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ABSTRACT. This work is devoted to the study of higher order stochastic differential equations

(HOSDE). The variation of constant parameter technique is utilized to develop a method for finding
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processes in the context of the second order equations is discussed.
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1. INTRODUCTION

In real life, mathematical models of several dynamic random processes are influ-

enced by not only their state but also rates of change of states leading to higher order

linear homogeneous stochastic differential equations. In this paper we are interested

in finding exact or closed form solution processes to such equations. In Section 2, we

formulate the problem, and present a few basic preliminary results. In Section 3, we

develop a method of finding exact solutions of higher order (order n ≥ 2) stochastic

linear differential equations with constant coefficients. These solutions are classified

in Section 4 based on nature of the roots of the characteristic polynomial of asso-

ciated with the higher order deterministic differential equation corresponding to the

stochastic differential. We also illustrate the method developed in Sections 3 and 4

with n = 2 and provide some useful examples. Finally, Section 5 provides ideas about

finding the probability distribution of the solution processes in the context of second

order (n = 2) equation.

2. PROBLEM FORMULATION

Since the introduction of Itô-Doob calculus, the modeling and study of random

dynamic phenomena have been very impressive, leading to the development of fun-

damental results for linear and nonlinear stochastic differential equations and their

applications including science, Engineering, and finance [1, 3, 11, 12, 16]. Although

Received June 22, 2012 1056-2176 $15.00 c©Dynamic Publishers, Inc.



608 J-C. PEDJEU AND G. S. LADDE

most of the studies are about the linear, nonlinear, and systems of stochastic differ-

ential equations, very limited work on higher order stochastic differential equations

with multiplicative noise is available. A treatment of higher order ordinary deter-

ministic and stochastic differential equations can be found in Ladde et al. in [10, 11].

This paper is devoted to the study of the following higher order stochastic differential

equations with constant coefficients of the form

(2.1) dy(n−1) +

n−1
∑

i=0

aiy
(i)dt+

n−1
∑

i=0

σjy
(j)dw = 0,

where n ∈ N, n ≥ 2, ai, and σj are constants, i, j = 0, . . . n−1, and w is a normalized

Wiener process.

Our goal is to develop a method of finding closed form solutions of (2.1). In doing

so, we will be interested in investigating conditions under which the exact solutions of

such equations are feasible. For this purpose, we set x1(t) = y(t), xi+1(t) = ẋi(t), for

i = 1, 2, 3, . . . , n−1, and write x(t) = [x1(t), . . . , xn(t)]T . Under these considerations,

equation (2.1) can be rewritten as a stochastic system of differential equations (SSDE).

(2.2) dx = Axdt+Bxdw(t)

where matrices A (the companion matrix associated with dy(n−1) +
n−1
∑

i=0

aiy
(i)dt = 0)

and B (stochastic perturbations) are defined by:

(2.3) A =























0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 1 0

0 0 . . . . . . 0 1

−a0 −a1 . . . . . . −an−2 −an−1























and

(2.4) B =

















0 0 . . . . . . 0 0

0 0 . . . . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . . . . 0 0

−σ0 −σ1 . . . . . . −σn−2 −σn−1

















,

respectively.

Definition 2.1. Let T > 0 and [t0, t0 + T ] = J ⊆ R. A solution of the n-th

(n ≥ 2) order linear stochastic differential equation of type (2.1) is a stochastic

process y = y(t, w) defined on J , whose sample paths are is (n−1) times continuously

differentiable, and it satisfies (2.1) in the sense of Itô-Doob calculus.
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In the following, we present a well-known result [10] that is useful for finding a

solution process of the deterministic system of differential equations (2.2):

(2.5) dx = Axdt

where A is n× n companion matrix defined in (2.3)

Proposition 2.2. Let Λ(λ) = λn + an−1λ
n−1 + · · ·+ a1λ

1 + a0. Then for any number

λ,

A

















1

λ
...

λn−2

λn−1

















=























0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 1 0

0 0 . . . . . . 0 1

−a0 −a1 . . . . . . −an−2 −an−1







































1

λ
...

λn−2

λn−1

















= λ

















1

λ
...

λn−2

λn−1

















− Λ(λ)

















0

0
...

0

1

















(2.6)

Proof. Detailed proof is provided in [10, 11].

The following result establishes the fact that the solution processes of (2.1) and

(2.2) are equivalent. In fact, a stochastic process is solution of (2.1) if and only if, it

is a solution of (2.2).

Theorem 2.3. Let y(t) and x(t) = [x1(t), . . . , xn(t)]T be any solutions of (2.1) and

(2.2), respectively. Then,

(a) [xy(t)]
T = [y(t), y(1)(t), . . . , y(n−1)(t)] is solution process of (2.2),

(b) dx
(n−1)
1 +

n−1
∑

i=0

aix
(i)
1 dt+

n−1
∑

j=0

σjx
(j)
1 dw = 0,

where x1(t) is the first component of the solution process x(t) of (2.2).

