:oo q(m)m(7)g(c, c)dT) ds < +00.
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(Hg):

c c c
sup = sup = sup

=0 Mo (7 a(rm(r)gle,)dr) -0 MOTHOR+ 1)) oo MP e + 1)

If 0 <d < (sup m)%, then all conditions of Theorem 3.2 hold which implies
c>0

that problem (3.10) has at least one positive solution.

Example 3.7. Consider the boundary value problem

(a(a!(1))5) + e tHZOHAAeC @ A4DT) _ ()

(1+¢)2
A1
(3.11) ax(0) ~ B/(0) =0, lim #'(r) =0,
Here ¢(t) = ats and a > max{1, (sup ——<——=)"*}. Then ¢ is continuous, increas-

>0 M(c2+c3+1)3
ing, ¢(0) = 0 and, for all x,y > 0, we have

o (wy) = ¢ N (z)o ().

Moreover F(t,z,y) = z*> +y*> + 1. Now let ¢(t) = e t,m(t) = 1, and g(z,y) =
22 + y® + 1; then it is easy to check (Hy).

(Hg):

c c
sup = sup

>0 M p—1 (f+oo q(T)m(7)g(c, C)dT) >0 Mo=1(c? + ¢ +1)

0

C
:a% sup > 1.
>0 M(c®+ 3+ 1):

wlot

(Hj3): It is clear that

. F(t,z,y)
A )

Then all conditions of Theorem 3.3 are met which implies that problem (3.11) has at

= 400, uniformly in t and y.

least two positive solutions.

4. SINGULARITIES AT z =0 BUT NOT AT 2’/ =0

In this section, we suppose that f : RT x I x Rt — RT is continuous and assume
that

(H,): There exist m, 1 € C(R*,R") and g, h € C(I,I) such that h is a decreasing

function and 1,  are increasing functions with
(4.1) F(t,z,y) <m(t)g(x)v(y), Yty eRT, Vel

and for each ¢, > 0,

(4.2) /0 h q(T)m(7)h(ep(T))dT < 400,
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ay e (2w [ ” (IR ) ds <+,

(Hs5): For any ¢ > 0, there exists ¢, € C(R*,R") and there exists an interval
J C (1,400) such that ¢.(t) > 0 on J and

F(t,z,y) > v.(t), Vt,y e R Vze (0,

with
(4.4) /0 b q(7)e(T)dT < 400.

(HG):
&
sup > 1.

>0 Mot (£30(e) [, a(rym(r)h(ezL5a(r))dr)
(H7): There exist positive numbers a < b such that

. F(t,z,y) . .
lim ————= = 400, uniformly in ¢ € |a,b] and y > 0.
) y [a, 0] and y

Given f € C(RT x I x RT,R"), define a sequence of approximating functions
{f n}nZl by

fult,z,y) = f(t,max{(1 +t)/n,z},y), ne{l,2,...}

and for x € P, define a sequence of operators by

Aurlt) = 2o ([ +°°q(ﬂfn(f,x(ﬂ,a:'(ﬂ)azf)

«

v [ ([ o satrstr). o' ) as.

Lemma 4.1. Suppose (Hy) holds. Then, for each n > 1, the operator A, sends P

into P and is completely continuous.

We have

Proof. First, we check the integrability of the function ¢ in Lemma 2.15. For all
n > 1, we have:

foo(nydr = [T , (1), 2/ (7))dr
fo ) f(T, maX{HT x(7)}, 2/ (7))dr

q(7) fa
q(1) f(
fo q(T)F( Tmax{l,“fg} 2/(7))dr
q(7)
q(7)

T

< 5 am)m()h <max{n,1+2}>%w<x (r))dr
< fo 7)m(7) ( )g(||||;|||| (HxH)dT
< HEROUll) J5° almm() b

By (4.2), the right-hand side is finite. Therefore A, C P. The proof that A, is
completely continuous is similar to that of the operator A in Theorem 3.2 and is
omitted. O



SINGULAR ¢—LAPLACIAN BVPS 107

4.1. Existence of a single solution.

Theorem 4.2. Assume that Assumptions (Hy) — (Hg) hold. Then problem (1.1) has

at least one positive solution.

Proof.
Step 1: An approximating solution. From condition (Hg), there exists R > 0 such that
R
(4.5) > 1.

