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ABSTRACT. In this paper we develop the method of Quasilinearization for hybrid Caputo frac-

tional differential equations which are Caputo fractional differential equations with fixed moments
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of local Hölder continuity.

Keywords and Phrases. Hybrid Caputo fractional differential equations, Quasilinearization, Ex-

istence

AMS Subject Classification. 34K07, 34A08

1. INTRODUCTION

In the recent years, there has been a significant amount of work done in the

theory of fractional differential equations and many researchers are delving into this

area due to its immense potential in applications such as Fluid Flow, Rheology, Dy-

namical Processes in Self-Similar and Porous Structures, Diffusive Transport Akin

to Diffusion, Electrical Networks, Probability and Statistics, Control Theory of Dy-

namical Systems, Viscoelasticity, Electrochemistry of Corrosion, Chemical Physics,

Optics and Signal Processing, and so on. The works of Kilbas et al [2], Podlubny [1],

Lakshmikantham et al [3] and then references [4–9] bear testimony to the continued

interest in this area.

Another field which has a lot of scope is the theory of hybrid systems or impulsive

differential systems [10]. This is due to the fact that many evolution processes are

characterized by the fact that they experience a change of state abruptly, that is, in

a very short duration of time. This abrupt change can be considered as short term

perturbations whose duration is negligible. Thus we assume that these perturbations

act instantaneously in the form of impulses. Thus it is obvious that hybrid systems

form a better model to represent physical phenomena.
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Combining these two areas of interest, we consider hybrid fractional differential

equations and propose to study existence of solutions. As the method of Quasilin-

earization [11] is a flexible mechanism that gives a sequence of iterations that con-

verges quadratically to a solution, we propose to study it. In [12] Quasilinearization

for IVP of fractional differential equations has been studied and in [13] generalized

Quasilinearization has been developed for IVP of fractional differential equations. In

this paper, we develop the method of Quasilinearization for hybrid Caputo fractional

differential equations.

It is observed in [14] that the results in fractional differential equations can be

studied with the weakened hypothesis of Cp or Cq continuity. We propose to use

weakened hypothesis in this paper.

2. PRELIMINARIES

The basic results that are needed to prove our main result are presented in this

section. We begin with the definition of Cp-continuity, R − L fractional derivative,

Caputo fractional derivative and proceed to state a lemma with the weakened hy-

pothesis of Cp-continuity. This lemma is essential in proving the basic differential

inequality results. All these results are from [14].

As observed above, the comparison theorems [3], in fractional differential equa-

tions set-up require Hölder continuity. Although this requirement is used to develop

iterative techniques such as the monotone iterative technique and the method of

quasilinearization, there is no feasible way to check whether the functions involved

are Hölder continuous. To avoid this situation, it has been shown in [14] that compar-

ison results can be proved under the weaker condition of Cp-continuity. Lemma 2.3.1

in [3] is essential in establishing the comparison theorems, a detailed proof of this

result under the weaker hypothesis was given in [14]. The basic differential inequality

theorem, required comparison theorems and the lemma which are proved in [14] all

are stated below.

We begin with the definition of the class Cp[[t0, T ], R].

Definition 2.1. m is said to be Cp continuous if m ∈ Cp[[t0, T ], R] that is m ∈

C[(t0, T ], R] and (t − t0)
pm(t) ∈ C[[t0, T ], R] with p + q = 1.

Definition 2.2. For m ∈ Cp[[t0, T ], R], the Riemann-Liouville derivative of m(t) is

defined as

(2.1) Dqm(t) =
1

Γ(p)

d

dt

t
∫

t0

(t − s)p−1 m(s)ds.

We next state a lemma that is vital for our main result.
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Lemma 2.3. Let m ∈ Cp[[t0, T ], R]. Suppose that for any t1 ∈ [t0, T ], we have

m(t1) = 0 and m(t) < 0 for t0 ≤ t < t1, then it follows that

(2.2) Dqm(t1) ≥ 0.

We next state the fundamental fractional differential inequality result in the set

up of Riemann-Liouville fractional derivative, with a weaker hypothesis from [14].

