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ABSTRACT. In this paper, we establish oscillation criteria for second order damped dynamic

equation

(r(t)x∆(t))∆ + p(t)x∆(t) + q(t)f(xσ(t)) = 0, t ∈ [t0,∞)T

on a time scale T. In particular, Our results obtained here can be applied to arbitrary time scales

T and drop the restriction p(t) > 0 on [t0,∞)T in the literature. Some applications and examples

are given to illustrate the main results.
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1. INTRODUCTION

The theory of time scales, which has recently received much attention, was intro-

duced by Hilger [8] in order to unify continuous and discrete analysis. For complete-

ness, we recall the following concepts related to the notion of time scales, see [3, 4]

for more details. A time scale T is an arbitrary nonempty closed subset of the real

numbers R. Since the oscillation of solutions near infinity is our primary concern,

throughout this paper we assume that sup T = ∞, and define the time scale interval

[t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. On any time scale T we define the forward and

backward jump operators by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T, s < t},

where inf ∅ := sup T and sup ∅ := inf T; here ∅ denotes the empty set. A point t ∈ T

with t > inf T, is said to be left-dense if ρ(t) = t, right-dense if t < sup T with

σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The graininess

function µ for the time scale T is defined by µ(t) := σ(t) − t, and for any function

f : [t0,∞)T → R, the notation fσ(t) denotes f(σ(t)). A function g : [t0,∞)T → R is

said to be rd-continuous provided g is continuous at right-dense points in [t0,∞)T and
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g has finite left-hand limits at the left-dense points in [t0,∞)T, The set of all such rd-

continuous functions is denoted by Crd(T), and the set of functions g : [t0,∞)T → R

which are rd-continuous and 1 + µ(t)g(t) > 0 for all t ∈ [t0,∞)T denoted by g ∈ R+.

If p ∈ R+, then we can define the exponential function by

ep(t, s) = exp
(

∫ t

s

ξµ(τ)(p(τ))∆τ
)

for t ∈ T, s ∈ T
k, where ξh(z) is the cylinder transformation, which is defined by

ξh(z) =

{

log(1+hz)
h

, h 6= 0,

z, h = 0.

Alternately, for p ∈ R+, one can define the exponential function ep(., t0) to be the

unique solution of the IVP: x∆(t) = p(t)x(t) with x(t0) = 1.

In this paper, we consider the second order damped nonlinear dynamic equation

(1.1) (r(t)x∆(t))∆ + p(t)x∆(t) + q(t)f(xσ(t)) = 0, t ∈ [t0,∞)T,

on a time scale T. Throughout this paper, we always assume that

(A1) r(t), q(t) are positive rd-continuous functions on [t0,∞)T;

(A2) p(t) is a rd-continuous function on [t0,∞)T, and −p/r ∈ R+, i.e., 1+µ(t)
(

−p(t)
r(t)

)

>

0;

(A3) f : R → R is a continuous function such that xf(x) > 0 and f(x) ≥ Kx for

x 6= 0 and some K > 0.

As will be seen later, in order to discuss the oscillatory properties of (1.1), it is

necessary to consider both two cases:
∫

∞

t0

1

r(t)
e
−p/r(t, t0)∆t = ∞,(1.2)

and
∫

∞

t0

1

r(t)
e
−p/r(t, t0)∆t <∞.(1.3)

By a solution of (1.1) we mean a nontrivial real-valued function x ∈ C1
rd([Tx,∞)T,

R), Tx ∈ [t0,∞)T, which has the property that rx∆ ∈ C1
rd([Tx,∞)T,R) and satisfies

Eq. (1.1) on [Tx,∞)T. The solutions vanishing in some neighborhood of infinity will

be excluded from our consideration. A solution x(t) of (1.1) is said to be oscillatory

if it is neither eventually positive nor eventually negative, otherwise it is said to be

nonoscillatory.

During the last decades, there has been an increasing interest in studying the

oscillation of solution of second order damped dynamic equations on time scale which

attempts to harmonize and the oscillation theory for the continuous and the discrete.