Mo (£B0(R) [, a(r)m(r)h(s Ri(r))dr )
Let
O ={zeE: |z <R}

We claim that  # AA,z for any x € 0, NP, \ € (0,1], and n > ng > 1/R. On the
contrary, suppose that there exists ny > ng, 1 € 9Q; NP and A\; € (0, 1] such that
z1 = M A, 1. By Lemma 2.13, we have z,(t) > —Z_p(t)||z1]| = awp( JR,Vt € RT.

Then xllth > a%ﬁ(t)R. As a consequence, we deri\je the estimates:
Ro= [l
= [[AAn, 24|
<l An ]
< M| Any a2
< Msupo™ (7 gm) fus(7.0(r). 2 (7)) )

Mot ([ g(r) F(r, max{L, 20} o1 (7))dr

0 ’ 14T
Mo~ (57 alrym(r)g(mas{ ., 22 s(ah (7)dr )
ax{L 2D
ny’ 1471

Mo~ ([ q(r)m <><max{1,ﬁf)})jﬁjax{;ml_m})wxav))df

ny’ 1+7

Mo~ (BB (R) [ q(r)m(r)h(L5a(r) R)dr )

IN

IN

IN

IN

which is a contradiction to (4.5). Then by Lemma 2.3, we deduce that
(4.6) (A, NP, P)=1, forall n € {ng,no+1,...}.

Hence there exists an x,, € {1 NP such that A,x, = z,, Vn > ng.

Step 2: a compactness argument.

(a) Since ||z,|| < R, by (Hs) there exists ¢p € C(R*,R") such that

fa(t, 2o (t), 2 (2) > UR(t), Viel
with
/0 q(s)pr(s)ds < 4o00.
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Then
zo(t) = Apzn(t)
> [y ot ([ a(r) falr, w(r), () dr ) ds
> 0t¢—1 Ef;roo q(T)’l/JR(T)dT) ds.
Let
(17) e ( / +°°q<f>wR<7>df) -0,

and distinguish between two cases:

(i): If t € [0, 1], then

i)z 0 ( | ” d(ryontrar) = 07 ( | ” (r)nlr)ir ) = plt)e

(ii): If t € (1, +00), then

wa(t) = fy o ([T a(r)er(r)dr) ds
> [ ¢1E e q(T)qu(T)dTg ds
> o7 (S a(r)en(r)dr)
> 1ot ([ a(r)yen(r)dr)
> p(t)c".
Then, we deduce that ml”—Jf? > c*p(t), Vt € RT, Vn > ny.

(b) For any T'> 0 and ¢, € [0,7T] (t > t'), the following estimates hold:

IA

_|_

IA

T (t) zn(t')
1+t 1+4¢
1
Jo @7 (S a(r) fn (1@ (1)@ (7)dr )ds e ([ a(1) fu(rn (7)), (7)) dT ) ds
1+t 1+t
1
+oo +o0o o~
+2‘%+t—$ o o7 LT a(m)ym(T)h(c*p(T)

5 = el o7 (7 an) fulr (), (7))

i = ko7 (™ alrm(oh(e (s) i (Rydr)
)

ik 107 T a(rym(r) b ) K (R)dr)ds

and

|6(27, (1)) — o2, ()| = /t q(7) fu(7, 2 (7), 2, (7)) d7)

S Y L T

) _ —x"(t/)| < ¢ and

Then, for any € > 0 and T" > 0, there exists 0 > 0 such that |72 T

|zl (t) — 2l (t')| < e for all t,t' € [0,T] with |t — | < 6.
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i In(t) _
(c) For any n > 0, we have, by (Hy), tEeroo T = tEeroox (t) = 0. Therefore

. Zn(t)
Sub e 1+t - tEeroo T+ |
n>ng
Bo = (JoF™ an) fu(ran (1)@l (0))dr )+ [y 67 ([ a(7) fu (rn (7) @, (7)) dr ) ds

- 2 st )

n>ng
o S0 (BB S m e i) I 0 (BB () [ atrm(he i) ds
= T+ + T+t :

where the right-hand side tends to 0 as ¢ — +o00. Also

lim sup |2/,(t) — lim a/ (t)|

t——+o0 n>no t——+00
- i (a0 )
< tEeroo ¢—1 (}glgg ft+°° h(ﬁﬁ(f))d?) =0.