Theorem 2.4. Let v, w ∈ Cp[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) Dqv(t) ≤ f(t, v(t))

and

(ii) Dqw(t) ≥ f(t, w(t)),

t0 < t ≤ T , with one of the inequalities (i) or (ii) being strict. Then v0 < w0, where

v0 = v(t)(t − t0)
1−q|t=t0 and w0 = w(t)(t − t0)

1−q|t=t0 implies that

(2.3) v(t) < w(t), t0 ≤ t ≤ T.

The next result deals with the inequality theorem for non strict inequalities.

Theorem 2.5. Let v, w ∈ Cp[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) Dqv(t) ≤ f(t, v(t))

and

(ii) Dqw(t) ≥ f(t, w(t)),

t0 < t ≤ T . Assume f satisfies the Lipschitz condition

(2.4) f(t, x) − f(t, y) ≤ L(x − y), x ≥ y, L > 0.

Then, v0 < w0, where v0 = v(t)(t − t0)
1−q|t=t0 and w0 = w(t)(t − t0)

1−q|t=t0 , implies

v(t) ≤ w(t), t ∈ [t0, T ].

We now define a Cq-continuous function.

Definition 2.6. u is said to be Cq continuous that is u ∈ Cq[[t0, T ], R] iff the Caputo

derivative of u denoted by cDqu exists and satisfies

(2.5) cDqu(t) =
1

Γ(1 − q)

t
∫

t0

(t − s)−qu′(s)ds.

We note that the Caputo and Riemann-Liouville derivatives are related as follows:

(2.6) cDqx(t) = Dq[x(t) − x(t0)].

We choose to work with the Caputo fractional derivative, since the initial conditions

for fractional differential equations are of the same form as those of ordinary differen-

tial equations. Further, the Caputo fractional derivative of a constant is zero, which



570 J. V. DEVI AND V. RADHIKA

is useful in our work. Consider the IVP for the Caputo fractional differential equation

given by

(2.7) cDqx = f(t, x), x(t0) = x0,

for 0 < q < 1, f ∈ Cq[[t0, T ] × R
n, Rn].

If x ∈ Cq[[t0, T ], Rn] satisfies (2.7), then it also satisfies the Volterra fractional

integral

(2.8) x(t) = x0 +
1

Γ(q)

t
∫

t0

(t − s)q−1 f(s, x(s))ds,

for t0 ≤ t ≤ T .

We now state the comparison theorem for the Caputo fractional differential equa-

tion using the same weaker hypothesis. As the proof is similar to that of Theorem 2.4.3

in [3], we omit it.

Theorem 2.7. Assume that m ∈ Cq[[t0, T ], R] and

cDqm(t) ≤ g(t, m(t)), t0 ≤ t ≤ T,

where g ∈ C[[t0, T ] × R, R]. Let r(t) be the maximal solution of the IVP

(2.9) cDqu = g(t, u), u(t0) = u0,

existing on [t0, T ] such that m(t0) ≤ u0. Then we have m(t) ≤ r(t), t0 ≤ t ≤ T .

3. IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we begin with the basic definitions given in [15], where in the

existence and stability results for hybrid Caputo fractional differential equation with

fixed moments of impulse are studied.

Definition 3.1. Let 0 ≤ t0 < t1 < t2 < · · · < tk < · · · and tk → ∞ as k → ∞. Then

we say that h ∈ PCp[R+ × R
n, Rn] if h : (tk−1, tk] × R

n → R
n is Cp-continuous on

(tk−1, tk] × R
n and for any x ∈ R

n

lim
(t,y)→(t+

k
,x)

h(t, y) = h(t+k , x)

exists for k = 1, 2, . . . , n − 1.

Definition 3.2. Let 0 ≤ t0 < t1 < t2 < · · · < tk < · · · and tk → ∞ as k → ∞. Then

we say that h ∈ PCq[R+ × R
n, Rn] if h : (tk−1, tk] ×R

n → R
n is Cq-continuous on

(tk−1, tk] × R
n and for any x ∈ R

n

lim
(t,y)→(t+

k
,x)

h(t, y) = h(t+k , x)

exists for k = 1, 2, . . . , n − 1.
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Consider the hybrid Caputo fractional differential system defined by

(3.1)



















cDqx = f(t, x), t 6= tk,

x(t+k ) = Ik(x(tk)), k = 1, 2, 3, . . . , n − 1,

x(t0) = x0,

where f ∈ PC[I × R
n, Rn], Ik : R

n → R
n, t ∈ I = [t0, T ], k = 1, 2, . . . , n − 1.