We refer the reader to the papers [2, 5, 6, 7, 9, 11, 12] and the references cited therein.
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Recently, in [11], the authors considered the dynamic equation

(1.4) (r(t)x∆(t))∆ + p(t)x∆σ(t) + q(t)f(xσ(t)) = 0, t ∈ [t0,∞)T,

under the following conditions:

(H1) r(t), p(t), q(t) are positive rd-continuous functions on [t0,∞)T;

(H2) f : R → R is such that xf(x) > 0;

(H3) f : R → R is such that f(x) ≥ Kx for x 6= 0 and some K > 0,

and they established the following results:

Theorem 1.1 (see, [11, Theorem 2.1]). Assume that (H1)-(H3) and (1.2) hold. Fur-

thermore, assume that there exists a positive rd-continuous differentiable function ρ(t)

such that

lim sup
t→∞

∫ t

t0

[

Kρ(s)q(s) −
r(s)ψ2(s)

4ρ(s)

]

∆s = ∞,

where

ψ(t) =
rσ(t)ρ∆(t) − ρ(t)p(t)

rσ(t)
.

Then Eq. (1.4) is oscillatory.

Theorem 1.2 (see, [11, Theorem 2.2]). Let (H1)-(H3) and (1.2) hold. Let ρ(t) be as

defined in Theorem 2.1 and let H : D → R be rd-continuous such that H belongs to

the class R and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

KH(t, s)ρ(s)q(s) −
(ρσ(s))2r(s)A2(t, s)

4ρ(s)H(t, s)

]

∆s = ∞,

where

A(t, s) = H(t, s)
ψ(s)

ρσ(s)
+H∆s(t, s),

and the function set R is defined in [11]. Then Eq. (1.4) is oscillatory.

Here, we note that Theorems 1.1 and 1.2 (see also, [11, Theorems 2.1, 2.2]) are

valid only when p(t) > 0 which is a restrictive condition. The aim of this paper is

to obtain some new oscillation criteria dropping the restriction p(t) > 0. Our results

obtained here can be applied to arbitrary time scales T. Finally, some applications

and examples are given to illustrate the main results.

2. MAIN RESULTS

For simplicity, define, for t ∈ [t0,∞)T,

R(t) =
r(t)

e
−p/r(t, t0)

∫ t

t0

1

r(s)
e
−p/r(s, t0)∆s, α(t) =

R(t)

R(t) + µ(t)
,

and

β(t) =

{

α(t)p(t), p(t) ≥ 0,

p(t), p(t) < 0.
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We begin with the following lemma.

Lemma 2.1. Let (1.2) hold. Assume that Eq. (1.1) has a positive solution x(t) on

[t0,∞)T. Then

(2.1) x∆(t) > 0,
x(t)

xσ(t)
≥ α(t), t ∈ [t0,∞)T.

Proof. From (1.1), and noting that x(t) > 0 on [t0,∞)T, we have

(r(t)x∆(t))∆ + p(t)x∆(t) < 0.

Hence, by [3, Theorem 1.20],

( r(t)x∆(t)

e
−p/r(t, t0)

)∆

=
(r(t)x∆(t))∆e

−p/r(t, t0) − e∆
−p/r(t, t0)r(t)x

∆(t)

e
−p/r(t, t0)eσ

−p/r(t, t0)

=
(r(t)x∆(t))∆ + p(t)x∆(t)

eσ
−p/r(t, t0)

< 0.

Then, r(t)x∆(t)
e
−p/r(t,t0)

is strictly decreasing on [t0,∞)T. We now claim that x∆(t) > 0 on

t ∈ [t0,∞)T. If not, then there exists t1 ∈ [t0,∞)T such that x∆(t1) < 0. It follows

that
r(t)x∆(t)

e
−p/r(t, t0)

≤
r(t1)x

∆(t1)

e
−p/r(t1, t0)

:= c < 0, t ≥ t1,

i.e.,

(2.2) x∆(t) ≤
c

r(t)
e
−p/r(t, t0).

Integrating (2.2) from t1 to t, we find from (1.2) that

x(t) ≤ x(t1) + c

∫ t

t1

1

r(s)
e
−p/r(s, t0)∆s→ −∞ as t→ ∞,

this implies that x(t) is eventually negative, which is a contradiction to x(t) > 0 on

[t0,∞)T. Thus, x∆(t) > 0 on [t0,∞)T. Therefore,

x(t) > x(t) − x(t0) =

∫ t

t0

r(s)x∆(s)

e
−p/r(s, t0)

e
−p/r(s, t0)

r(s)
∆s

>
r(t)x∆(t)

e
−p/r(t, t0)

∫ t

t0

1

r(s)
e
−p/r(s, t0)∆s,

which yields

x(t) > R(t)x∆(t).