Therefore {x, }n>n, is relatively compact in E by Lemma 2.6 and hence there exists
a subsequence {z,, }x>1 converging to some limit zy. Since z,, (t) > p(t)c*,Vk > 1,
we infer that x¢(t) > p(t)c*,Vt € RT. From (4.5), we have ||zy|| < R. Consequently,
the continuity of f implies that, for all s € RT, we have

i fo (5,20, (), 20, (5)) = T fls, max{(1+5)/ny, 7, (5)}, 2%, (5))

= [(s, max{0, zo(s)}, 25(s)) = (s, 20(s), 5 (5))-

By the Lebesgue dominated convergence theorem, we finally deduce that

xo(t) = klirf T, (1)

= w2670 ([ 0(7) o (7., () 2, (7))
+f0 (fs q(7) fri (T ffnk(T),ﬂf (7)) )ds
= 2o (7 alr) (rwo(7), 2b(r))dr )

Jy ot (S gl s :co< ). ah(7))dr ) ds.

Therefore zy is a positive solution of problem (1.1). O

4.2. Two positive solutions.

Theorem 4.3. Assume that (Hy) — (Hy) hold and ¢~ is super-multiplicative. Then

problem (1.1) has at least two positive solutions.

The proof is identical to that of Theorem 3.3 and is omitted.

Example 4.4. Consider the singular boundary value problem

((f/(t)) ) +56—t(1+t ) Im(t)(z 2;?;;)(1+t)2)(:c’3(t)+1) — 0,

ax(0) = 4/(0) =0, lim (1) = .

(4.8)
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where

tw
() ={ L
wamee e (1,400),

Ft,z,y) = 2O FELAONEHD () 5 () ¢(¢) = ¢5, and g(t) = de. Then ¢ is

xw

continuous, increasing and ¢(0) = 0. Moreover

m(t)(x® +1)(y* + 1)
v ’
(Hy): Let g(z) = mijl, (y) = (¥* + 1), and h(z) = . Then h is a decreasing

function, 1, ¢ are increasing functions, and

F(t,z,y) = f(t, 1+ t)z,y) =

F(t,z,y) <m(t)g(x)v(y), Vi, y € RT, Yz > 0.

Moreover, for any ¢, > 0, we have

/0 h q(T)m(r)h(ep(r))dr = LAV e Tdr = g < 400

and

Sy o ([ 2 g (rym(r)h(ep(r))dr) ds = [ o (515 e ) ds

ch(,c’) ; 0 €
= H(0UGE)? < 400
(Hs): For any ¢ > 0, there exists 9.(t) = m(t such that
F(t,!)ﬁ',y) > wc(t)a Vtay € R+a Vx e (O,C]
and [, q(7)¢e(7)dr < +c0.
(He):
S o (R [ (e ) b M (s o0 )”
o ﬁ"“’ ow+1
M35 (atB)5> SUP EFET
If we choose a, 3, w, and § such that M‘S(ﬁa# < sup %, then all conditions

of Theorem 4.2 are fulfilled, which implies that problem (4.8) has at least one positive
solution.

Example 4.5. Consider the singular boundary value problem

(a(:c’(t))%)’ + e—tm(t)(wz(t)+(1+t)2))($/3(t)+1) =0,

A+D)z(t
(4.9) ax(0) ~ 4r'(0) =0, Tim_2'(1) = 0.
Here
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N 2 C -1 . . _
and ¢(t) = at5, where a > max{1, (scli;o) M<<c2+1)<c;+ﬁ1><a+ﬁ)2>§) }. Then ¢ is continu

ous, increasing, ¢(0) = 0 and, for all z,y > 0, satisfies

o (wy) = ¢ () (y).

Moreover F(t,x,y) = % Let h(z) = 5, g(z) = xf/gl, and ¥ (y) = (y>+1);
then it is easy to show (Hy) and (Hj).

(Hy):
SU.pM —1( 9% (c) Foo » hic—B_5(+))d = Sup 1 Q(C)i’(c)(o‘*ﬁ)2
>0 Mo~ (LZEL 55 q(r)m(T)h(e 525 p(r))dr) >0 Mo~ <W>
= sup 3
>0 [ 2@v(e)(atd)? )
C, M(T)
= a3su < > 1.

p 5
S0 2y f2@v(e)(atn)?) 3
¢>0 ar (LLUGRtIn)

(H7): It is clear that, for any compact interval [a, b] C (0, +00), we have

2 3

i F9) Lm0+ )
@) e arlyE

Then all conditions of Theorem 4.3 are met; consequently problem (4.9) has at least

two positive solutions.

= 400, Vt € [a,b],Vy € RT.