The proof is straightforward from (2.1) and (2.2). A method finding closed form

solution processes of (2.1) is presented in the following section.

3. METHOD OF SOLVING HIGHER ORDER ITÔ-DOOD TYPE

HOMOGENEOUS STOCHASTIC DIFFERENTIAL EQUATIONS

In this section, we utilize the eigenvalue type method [10, 11] to find solutions

of the higher order linear homogeneous stochastic differential equations (2.1) with

constant coefficients. The procedure is a modification of the method of solving de-

terministic systems of differential equations (one time scale t) with two time-scales: t
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and w(t). By employing the procedure developed in [11], we decompose (2.2) into two

time-scale components: deterministic component as defined in (2.5) and stochastic

component as follows:

(3.1) dx = Bxdw,

where B is n× n constant matrix defined in (2.4).

The next step consists of finding fundamental matrix solution processes Φd(t) and

Φs(t) of (2.5) and (3.1), respectively. Then, create a candidate for the fundamental

matrix solution process

(3.2) Φ(t) = Φd(t)Φs(t)

of (2.2), and test the correctness of the fundamental matrix Φ(t).

It is known [10, 11] that under the following assumptions:

(i) at least one of the matrices Φd(t) and Φs(t) is normalized fundamental matrix,

and

(ii) AB = BA,

the matrix Φ(t) defined in (3.2) is the fundamental matrix solution process of (2.2).

However, for the matrices A and B in (2.2), we have AB 6= BA, unless B ≡ 0, where 0

is the zero matrix. But, B = 0 if and only if, systems (2.2) and (2.5) are identical, i.e.

the problem is reduced to deterministic system of differential equations. Therefore,

in order to find the solution process of the non-trivial stochastic differential equations

(2.1), we need to modify the above described procedure. For this purpose, in the

sequel, we assume that B 6= 0. The procedure of finding solutions of (2.2) is based

on the method of variation of constant parameters. For easy reference, we state and

prove the following result which is a special case of the result in [11].

Theorem 3.1 (Method of Variation of Constant Parameter). Let us assume that

(H1) Φd(t) is the fundamental matrix solution of (2.5) , and

(H2) let x(t) = Φd(t)c(t), where c(t) is an n-dimensional unknown vector function.

Then x(t) is a solution process of (2.2) if, and only if, c(t) is a solution process of

the stochastic system of linear differential equations with time-varying coefficients

dc = Φ−1
d (t)BΦd(t)c dw(t)(3.3)

Proof. From hypotheses (H1) and (H2), we have

dx(t) = d(Φd(t)c(t))

= dΦd(t)c(t) + Φd(t)dc(t)

= AΦd(t)dtc(t) + Φd(t)dc(t) (by using the assumption on Φd(t))

= AΦd(t)c(t)dt+ Φd(t)dc(t)(3.4)
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Now, assume that x (t) = Φd(t)c(t) is a solution of (2.2). Then, it satisfies

dx = Axdt+Bxdw(t) (from (2.2))

= AΦd(t)c(t)dt+BΦd(t)c(t)dw(t) (from the hypothesis (H2))(3.5)

Equating the right hand sides of (3.4) to the right hand side of (3.5) leads to

AΦd(t)c(t)dt+ Φd(t)dc(t) = AΦd(t)c(t)dt+BΦd(t)c(t)dw(t)(3.6)

which yields

Φd(t)dc(t) = BΦd(t)c(t)dw(t).(3.7)

Hence applying Φ−1
d (t) to both sides of (3.7), we obtain the equation (3.3). Con-

versely, let us suppose that c(t) is solution of (3.3). Then, replacing dc(t) with

Φ−1
d (t)BΦd(t)c dw(t) in (3.4) shows that x(t) = Φd(t)c(t) is solution process of (2.2).

Remark 3.2. (i) From Theorems 2.3 and 3.1, we note that finding a general solution

process of stochastic system (3.3) is key to developing general solution processes of

(2.2).

(ii) To find closed form or exact solution processes of linear system of time vary-

ing coefficient matrix (3.3), we need to examine the algebraic structure of matrix

Φ−1
d (t)BΦd(t).

For the sake of examining the algebraic structure of matrix Φ−1
d (t)BΦd(t), let’s

denote by Br
j the j-th row of matrix B in (2.4) for each j = 1, 2, . . . , n. We observe

that Br
j is the zero vector for j = 1, 2, . . . , n−1. The matrix BΦd(t) can be rewritten

as

BΦd(t) =



















Br
1
...

Br
j
...