Consequently,

x(t)

xσ(t)
=

x(t)

x(t) + µ(t)x∆(t)
≥

R(t)

R(t) + µ(t)
= α(t).

This completes the proof.

We are now in a position to state and prove our main results.
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Theorem 2.1. Let (1.2) hold. Assume that there exists a positive ∆-differentiable

function δ(t) such that

(2.3) lim
t→∞

∫ t

t0

(

Kq(s)δσ(s) −

(

r(s)δ∆(s) − β(s)δσ(s)
)2

4α(s)r(s)δσ(s)

)

∆s = ∞.

Then Eq. (1.1) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary and assume that Eq. (1.1) has a nonoscillatory solution

x(t) on [t0,∞)T. Without loss of generality, we assume that there exists a T ∈ [t0,∞)T

such that x(t) > 0 for t ∈ [T,∞)T. Let

w(t) = δ(t)
r(t)x∆(t)

x(t)
, t ∈ [T,∞)T.

By [3, Theorem 1.20] and (1.1), we have

w∆ = δ∆ rx∆

x
+ δσ

(rx∆

x

)∆

=
δ∆

δ
w + δσ

[(rx∆)∆

xσ
−
r(x∆)2

xxσ

]

=
δ∆

δ
w + δσ

[

−Kq −
px∆

xσ
−
r(x∆)2

xxσ

]

.

If p(t) ≥ 0, then, by the fact x(t)/xσ(t) > α(t) (in view of Lemma 2.1), we get

w∆ =
δ∆

δ
w + δσ

[

−Kq − p
x∆

x

x

xσ
−

x

rxσ

(rx∆

x

)2]

<
δ∆

δ
w + δσ

[

−Kq −
αp

rδ
w −

α

r

(w

δ

)2]

= −Kqδσ +
(δ∆

δ
−
αpδσ

rδ

)

w −
αδσ

rδ2
w2.(2.4)

If p(t) < 0, then, noting that x∆(t) > 0, we have

w∆ <
δ∆

δ
w − δσ

[

Kq +
px∆

x
+
r(x∆)2

xxσ

]

< −Kqδσ +
(δ∆

δ
−
pδσ

rδ

)

w −
αδσ

rδ2
w2.(2.5)

Hence, by (2.4), (2.5) and the definition of β(t), we get

w∆ < −Kqδσ +
(δ∆

δ
−
βδσ

rδ

)

w −
αδσ

rδ2
w2

= −Kqδσ −
αδσ

rδ2

[

w −
δ(rδ∆ − βδσ)

2αδσ

]2

+
(rδ∆ − βδσ)2

4αrδσ

≤ −Kqδσ +
(rδ∆ − βδσ)2

4αrδσ
.(2.6)

Integrating (2.6) from T to t, we obtain
∫ t

T

(

Kq(s)δσ(s) −
(r(s)δ∆(s) − β(s)δσ(s))2

4α(s)r(s)δσ(s)

)

∆s < w(T ) − w(t) ≤ w(T ),
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which contradicts (2.3). This completes the proof.

We next establish Philos-type oscillation criterion [10] for Eq. (1.1). First, let us

introduce the class of functions H which will be extensively used in the sequel.

Let D0 ≡ {(t, s) ∈ T
2 : t > s ≥ t0} and D ≡ {(t, s) ∈ T

2 : t ≥ s ≥ t0}. We say the

function H is belonged to the class H, denoted by H ∈ H, if H : [t0,∞)T× [t0,∞)T →

R and satisfies

(i) H(t, t) = 0 for t ∈ [t0,∞)T, H(t, s) > 0 on D0;

(ii) H∆s(t, s) ≤ 0 on D, and for each fixed t, H(t, s) is rd-continuous function with

respect to s.