Definition 3.3. By a solution of the system (3.1), we mean a PCq continuous func-

tion x ∈ PCq[[t0, T ], Rn] such that

(3.2) x(t) =



















































x0(t, t0, x0), t0 ≤ t ≤ t1,

x1(t, t1, x
+
1 ), t1 < t ≤ t2,

...

xk(t, tk, x
+
k ), tk < t ≤ tk+1,

...

xn−1(t, tn−1, x
+
n−1), tn−1 < t ≤ T,

where 0 ≤ t0 < t1 < t2 < · · · < tn−1 ≤ T and xk(t, tk, x
+
k ) is the solution of the IVP

of the fractional differential equation






cDqx = f(t, x),

x+
k = x(t+k ) = Ik(x(tk)).

Now we state the basic differential inequality result in this set up from [15].

Theorem 3.4. Let u,w ∈ PCq[[t0, T ], R] with


















cDqv(t) ≤ f(t, v(t)), t 6= tk,

v(t+k ) ≤ Ik(v(tk)), k = 1, 2, 3, . . . , n − 1,

v(t0) ≤ x0,

and


















cDqw(t) ≥ f(t, w(t)), t 6= tk,

w(t+k ) ≥ Ik(w(tk)), k = 1, 2, 3, . . . , n − 1,

w(t0) ≥ x0,

where f ∈ PC[I × R
n, Rn] and f satisfies the hypothesis

f(t, x) − f(t, y) ≤ L(x − y), x ≥ y, L > 0

and Ik is a monotonically nondecreasing function of x. Then v0 < w0 implies that

v(t) ≤ w(t), t ∈ [t0, T ].
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Lemma 3.5. The linear non-homogeneous hybrid Caputo fractional differential equa-

tion


















cDqx = −M(x − y) + f(t, y), t 6= tk,

x(t+k ) = Ik(x(tk)), k = 1, 2, 3, . . . , n − 1,

x(t0) = x0,

has a unique solution on the interval [t0, T ].

Proof. We proceed to prove the theorem in each subinterval. Let t ∈ [t0, t1] and

consider the Caputo fractional differential equation







cDqx = −M(x − y) + f(t, y),

x(t0) = x0.

Then from [2], we have that x(t, t0, x0) = x(t) = x0 Eq(M(t − t0)
q) +

∫ t

t0
(t −

s)q−1 Eq, q(M(t − s)q) f(s, y(s))ds, t ∈ [t0, t1] is the unique solution. Then we have

x(t1, t0, x0) = x(t1) = x0 Eq(M(t1−t0)
q)+

∫ t1

t0
(t1−s)q−1 Eq, q(M(t1−s)q) f(s, y(s))ds

and x(t+1 ) = I1(x(t1)) = x+
1 (say). Now we consider the interval (t1, t2] and the Caputo

fractional differential equation







cDqx = −M(x − y) + f(t, y),

x(t+1 ) = x+
1 .

Thus as earlier, the unique solution is given by,

x(t, t1, x
+
1 ) = x(t)

= x+
1 Eq(M(t − t1)

q)

+

∫ t

t1

(t − s)q−1 Eq, q(M(t − s)q) f(s, y(s))ds, t ∈ (t1, t2].

Then

x(t2, t1, x
+
1 ) = x(t2)

= x+
1 Eq(M(t2 − t1)

q)

+

∫ t2

t1

(t2 − s)q−1 Eq, q(M(t2 − s)q) f(s, y(s))ds, t ∈ (t1, t2].

and

x(t+2 ) = I2(x(t2)) = x+
2 .
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Then proceeding as earlier, we obtain the unique solution for the linear non-

homogeneous hybrid Caputo fractional differential equation as

(3.3) x(t) =































x0(t, t0, x0), t0 ≤ t ≤ t1,

x1(t, t1, x
+
1 ), t1 < t ≤ t2,

...

xn−1(t, tn−1, x
+
n−1), tn−1 < t ≤ T .

We begin with the definition of lower and upper solutions for the hybrid Caputo

fractional differential equation given by

(3.4)
{

cDqx = f(t, x), t 6= tk,x(t+k ) = Ik(x(tk)), k = 1, 2, . . . , n − 1,x(t0) = x0,

where f ∈ PC[R+ × R
n, Rn], Ik; R

n −→ R
n, k = 1, 2, 3, . . . , n− 1 and t ∈ [t0, T ].