Br
n



















[Φc
d1(t) . . .Φ

c
dk(t) . . .Φ

c
dn(t)]

i.e

BΦd(t) =



















Br
1Φ

c
d1(t) . . . Br

1Φ
c
dk(t) . . . Br

1Φ
c
dn(t)

...
...

...
...

...

Br
j Φ

c
d1(t) . . . Br

j Φ
c
dk(t) . . . Br

j Φ
c
dn(t)

...
...

...
...

...

Br
nΦc

d1(t) . . . Br
nΦc

dk(t) . . . Br
nΦc

dn(t)


















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=













0 . . . 0 . . . 0
...

...
...

...
...

0 . . . 0 . . . 0

Br
nΦc

d1(t) . . . Br
nΦc

dk(t) . . . Br
nΦc

dn(t)













,(3.8)

where Φc
dk(t) denotes the k-th column vector of matrix Φd(t).

Now, by denoting Φ−1
d (t) = (φij)n×n and using (3.8), the matrixM = Φ−1

d (t)BΦd(t) =
(

[Φ−1
d (t)BΦd(t)]ij

)

n×n
is written as:

M =



















φ1n(t)Br
nΦc

d1(t) . . . φ1n(t)Br
nΦc

dk(t) . . . φ1n(t)Br
nΦc

dn(t)
... . . .

...
...

...

φin(t)Br
nΦc

d1(t) . . . φin(t)Br
nΦc

dk(t) . . . φin(t)Br
nΦc

dn(t)
... . . .

...
...

...

φnn(t)B
r
nΦc

d1(t) . . . φnn(t)Br
nΦc

dk(t) . . . φnn(t)Br
nΦc

dn(t)



















.(3.9)

From (3.9), we are ready to state and prove the following result. The result provides

a tool for the classifications of nth order solvable linear Itô-Doob type stochastic

differential equations with constant coefficients.

Lemma 3.3. Let the hypotheses of Theorem 3.1 be satisfied. Then, all but one column

vectors of matrix Φ−1
d (t)BΦd(t) in (3.3) are zeroes if and only if for any given 1 ≤

k ≤ n,

Br
nΦc

dk(t) 6= 0 and Br
nΦc

dj(t) = 0 for all j 6= k, j = 1, 2, . . . , n(3.10)

Proof. The validity of the necessary condition follows from

Φ−1
d (t)BΦd(t) =



















0 . . . 0 φ1n(t)Br
nΦc

dk(t) 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 φin(t)B
r
nΦc

dk(t) 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 φnn(t)Br
nΦc

dk(t) 0 . . . 0



















,(3.11)

for any given k = 1, 2, . . . , n.

For the sufficient condition, we note that if (3.10) is true for any j = 1, 2, . . . , n

and j 6= k for 1 ≤ k ≤ n, the entire j-th column is zero because Br
nΦc

dj(t) is a factor

of each entry of the j-th column. This complete the proof.

The following lemma provides some important information on condition (3.10).

Lemma 3.4. Condition (3.10) is equivalent to the following:

(a)
n
∑

i=1

σi−1λ
i−1
j = 0 for all j = 1, 2, . . . , n, j 6= k, and

n
∑

i=1

σi−1λ
i−1
k 6= 0

(b) ΣT Λj = 0 for all j = 1, 2, . . . , n, j 6= k and ΣT Λk 6= 0 where ΣT = [σ0, σ1, . . . , σn−1]

and ΛT
j = [1, λj, λ

2
j , . . . , λ

n−1
j ]
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(c) For all j 6= k, eigenvectors Λj corresponding to λj are orthogonal to random

environmental parameter vector
∑

and it belongs to the span of the eigenvector

Λk.

The proof is straightforward from (3.10).

Remark 3.5. The matrix Φ−1
d (t)BΦd(t) is a function of matrices B and Φd(t), and

the latter depends of the eigenvalues of A. Therefore, the algebraic condition (3.10)

depends on the coefficients of matrices A and B. Moreover, closed form solution

processes of a solvable n-th order linear Itô-Doob type stochastic differential equations

are classified into n classes.

In the following, we present the main result. It deals with a general procedure of

finding closed form solution process of (2.2).

Theorem 3.6. Let the hypotheses of Lemma 3.3 be satisfied. Then,

(a) the higher order stochastic differential equation (2.1) is solvable;

(b) n solutions of (2.1) are represented by:


















yj(t) = ψ1j(t), for j 6= k, j, k = 1, 2, . . . , n,

yk(t) =
n
∑

j 6=k

ψ1j(t)
∫ t

0
φjn(s)B

r
nΦc

dk(s) exp[νk(s, w(s))dw(s)]

+ψ1k(t) exp[νk(t, w(t))], for j = k,

(3.12)

where ψ1j(t) is an entry of the matrix Φd(t) = (ψij(t))n×n and

νk(t, w(t)) = −1

2

∫ t

0

[φkn(s)Br
nΦ

c
dk(s)]

2 ds+

∫ t

0

φkn(s)B
r
nΦc

dk(s)dw(s)

(c) a closed form general solution of (2.1) is

(3.13) y(t) =

n
∑

j=1

cjyj(t)

where cj’s are arbitrary constants with ck 6= 0.