Theorem 2.2. Let (1.2) hold. Assume that there exist a positive ∆-differentiable

function δ(t) and H ∈ H such that

(2.7) lim sup
t→∞

1

H(t, T )

∫ t

T

H(t, s)
(

Kq(s)δσ(s) −

(

r(s)δ∆(s) − β(s)δσ(s)
)2

4α(s)r(s)δσ(s)

)

∆s = ∞,

for sufficiently large T . Then Eq. (1.1) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary and assume that x(t) is a nonoscillatory solution

of Eq. (1.1) on [t0,∞)T. Without loss of generality we suppose that x(t) > 0 for

t ∈ [T,∞)T ⊆ [t0,∞)T. Proceeding as the proof of Theorem 2.1, we get (2.6) hold.

i.e.,

(2.8) Kq(t)δσ(t) −
(r(t)δ∆(t) − β(t)δσ(t))2

4α(t)r(t)δσ(t)
< −w∆(t).

Multiplying (2.8)(with t replaced by s) by H(t, s), and integrating with respect to s

from T to t, we get
∫ t

T

H(t, s)
(

Kq(s)δσ(s) −
(r(s)δ∆(s) − β(s)δσ(s))2

4α(s)r(s)δσ(s)

)

∆s < −

∫ t

T

H(t, s)w∆(s)∆s.

Integrating by parts, for t ∈ [T,∞)T, gives
∫ t

T

H(t, s)
(

Kq(s)δσ(s) −
(r(s)δ∆(s) − β(s)δσ(s))2

4α(s)r(s)δσ(s)

)

∆s

< H(t, T )w(T ) +

∫ t

T

H∆s(t, s)wσ(s)∆s

≤ H(t, T )w(T ).

Note that H∆s(t, s) ≤ 0 on D and w(t) > 0, then

1

H(t, T )

∫ t

T

H(t, s)
(

Kq(s)δσ(s) −
(r(s)δ∆(s) − β(s)δσ(s))2

4α(s)r(s)δσ(s)

)

∆s < w(T ),

which contradicts (2.7). This completes the proof.

As an immediate consequence of Theorem 2.2, we have
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Corollary 2.1. Let assumption (2.7) in Theorem 2.2 be replaced by

lim sup
t→∞

1

H(t, T )

∫ t

T

H(t, s)q(s)δσ(s)∆s = ∞,

and

lim sup
t→∞

1

H(t, T )

∫ t

T

H(t, s)
(

r(s)δ∆(s) − β(s)δσ(s)
)2

4α(s)r(s)δσ(s)
∆s <∞.

Then Eq. (1.1) is oscillatory on [t0,∞)T.

The results in Theorem 2.2 are very general, with appropriate choices of the

function H(t, s) in Theorem 2.2, we can obtain different conditions for oscillation of

(1.1). For instance, define H(t, s) by

H(t, s) = (t− s)m, m ≥ 1, (t, s) ∈ D0,

we have the following oscillation result.

Corollary 2.2. Let (1.2) hold. Assume that there exists a positive ∆-differentiable

function δ(t) such that

lim sup
t→∞

1

tm

∫ t

t0

(t− s)m
(

Kq(s)δσ(s) −

(

r(s)δ∆(s) − β(s)δσ(s)
)2

4α(s)r(s)δσ(s)

)

∆s = ∞,

where m ≥ 1. Then Eq. (1.1) is oscillatory on [t0,∞)T.

In the following, we consider the case when (1.3) holds.

Theorem 2.3. Let (1.3) hold. Assume that there exists a positive ∆-differentiable

function δ(t) such that (2.3) holds, and

(2.9)

∫

∞

t0

1

r(t)

∫ t

t0

q(s) e
−p/r(t, σ(s))∆s∆t = ∞.

Then Eq. (1.1) is oscillatory on [t0,∞)T or converges to zero as t→ ∞.

Proof. Suppose to the contrary and assume that (1.1) has a nonoscillatory solution

x(t) on [t0,∞)T. Without loss of generality, we assume that there exists a T ∈ [t0,∞)T

such that x(t) > 0 for t ∈ [T,∞)T . Proceeding as the proof of Lemma 2.1, we know

that r(t)x∆(t)
e
−p/r(t,t0)

is decreasing. Hence x∆(t) is either eventually positive or eventually

negative. Thus, we shall distinguish the following two case:

(i) x∆(t) > 0 for t ∈ [T,∞)T;

(ii) x∆(t) < 0 for t ∈ [T,∞)T.