4.3. A further result. Theorem 4.2 still holds true if we keep (Hs) and replace
conditions (Hy4) and (Hg) by the following one:

(Hy)': there exist m € C(R*,R") and a decreasing function [ € C(1, I) such that
(4.10) F(t,z,y) <m)l(z/y), VteR" Vr,yel
and for any ¢ > 0

S am)m(n)i(ep(r)dr < too,
(4.1) { 0+°O ¢! <fs+°o q(T)m(T)l(cﬁ(T))dT) ds < +o0.

Now, given f € C(RT x I x RT,R"), define a sequence of approximating functions
{fn}nZl by
falt,z y) = f(t, max{(1 +¢)/n,z}, max{1/n,y}), ne{l,2,...}.

Next for x € P, define a sequence of operators by

o ([ e trate) e

«

v [ ([ o strstr).a'rar ) as.

Theorem 4.6. Assume that Assumptions (Hy)" and (Hs) hold. Then problem (1.1)

has at least one positive solution.

Apz(t) =

We have
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Proof. Lemma 2.15 implies that A,,’ C P. The proof that A,, is completely continuous
is similar to that of the operator A in Theorem 3.2 and is omitted. Let R be such

that .
R> Mo ( /0 ¢(r)m(7)l(min (g 1) 5(7))d7)

M ={zxelE: |z|] <R}
We claim that x # MA,z, for any z € 9, NP, A € (0,1], and n > 1. On the

contrary, suppose that there exists ng > 1, xy € 9; NP, and Ay € (0, 1] such that

xo = NoAn,To. By Lemma 2.14, we have zggg > gp(t) and, for each n > 1

max{1/n, 1+?} 3 )
max (L, ) )} > n{ JA3p(t), Vit e RT.

and set

Therefore
R = ol
= [[AoAn,zoll
< [ Anol
< M| Ang o2
< Msupo ([ g(r) fun . 20(7). 24 (7))d )
< Mg ( " () F(ry max{ L, 52} max{ L, af (7)) bar )
ma: 1’»"00(7)
< Mo ( armEE ).
< Mgy gyl min{2, 115(r))dr

which is a contradiction. By Lemma 2.3, we conclude that
(4.12) (A, 9 NP,P)=1, forall n e {1,2,...}.

Hence there exists an z,, € Q; NP such that A,x, = z,, Vn > 1. Arguing as in the
proof of Theorem 4.2, Step 2 together with the condition (H4)" and the fact that

()l ()., 1) < i) (win 2, 1)700))

we can prove that {z,}, is relatively compact. Hence there exists a subsequence

{zn, }r>1 with limit hr}rq T, = T. Since ||Z|| < R, then from (Hj) we deduce that

z(t) > ¢*p(t),Vt € RT, where ¢* is defined by (4.7); thus Z is a positive solution of
problem (1.1). O
Now, consider the following assumptions:

(A1): There exist m € C(RT,R*) and g,v,l € C(I,I) such that [ is a decreasing

function and 1, g are increasing functions with

(4.13) F(t,z,y) < mt)g(x)o(y)i(z/y), VteR*, Va,yel
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For each ¢, > 0,

(4.14) /0 b q(m)m(7)l(cp(T))dT < +00,

am [T (str@) | ” (m (PN ) ds < +oc.

(As):

sup = > 1.
=0 Mo~ (g(0)(e) Jy™ a(r)m(r)i(min{Z, 1}5(r))dr ) ds

(Aj): For any ¢ > 0, there exists ¢. € C(R*,R") and there exists an interval
J C (1,+00) such that 1.(t) > 0 on J and

F(t,z,y) > .(t), Vt,yeRY Ve (0,
with
“+oo
(4.16) / q(T)e(T)dT < +00.
0

(A4): There exist positive numbers a < b such that

im E (t,z,y)

= 400, uniformlyint € |a,b] and y > 0.
AT )

We state without proof another existence result:

Theorem 4.7. Assume that Assumptions (A1) — (Ay4) hold. Then problem (1.1) has

at least two positive solutions.

5. SINGULARITIES AT z =0 AND AT 2/ =0

In this final section, we suppose that the nonlinearity f is positive, continuous

on Rt x I x I, and ¢ is multiplicative, i.e.