Definition 3.6. α, β ∈ PCq[[t0, T ], Rn] are said to be lower and upper solutions of

equation (3.4), if and only if they satisfy the following inequalities

(3.5)



















cDqα ≤ f(t, α), t 6= tk,

α(t+k ) ≤ Ik(α(tk)), k = 1, 2, 3, . . . , n − 1,

α(t0) ≤ x0,

and

(3.6)



















cDqβ ≥ f(t, β), t 6= tk,

β(t+k ) ≥ Ik(β(tk)), k = 1, 2, 3, . . . , n − 1,

β(t0) ≥ x0,

respectively.

Lemma 3.7. Suppose that

(i) v0(t) is the lower solution of the hybrid Caputo fractional differential equation

(3.4).

(ii) Let v1(t) be the unique solution of the linear non-homogeneous hybrid Caputo

fractional differential equation

(3.7)



















cDqv1 = f(t, v0) + fx(t, v0) (v1 − v0), t 6= tk,

v1(t
+
k ) = Ik(v1(tk)), k = 1, 2, 3, . . . , n − 1,

v1(t0) = x0.

(iii) Ik is a nondecreasing function in x, for each k = 1, 2, 3, . . . , n − 1.

(iv) fx is continuous and Lipschitz on [t0, T ].

Then v0(t) ≤ v1(t), t ∈ [t0, T ].
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Proof. Suppose that v0(t) is a lower solution of (3.4) and v1(t) be the unique solution

of (3.7), set p(t) = v0(t) − v1(t), t ∈ [t0, t1].

cDqp(t) = cDqv0(t) −
cDqv1(t)

≤ f(t, v0) − [f(t, v0) + fx(t, v0)(v1 − v0)]

≤ Mp(t),

where | fx(t, v0) |≤ M , by assumption (iv). Then

cDqp(t) ≤ Mp(t)(3.8)

and

p(t0) ≤ 0.

Thus from the solution of the linear non-homogeneous hybrid Caputo fractional dif-

ferential equation, we get

p(t) ≤ p(t0)Eq(M(t − t0)
q), t ∈ [t0, t1],

which yields

p(t) ≤ 0, t ∈ [t0, t1].

Thus we have

v0(t) ≤ v1(t), t ∈ [t0, t1],

and therefore we get

v0(t1) ≤ v1(t1).

From the assumption (iii) we obtain that

v+
0 = v0(t

+
1 ) = I1(v0(t1)) ≤ I1(v1(t1)) = v1(t

+
1 ) = v+

1 .

For t ∈ (t1, t2] and consider the Caputo fractional differential equation






cDqv1 = f(t, v0) + fx(t, v0) (v1 − v0),

v1(t
+
1 ) = v+

1 .

Again setting p(t) = v0(t) − v1(t), we get cDqp(t) = cDqv0(t) −
cDqv1(t) that is,

cDqp(t) ≤ Mp(t) and p(t+1 ) ≤ 0. Working as earlier, we get that p(t) ≤ 0, t ∈ (t1, t2].

From which we can conclude that

v0(t) ≤ v1(t), t ∈ (t1, t2].

Proceeding in a similar fashion over each subinterval (tk, tk+1], we can show that

v0(t) ≤ v1(t), t ∈ [t0, T ].



QUASILINEARIZATION FOR HYBRID CAPUTO FRACTIONAL DEs 575

Lemma 3.8. Suppose that in Lemma 3.7, the assumption (i) and (ii) are replaced

by (i) w0(t) be the upper solution of the hybrid Caputo fractional differential equa-

tion (3.4) and (ii) w1(t) be the unique solution of the linear non-homogeneous hybrid

Caputo fractional differential equation



















cDqw1 = f(t, w0) + fx(t, w0) (w1 − w0), t 6= tk,

w1(t
+
k ) = Ik(w1(tk)), k = 1, 2, 3, . . . , n − 1,

w1(t0) = x0,

and the assumptions (iii) and (iv) of Lemma 3.7 hold. Then w1(t) ≤ w0(t), t ∈ [t0, T ].

The proof of Lemma is similar to the proof of Lemma 3.7 and hence we omit it.