Case (i). Since the proof when x∆(t) eventually positive is similar to that of

Theorem 2.1, we omit the details.
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Case (ii). It follows from the fact x∆(t) < 0 and x(t) > 0 on [t0,∞)T that

limt→∞
x(t) = b ≥ 0. We will show that b = 0. If not, then, by (A2), there exists a

t1 ∈ [T,∞)T so that f(xσ(t)) ≥ b
2
K for t ∈ [t1,∞)T ⊆ [T,∞)T. From (1.1), we have

(2.10) −(r(t)x∆(t))∆ = p(t)x∆(t) + q(t)f(xσ(t)) > p(t)x∆(t) +
b

2
Kq(t).

Let u(t) = r(t)x∆(t). It follows from (2.10) that

u∆(t) < −
p(t)

r(t)
u(t) −

b

2
Kq(t).

Hence, by [3, Theorem 6.1], we obtain

r(t)x∆(t) = u(t) < u(t1)e−p/r(t, t1) −
b

2
K

∫ t

t1

e
−p/r(t, σ(s)) q(s)∆s

< −
b

2
K

∫ t

t1

q(s) e
−p/r(t, σ(s))∆s,

since u(t1) = r(t1)x
∆(t1) < 0. Dividing both sides by r(t) and integrating from t1 to

t, we have
∫ t

t1

x∆(s)∆s < −
b

2
K

∫ t

t1

1

r(s)

∫ s

t1

q(τ) e
−p/r(s, σ(τ))∆τ∆s,

hence, by (2.9),

x(t) < x(t1) −
b

2
K

∫ t

t1

1

r(s)

∫ s

t1

q(τ) e
−p/r(s, σ(τ))∆τ∆s→ −∞ as t→ ∞,

which contradicts the fact x(t) > 0, Thus b = 0. This completes the proof.

Using the same ideas as the proof of Theorems 2.2 and 2.3, we obtain.

Theorem 2.4. Let (1.3)and (2.9) hold. Assume that there exist a positive ∆-differ-

entiable function δ(t) and H ∈ H such that (2.7) holds. Then Eq. (1.1) is oscillatory

on [t0,∞)T or converges to zero as t→ ∞.

Remark 2.1. Theorems 2.1 and 2.2 improve and extend [11, Theorems 2.1, 2.2],

respectively.

3. APPLICATION AND EXAMPLES

In this section, we apply our main results to the time scales T = N and T = qN0

and establish some oscillation criteria for Eq. (1.1). Finally, we give two examples to

illustrate our main results.

When T = N, Eq. (1.1) reduces to the second order difference equation

(3.1) ∆(r(n)∆x(n)) + p(n)∆x(n) + q(n)f(x(n+ 1)) = 0, n ≥ n0.
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Hence, for Eq. (3.1), (1.2) and (1.3) become

(3.2)

∞
∑

i=n0

1

r(i)
e
−p/r(i, n0) = ∞,

and

(3.3)

∞
∑

i=n0

1

r(i)
e
−p/r(i, n0) <∞,

respectively. Note that, for all n ≥ n0,

R(n) =
r(n)

e
−p/r(n, n0)

n−1
∑

i=n0

e
−p/r(i, n0)

r(i)
, α(n) =

R(n)

R(n) + 1
,

and

β(n) =

{

α(n)p(n), p(n) ≥ 0,

p(n), p(n) < 0.

By Theorems 2.1-2.4, we have

Theorem 3.1. Let (3.2) hold. Assume that there exists a positive sequence δ(n) such

that

(3.4) lim
n→∞

n−1
∑

i=n0

[

Kq(i)δ(i+ 1) −

[

r(i)∆δ(i) − β(i)δ(i+ 1)
]2

4α(i)r(i)δ(i+ 1)

]

= ∞.

Then Eq. (3.1) is oscillatory on N.

We say a double sequence H ∈ H1 if H satisfies

(B1) H(m,m) = 0 for m ≥ m0 > 0, H(m,n) > 0 for m > n ≥ n0 > 0;

(B2) ∆2H(m,n) = H(m,n+ 1) −H(m,n) ≤ 0 for m > n ≥ n0 > 0.