¢(zy) = o(x)d(y), Va,y > 0.
Next, we list some assumptions:

(Hg): there exist m € C(RT,R") and g,h,¢,l € C(I,I) such that h,l are de-

creasing functions and %, £ are increasing functions with
(5.1) F(t,z,y) <m(t)g(x)v(y), V€ RT, Va,y € I

and for each ¢ > 0,

(5.2) /0 h q(m)m(7)h(cp(T))dT < 400.
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(Hy): For any ¢ > 0, there exists . € C(RT,RT) and there exists an interval
J C (1,400) such that 1.(t) > 0, in J and

F(t,z,y) > ¢.(t), Vtel, Ya,ye (0,
with
2ult) = / A7) < / A(P)(F)dr < 4o,
and for each k > 0,
[ o ( [ q(¢>m<¢>h<kﬁ<¢>)zw-l<%<T>>df) ds < +oo.

(Hlo)Z

C

sup
0 Mot (11 (429 15 g(rym(r)h(es257(r)), d7 ) )

where L is defined by

> 1,

“ods n
L(u)z/o 1) VueR".

(Hy1): There exist positive numbers a < b such that

. F(t,z,y)
A ()

Now, given f € C(R" x I x I,R"), define a sequence of approximating functions
{fa}n>1 by

= 400, uniformly in ¢ € [a,b] and y > 0.

fult,z,y) = f(t,max{(1 +t)/n,z}, max{1/n,y}), ne{l,2,...}

and for x € P, define a sequence of operators by

() = g ( / +OOq(f)fn(ﬂ:f(f),a:’(f))df)

«

w [ ([ o tatrstr). o' ) as.

Lemma 5.1. Suppose that (Hg) holds. Then, for each n > 1, the operator A, sends

P into P and is completely continuous.

We have

Proof. Lemma 2.15 yields that A,P C IP. The proof that A,, is completely continuous

is similar to that of the operator A in Theorem 3.2; hence it is omitted. O
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5.1. Existence of a single positive solution.

Theorem 5.2. Assume that Assumptions (Hg) — (Hyg) hold. Then problem (1.1)

has at least one positive solution.

Proof.
Step 1: An approximating solution. From condition (Hjg), there exists R > 0 such
that

(5.3) i o1

M¢—1 (L B (%%f((g; fo+oo q (T)m(f)h(a——ﬁmRﬁ (7))‘”))

Define the open ball

O, ={zeE: || <R}

We claim that  # AA,x for any x € 9Q; NP, A € (0,1] and n > ny > 1/R. On the
contrary, suppose that there exists n; > ng, z; € 9Q2; NP, and A\, € (0, 1] such that

r1 = MA,,x1. By Lemma 2.13, we have

_B
a—l—ﬂp

O] = —2— p()R, vt € R*,

[L’l(t) 2 Oz—l—ﬂ

Then 28 > J_5(1)R. As a consequence, the following estimates hold:

= o(M)q(t) fult, 1 (2), 1 (1))

t)F (t, max{1/n, 28} max{1/n1, 2} (t)})

max{1/n;, ﬁlﬁ) P (max{1/ny, 21 (t)})

21 (t g(max{1/n1, 19 }) y(max{1/ny 2,(1)})
maX{n%a 11-|(-t) })l(max{l/m, x/l (t)}) h(max{l/nh{iig)}) l(max{l/n117x/11(t)})

UV o () () h( 22 RB() () (1))

—~
ASE
—~
8
S
—~
~~
~&~ ~—
N—
<

3
=
S~—

>z
—~

(6@ ®)) _ g(RU(R) 5o
@) = aRiR) Do (ame“))‘

An integration from ¢ to +oo yields

@) g B [
| e < S o ”h< Rt >>d'

Therefore
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By Lemma 2.12, we deduce that
R

1|} < Ml [l

M sup /i (t)
teR+

Mot (L (S [F° g(r)ym(r)h( 25 Rp(r))dr ) )

which is a contradiction to (5.3). Finally, Lemma 2.3 yields that

IA

IA

(5.4) i(An, U NP, P) =1, forall ne{ng,no+1,...}.

Hence there exists an x,, € {1 NP such that A,x, = z,, Vn > ng.

Step 2: a compactness argument. Since ||z, || < R, from (Hy), there exists ¢ € C'(R™,
R*) such that

fN(taxn(t)>I;z(t)) Z wR(t)a Vt € R+>

with .
/0 " g(s)bn(s)ds < +oo.
Then
lt) = Auta(®)> [ 57 (/ i o), )i ) s
> [ (/ mq(r)wR(r)dr) ds.
Let

&=t ( / mq(ﬂwR(ﬂdf) 0

Arguing as in the proof of Theorem 4.2, we get ﬁ"—ﬁ > c*p(t) and 2!, (t) > ¢~ H(vr(1)),

Vt e RY, Vn > ng. Condition (Hg) implies that

A ol a(r), (7)) < SLEVOLED)

< WQ(T)m(T)h(C*ﬁ(T))Z(Cb_l(’YR(T)))-

Finally, as in proof of Theorem 4.2, we can show that {z,},>n, has a convergent
subsequence {w,;};>1 with limit lim x,, = Z and Z(t) > c*p(t),Vt € R*. Then 7 is

Jj—+oo

a positive solution of problem (1.1). O

5.2. Two positive solutions. Similarly to Theorem 4.3, we also obtain the following

result the proof of which is omitted.