4. QUASILINEARIZATION

The method of Quasilinearization is an useful Iterative technique to obtain the

solutions of hybrid Caputo fractional differential equation, where the iterations con-

verge quadratically. In this section, we proceed to develop this technique.

The main result of this paper is as follows.

Theorem 4.1. Suppose that

(i) α0, β0 be lower and upper solutions of equation (3.4) such that α0 ≤ β0 on [t0, T ].

(ii) f ∈ PC[[t0, T ]×R, R] and f(t, x) ≥ f(t, y)+fx(t, y)(x−y) for α0 ≤ y ≤ x ≤ β0;

(iii) Ik is continuous and nondecreasing in x, k = 1, 2, 3 . . . , n − 1.

(iv) fx is continuous and Lipschitz on [t0, T ].

Then there exist monotone sequences {αn},{βn} such that αn → ρ, βn → r n →

∞ uniformly and monotonically to the unique solution ρ = r = x of IVP (3.4) on

[t0, T ] and the convergence is quadratic.

Proof. For any η ∈ PCq([t0, T ], R) such that α0 ≤ η ≤ β0. Consider the linear

non-homogeneous hybrid Caputo fractional differential equation

(4.1)



















cDqx = f(t, η) + fx(t, η) (x − η), t 6= tk,

x(t+k ) = Ik(x(tk)), k = 1, 2, 3, . . . , n − 1,

x(t0) = x0,

then from Lemma 3.5, we obtain that equation (4.1) has a unique solution on the

interval [t0, T ].
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Now, replacing η, x with α0, α1. We get the hybrid Caputo fractional differential

equation

(4.2)



















cDqα1 = f(t, α0) + fx(t, α0) (α1 − α0), t 6= tk,

α1(t
+
k ) = Ik(α1(tk)), k = 1, 2, 3, . . . , n − 1,

α1(t0) = x0.

Since α0(t) is the lower solution of the hybrid Caputo fractional differential equa-

tion (3.4), α1(t) is the unique solution of equation (4.2) and Ik, fx satisfy the hypoth-

esis of Lemma 3.7 we conclude that α0(t) ≤ α1(t), t ∈ [t0, T ]. Similarly, replacing η, x

with β0, β1. We get

(4.3)



















cDqβ1 = f(t, β0) + fx(t, α0) (β1 − β0), t 6= tk,

β1(t
+
k ) = Ik(β1(tk)), k = 1, 2, 3, . . . , n − 1,

β1(t0) = x0.

Clearly β1 is a unique solution of equation (4.3), β0 is an upper solution of (3.4) and

Ik, fx satisfy the hypothesis of Lemma 3.8, we have that β0 ≥ β1. To show α1 ≤ β1

we set p(t) = α1(t) − β1(t) for t ∈ [t0, T ], using the hypothesis(i), we get,

cDqp = cDqα1 −
cDqβ1

= f(t, α0) + fx(t, α0)(α1 − α0) − [f(t, β0) + fx(t, α0)(β1 − β0)]

≤ fx(t, α0)(α0 − β0) + fx(t, α0) [α1 − α0 − β1 + β0]

≤ fx(t, α0)p ≤ Mp,

where | fx(t, α0) |≤ M . Thus

cDqp(t) ≤ M p(t), t 6= tk.

Now for t ∈ [t0, t1]

cDqp(t) ≤ M p(t)

and

p(t0) ≤ 0.

Hence using Corollary 2.3.1 from [3], we get relation p(t) ≤ 0 for t ∈ [t0, t1].

Using the non-decreasing nature of I1, and the fact that α1(t1) ≤ β1(t1), we obtain

that α1(t
+
1 ) ≤ β1(t

+
1 ), t = t1, which yields that p(t+1 ) ≤ 0.

Thus repeating the same process over the interval (t1, t2] and continuing over each

subinterval (ti, ti+1] for i = 3, . . . , n − 1, we get that α1 ≤ β1 on [t0, T ].

Hence α0 ≤ α1 ≤ β1 ≤ β0 on [t0, T ].
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Suppose now that for some k > 1 α0 ≤ αk−1 ≤ αk ≤ βk ≤ βk−1 ≤ β0 on [t0, T ].

For t ∈ [t0, T ], we claim that

(4.4) αk ≤ αk+1 ≤ βk+1 ≤ βk.