Theorem 3.2. Let (3.2) hold. Assume that there exist a positive sequence δ(n) and

H ∈ H1 such that

(3.5) lim sup
n→∞

1

H(n, n0)

n−1
∑

i=n0

H(n, i)
[

Kq(i)δ(i+1)−

[

r(i)∆δ(i) − β(i)δ(i+ 1)
]2

4α(i)r(i)δ(i+ 1)

]

= ∞.

Then Eq. (3.1) is oscillatory on N.

Theorem 3.3. Let (3.3) hold. Assume that there exists a positive sequence δ(n) such

that (3.4) and

(3.6)
∞

∑

n=n0

1

r(n)

n−1
∑

i=n0

q(i) e
−p/r(n, i+ 1) = ∞

hold. Then Eq. (3.1) is oscillatory on N or converges to zero as n→ ∞.

Theorem 3.4. Let (3.3) hold. Assume that there exist a positive sequence δ(n) and

H ∈ H1 such that (3.5) and (3.6) hold. Then every solution of Eq. (3.1) is oscillatory

on N or converges to zero as n→ ∞.
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When T = qN0 = {t : t = qk, k ∈ N ∪ {0}, q > 1}, then Eq. (1.1) reduces to

(3.7) ∆q(r(q
k)∆qx(q

k)) + p(qk)∆qx(q
k) + q(qk)f(x(qk+1)) = 0, k ≥ k0.

Hence, for Eq. (3.7), (1.2) and (1.3) become

(3.8)
∞

∑

i=k0

e
−p/r(q

i, qk0)

r(qi)
= ∞,

and

(3.9)

∞
∑

i=k0

e
−p/r(q

i, qk0)

r(qi)
<∞,

respectively. It is easy to show that

R(qk) =
r(qk)

e
−p/r(qk, qk0)

k−1
∑

i=k0

e
−p/r(q

i, qk0)

r(qi)
µ(qi), α(qk) =

R(qk)

R(qk) + qk(q − 1)
,

and

β(qk) =

{

α(qk)p(qk), p(qk) ≥ 0,

p(qk), p(qk) < 0.

By Theorems 2.1–2.4, we have

Theorem 3.5. Let (3.8) hold. Assume that there exists a positive sequence δ(n) such

that

(3.10) lim
k→∞

k−1
∑

i=k0

[

Kq(qi)δ(qi+1) −

[

r(qi)∆δ(qi) − β(qi)δ(qi+1)
]2

4α(qi)r(qi)δ(qi+1)

]

qi = ∞.

Then Eq. (3.7) is oscillatory on qN0.

We say H ∈ H2 if H satisfies

(C1) H(qk, qk) = 0, k ≥ k0 > 0,H(qk, qs) > 0,k > s ≥ k0 > 0.

(C2) H∆s(qk, qs) = 1
(q−1)qs

[

H(qk, qs+1) −H(qk, qs)
]

≤ 0, k > s ≥ k0 > 0.

Theorem 3.6. Let (3.8) hold. Assume that there exist a positive sequence δ(n) and

H ∈ H2 such that

lim sup
k→∞

1

H(qk, qk0)

k−1
∑

i=k0

H(qk, qi)
[

Kq(qi)δ(qi+1)(3.11)

−

[

r(qi)∆δ(qi) − β(qi)δ(qi+1)
]2

4α(qi)r(qi)δ(qi+1)

]

qi = ∞.

Then Eq. (3.7) is oscillatory on qN0.
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Theorem 3.7. Let (3.9) hold. Assume that there exists a positive sequence δ(n) such

that (3.10) holds, and

(3.12)
∞

∑

k=k0

1

r(qk)

[

k−1
∑

i=k0

e
−p/r(q

k, qi+1)q(qi)qi
]

qk = ∞.

Then Eq. (3.7) is oscillatory on qN0 or converges to zero as n→ ∞.

Theorem 3.8. Let (3.9) hold. Assume that there exist a positive sequence δ(n) and

H ∈ H2 such that (3.11) and (3.12) hold. Then Eq. (3.7) is oscillatory on qN0 or

converges to zero as n→ ∞.