Theorem 5.3. Assume that (Hg) — (Hyq) hold. Then problem (1.1) has at least two

positive solutions.

We end the paper with two examples of applications illustrating Theorem 5.2 and

Theorem 5.3 respectively.
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Example 5.4. Consider the singular boundary value problem
‘W _ g
) =

3 —tm(t) (2 (£)+(1+1)?)
((@'()°) +e ¢ 110z (07 (
/

az(0) — B2'(0) = 0, hm x

(5.5) ;

T
(

where

Here f(t,z,y) = m(t)(m2+(1+t)2)(y+1), o(t) = t3, and q(t) = e7*. Then ¢ is continuous,

(I+t)zy
increasing, and ¢(0) = 0. Moreover F(t,x,y) = f(t,(1 +t)x,y) = W Set
g(x) = %, (y) = %, h(z) = I, and I(y) = i Then, for any u > 0, we have

c~|»:>

b= /o ﬁ B /0 z(ﬁ) N /0“3% = Jut

g ¥

(Hg): It is clear that h,[ are decreasing functions, ¥, % are increasing functions,
and F(t,z,y) < m(t)g(x)y(y), Vt € RT, Vz,y > 0. Moreover, for any ¢ > 0,

we have

Hence

/0 " P m()h(p(r))dr = /0 " erar = L < foo.

C C

(Hy): For any ¢ > 0, there exists 1.(t) = m(t such that
F(t,x,y) > ¢(t), Vt € RT,Va,y € (0,¢]

and f (T)¥e(T)dT < 400. In addition, for any ¢t > 0, we have

. 1 o~ (t+1)
Yo(t) = / g(r)e(r >dr>§ a(r)m(r)dr = %m'

Then, for each k£ > 0, we have
Jy 2 o7 (S am)mm ()6 (7)) dr ) ds
—1( 1 ptoo e~7dr
1 _eTTdr_g
0 ¢ (k /s (o)} S)
o (Eed [ e (r 4 )3 (r +2)dr ) ds
S ot (S e (r+ 03 + 2)hdr ) ds < oo,

IN

S
+
3

IA
—
_l’_
8
®

IA
S
—_
/N
=
)
Wl
9]
ol
N——
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(Hlo)Z
Su C oo < ~
C>10D Me= ( (5111(( ))1?((0)) f0+ q(T)m(T)h(caLiﬁp(T))dr))ds
= Sup of c)y(c
>0 Mo (L 1(# Eenel)

CEEENe)
>0 Mo~ (( Sﬂcucg)mc) )7)

= sup
(4(a+ﬁ) (c)¥(c)
c>0 M<( SBcl(cg)h(c) )3 )

> 1.

= sup

«@ C2 C 1
b M((EEEPETEE )

Therefore all conditions of Theorem 5.2 hold; this implies that problem (5.5) has at

least one positive solution.

Example 5.5. Consider the singular boundary value problem

—tm +(14¢)°) (2’ 1
(& (1)) + ae™ U ')fw =0,

(5.6) az(0) = B2/(0) =0,  lim a'(t) =

where

rMﬂ:{i%’ te0,1]

1
t(1+1)° t € (1,+00).

Here f(t,z,y) = " HEONWED (1) = 3 and q(t) = ae™ where
3

4
c
————— [ su .
Mi(a+ B) (p @+ D(le+ 1))
Then ¢ is continuous, increasing, and ¢(0) = 0, F(¢,z,y)
m(t)(xo:;zl)(y—i-l)’ g(z) = o+1’ W(y) = y+1)’ h(x) = %’ and I(y) =

of Theorem 5.3 are fulfilled, which implies that problem (5.6) has at least two positive

O<a<

ft, (1 + t)z,y) =
. Then all conditions

@h—‘ ||

solutions.

Remark 5.6. We can prove a similar result when the nonlinearity presents a singu-

larity at 2 = 0 but not at x = 0. This case is omitted.
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