Since we know that αk is a solution of hybrid Caputo fractional differential equa-

tion (4.1) when η = αk−1. Now using hypothesis (i), we obtain that αk is a lower

solution of equation (3.4) and αk+1 is the solution of the linear non-homogeneous

hybrid Caputo fractional differential equation

(4.5)



















cDqαk+1 = f(t, αk) + fx(t, αk) (αk+1 − αk), t 6= tk,

αk+1(t
+
k ) = Ik(αk+1(tk)), k = 1, 2, 3, . . . , n − 1,

αk+1(t0) = x0.

On applying Lemma 3.7, we conclude that αk(t) ≤ αk+1(t), t ∈ [t0, T ].

Similarly βk is the upper solution of equation (3.4), βk+1 is the solution of the

linear non-homogeneous hybrid Caputo fractional differential equation

(4.6)



















cDqβk+1 = f(t, βk) + fx(t, αk) (βk+1 − βk), t 6= tk,

βk+1(t
+
k ) = Ik(βk+1(tk)), k = 1, 2, 3, . . . , n − 1,

βk+1(t0) = x0,

and Ik, fx satisfy the hypothesis of Lemma 3.7, imply that βk+1 ≤ βk on [t0, T ].

Next to prove αk+1 ≤ βk+1 we set p(t) = αk+1(t) − βk+1(t) using the fact that

αk ≤ βk and the relation in equations (4.5) and (4.6), we have

cDqp ≤ fx(t, αk)[αk − βk + αk+1 − αk] − fx(t, αk) (βk+1 − βk)

= fx(t, αk)p

≤ Mp

and p(t0) = 0. For t ∈ [t0, t1] which gives cDqp(t) ≤ Mp(t) and p(t0) ≤ 0.

Again applying the Corollary 2.3.1 from [3] we have p(t) ≤ 0 for t ∈ [t0, t1],

next the non-decreasing nature of I1, αk+1(t
+
1 ) ≤ βk+1(t

+
1 ) we obtain that p(t+1 ) ≤ 0.

Working in a similar fashion, we can show that

αk+1(t) ≤ βk+1(t), t ∈ [t0, T ].

Hence, by the Principle of mathematical induction (4.4) holds for all k. Thus we

have the sequences of functions {αn}, {βn} which are piece-wise continuous functions

satisfying (4.4), (4.5) respectively and satisfying the relation α0 ≤ α1 ≤ α2 ≤ · · · ≤

αn ≤ βn ≤ βn+1 · · · ≤ β1 ≤ β0 on [t0, T ].

These sequences are uniformly bounded in each subinterval (tk, tk+1]. Now using

the Lemma 2.3.2 in [3] and the relation between the solutions of Caputo fractional
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differential equation and Riemann-Liouville fractional differential equation in [15], we

can conclude that {x∈(t)} is equicontinuous on each subinterval (tk, tk+1]. Hence by

using Arzela-Ascoli’s theorem on each subinterval (tk, tk+1], we show that the entire

sequences {αn(t)} and {βn(t)} converges uniformly and monotonically to a unique

solution x(t) of the IVP (3.1) on (tk, tk+1], as f is Lipschitz. Since Ik is a continuous

function for each k = 1, 2, . . . , n − 1, we have

lim
n→∞

αn(t+k ) = lim
n→∞

Ik(αn−1(tk))

and

ρ(t+k ) = Ik(ρ(tk))

similarly

r(t+k ) = Ik(r(tk)).

It is easy to show that ρ and r are the solutions corresponding Volterra’s integral

equations

(4.7) αn+1(t) = x0 +
1

Γ(q)

t
∫

t0

(t − s)q−1g(s, αn(s))ds

and

(4.8) βn+1(t) = x0 +
1

Γ(q)

t
∫

t0

(t − s)q−1g(s, βn(s))ds,

where g(s, αn(s)) = f(t, αn(s)) − M(αn+1 − αn) and g(s, βn(s)) = f(t, βn(s)) −

M(βn+1 − βn). Now by taking the limits as n → ∞ and using the uniform con-

tinuity of f and the uniform convergence of the sequences {αn} and {βn} on each

sub-interval (tk, tk+1]. For t ∈ [t0, T ], we get

cDqρ = f(t, ρ), t 6= tk,

ρ(t+k ) = Ik(ρ(tk)), k = 1, 2, 3, . . . , n − 1,

ρ(t0) = x0,

and
cDqr = f(t, r), t 6= tk,

r(t+k ) = Ik(r(tk)), k = 1, 2, 3, . . . , n − 1,

r(t0) = x0.