Finally, we give two examples to illustrate our main results.

Example 3.1. Consider Eq. (3.1) with K = 1 and n ≥ 2,

(3.13) r(n) = 1, p(n) =
1

n2
, q(n) = 1 +

1

n4
.

Here,

1 − µ(n)
p(n)

r(n)
= 1 −

1

n2
> 0.

By [1, Lemma 2], we have

e
−p/r(n, 2) ≥ 1 −

n−1
∑

i=2

p(i)

r(i)
= 1 −

n−1
∑

i=2

1

i2
> 1 −

n−1
∑

i=2

1

(i− 1)i
=

1

n− 1
,

and

e
−p/r(n, 2) ≤ exp

(

−
n−1
∑

i=2

p(i)
)

= exp
(

−
n−1
∑

i=2

1

i2

)

≤ 1,

for all n ≥ 2. Then

∞
∑

i=2

1

r(i)
e
−p/r(i, 2) >

n−1
∑

i=2

1

i− 1
=

n−2
∑

i=1

1

i
→ ∞ as n→ ∞.

Hence, (3.2) is satisfied. Also, we have

R(n) =
1

e
−p/r(n, 2)

n−1
∑

i=2

e
−p/r(i, 2) ≥

n−1
∑

i=2

e
−p/r(i, 2) >

n−2
∑

i=1

1

i
,

and

α(n) =
R(n)

R(n) + 1
>

R(n)

2R(n)
=

1

2

for sufficiently large n. Let δ(n) = 1, we get

lim
n→∞

n−1
∑

i=2

[

q(i) −
α(i)p2(i)

4

]

> lim
n→∞

n−1
∑

i=2

[

q(i) − p2(i)
]

= lim
n→∞

n−1
∑

i=2

(

1 +
1

i4
−

1

i4

)

= lim
n→∞

(

n− 2
)

= ∞,
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i.e., (3.4) holds. Hence, by Theorem 3.1, Eq. (3.13) is oscillatory on N.

Example 3.2. Consider Eq. (3.7) with q = 2, K = 1 and k ≥ 0,

r(2k) = e2
k
−1, p(2k) =

1

2k
(1 − 22k

)e2
k
−1,(3.14)

q(2k) = 1 +
1

2 2k
(1 − 22k

)2e2
k
−1.

Here,

1 − µ(2k)
p(2k)

r(2k)
= 1 − 2k 1

e2k
−1

1

2k
(1 − 22k

)e2
k
−1 = 22k

> 0,

and

e
−p/r(2

k, 1) = exp
(

k−1
∑

i=0

log2

[

1 − µ(2i)p(2i)
r(2i)

]

µ(2i)
µ(2i)

)

= exp
(

k−1
∑

i=0

2i
)

= e2
k
−1.

Thus,
∞

∑

i=0

e
−p/r(2

i, 1)

r(2i)
µ(2i) =

∞
∑

i=0

2i = ∞,

i.e., (3.8) is satisfied. Also, we have

R(2k) =
r(2k)

e
−p/r(2k, 1)

k−1
∑

i=0

e
−p/r(2

i, 1)

r(2i)
2i =

k−1
∑

i=0

2i = 2k − 1.

Then

α(2k) =
R(2k)

R(2k) + µ(2k)
=

2k − 1

2k − 1 + 2k
=

2k − 1

2k+1 − 1
.

Clearly, 1/3 < α(2k) < 1 for k ≥ 2. Let δ(2k) = 1, we get

lim
k→∞

k−1
∑

i=0

[

q(2i) −
p2(2i)

4α(2i)r(2i)

]

2i

> lim
k→∞

k−1
∑

i=0

[

q(2i) −
3

4

p2(2i)

r(2i)

]

2i

> lim
k→∞

k−1
∑

i=0

[

q(2i) −
p2(2i)

r(2i)

]

2i

≥ lim
k→∞

k−1
∑

i=0

[

1 +
(1 − 22i

)2e2
i
−1

22i
−

(1 − 22i
)2e2

i
−1

22i

]

2i

= lim
k→∞

(

2k − 1
)

= ∞,

i.e., (3.10) holds. Hence, by Theorem 3.5, Eq. (3.14) is oscillatory on 2N0 .
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