Further α0 ≤ ρ ≤ r ≤ β0 on t ∈ [t0, T ]. Since the solution is unique ρ = x = r on

[t0, T ].

To prove the quadratic convergence of {αn}, {βn} to the solution, we consider

pn+1 = x − αn+1
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so that pn+1(t0) = 0 then using the hypothesis (ii) fx is Lipschitz, we get

cDqpn+1 = f(t, x) − [f(t, αn) + fx(t, αn) (αn+1 − αn)]

= fx(t, η)pn − fx(t, αn)(pn − pn+1)

≤ L | η − αn | pn+ | fx(t, αn) | pn+1

≤ L | x − αn | pn + Mpn+1

≤ L | pn |20 +Mpn+1

further since Ik is Lipschitz, we obtain

pn+1(t
+
k ) = x(t+k ) − αn+1(t

+
k )

= Ik(x(tk)) − Ik(αn+1(tk))

≤ K pn+1(tk)

Therefore pn+1(t
+
k ) ≤ Kpn+1(tk), t = tk. Since pn+1(0) = 0, we arrive at the hybrid

Caputo fractional differential equation

cDqpn+1 = L | pn |20 +Mpn+1, t 6= tk,

pn+1(t
+
k ) = Kkpn+1(tk), k = 1, 2, 3 . . . , n − 1,

pn+1(0) = 0.

Now using the solution of the linear non homogeneous fractional differential equa-

tion on each subinterval, we get t ∈ (tk, tk+1]. For t ∈ (tk, tk+1], we have

pn+1(t) = Kk · · ·K3K2K1
L | pn |20
Γ(q + 1)

(t1 − t0)
q Eq,q(M(t1 − t0)

q)Eq(M(t2 − t1)
q)

Eq(M(t3 − t2)
q) · · ·Eq(M(tk+1 − tk)

q) + Kk · · ·K3K2

L | pn |20
Γ(q + 1)

(t2 − t1)
q Eq,q(M(t2 − t1)

q) Eq(M(t3 − t2)
q) · · ·Eq(M(tk+1 − tk)

q)

+ Kk · · ·K3
L | pn |20
Γ(q + 1)

(t3 − t2)
q Eq,q(M(t3 − t2)

q) · · ·Eq(M(tk+1 − tk)
q) + · · ·

+ Kk

L | pn |20
Γ(q + 1)

(tk − tk−1)
qEq,q(M(tk − tk−1)

q) Eq(M(tk+1 − tk)
q)

+
L | pn |20
Γ(q + 1)

(tk+1 − tk)
q Eq,q(M(tk+1 − tk)

q)

≤
L | pn |20
Γ(q + 1)

k+1
∑

j=1

(tj − tj−1)
qEq,q(M(tj − tj−1)

q)
k

∏

i=j

KiEq(M(ti+1 − ti)
q)

≤
L | pn |20
Γ(q + 1)

k+1
∑

j=1

lqEq,q[M(l)q]
k

∏

i=j

KiEq(M(l)q) (since tj − tj−1 = l)
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≤
L | pn |20
Γ(q + 1)

k+1
∑

j=1

lqKj, Kj+1, . . . , Kk[Eq(M(lq))]k−j Eq,q(M(l)q)

≤
L | pn |20
Γ(q + 1)

k+1
∑

j=1

lqK̃[Eq(M(lq))]k−jEq,q(M(l)q)

≤
LK̃

Γ(q + 1)
Eq,q(Mlq)Ω | pn |20

where

K̃ = K1 · · ·KN

and

Ω =

N
∑

j=1

lq[Eq(Mlq)]k−j

Thus

|pn+1(t)| ≤
LK̃

Γ(q + 1)
Ω Eq,q(Mlq)|pn|

2
0

This implies the quadratic convergence of the sequence [αn(t)]. Similarly, we can

prove the quadratic convergence of the sequence {βn(t)} to the solution x(t) of IVP

(3.1).

Remark: It can be observed that if we set Ik ≡ 0 for all k, then IVP (3.1) reduces

to Caputo fractional differential equation and quasilinearization for there equations

has been studied in [6]. Thus these results hold with the weakened hypothesis of

Cq-continuity.
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