Proof. From (3.3) and (3.12), we have

dcj = φjn(t)B
r
nΦc

dk(t)ckdw(t), for j 6= k, j, k = 1, 2, . . . , n,(3.14)

dck = φkn(t)B
r
nΦc

dk(t)ckdw(t), for some k = 1, 2, . . . , n.(3.15)

Solving (3.15) for ck yields

ck(t) = ck0 exp[νk(t, w(t))] = ck0ρkk(t) (by notation)(3.16)

where ck0 is an arbitrary constant.

Substituting ck(t) in (3.16) into (3.14) and solving for cj , we have

cj(t) = cj0 + ck0

∫ t

0

φjn(s)B
r
nΦc

dk(s) exp[νk(t, w(t))]dw(s)
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= cj0 + ck0ρjk(t) (by notation)(3.17)

where cj0’s are arbitrary constants j 6= k, j, k = 1, 2, . . . , n.

From (3.14), (3.14) and (3.16), the fundamental solution process of transformed

system (3.3), denoted by ΦT (t) ≡ ΦT (t, w(t)), in the context of (3.11) is

ΦT (t) =

































1 0 . . . 0 ϕ1k(t) 0 . . . 0

0 1 . . . 0 ϕ2k(t) 0 . . . 0
...

...
...

...
...

...
...

...

0 0 . . . 1 ϕ(k−1)k(t) 0 . . . 0

0 0 . . . 0 ϕkk(t) 0 . . . 0

0 0 . . . 0 ϕ(k+1)k(t) 1 . . . 0
...

...
...

...
...

...
...

...

0 0 . . . 0 ϕnk(t) 0 . . . 1

































,(3.18)

where

ρjk(t) =







∫ t

0
φjn(s)B

r
nΦc

dk(s) exp[νk(t, w(t))]dw(s), for j 6= k;

exp[νk(t, w(t))], for j = k
(3.19)

From (2.2), Lemma 3.3, (3.16)–(3.19), Theorem 3.1, we conclude that the following

matrix Φ(t) is a fundamental matrix solution process of (2.2).

Φ(t) := Φd(t)ΦT (t)

=



































ψ11(t) . . . ψ1(k−1)(t)
n
∑

i=1

ψ1i(t)ϕik(t) ψ1(k+1)(t) . . . ψ1n(t)

ψ21(t) . . . ψ2(k−1)(t)
n
∑

i=1

ψ2i(t)ϕik(t) ψ2(k+1)(t) . . . ψ2n(t)

...
...

...
...

...
...

...

ψj1(t) . . . ψj(k−1)(t)
n
∑

i=1

ψji(t)ϕik(t) ψj(k+1)(t) . . . ψjn(t)

...
...

...
...

...
...

...

ψn1(t) . . . ψn(k−1)(t)
n
∑

i=1

ψni(t)ϕik(t) ψn(k+1)(t) . . . ψnn(t)



































,(3.20)

where Φd(t) = (ψij(t))n×n is a fundamental matrix solution of (2.5). Therefore,

applying Theorem 2.3, we conclude that the general solution of the higher order

stochastic differential equation (2.1) is

y(t) =

n
∑

j 6=k

cjψ1j(t) + ck

n
∑

i=1

ψ1iϕik(t)

=
n
∑

j=1

cjyj(t)(3.21)

where cj ’s are arbitrary constants, for j 6= k, yj(t) = ψ1j(t) and yk(t) = ck
n
∑

i=1

ψ1iϕik(t).
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This establishes (a), (b) and (c) and completes the proof of the theorem.

Next, we utilize the procedure developed in this section to find closed form or

exact solution processes of (2.2).

4. CLOSED FORM SOLUTION PROCEDURE

In applying the procedure developed in Section 3 for finding general solution

processes of classes of (2.2) in the context of eigenvalues of A, we identify the following

three cases: (i) distinct eigenvalues, (ii) repeated eigenvalues, and (iii) complex

eigenvalues of the companion matrix A.

Let us consider the case where the companion matrix A has n distinct real eigen-

values.

Case 1: Matrix A has n distinct real eigenvalues. Here we assume that the

companion matrix A has n distinct real eigenvalues (i.e. m = n) λi, i = 1, 2, . . . , n.

In this case, nj = 1 and fjk(t) = fj(t) = tkeλjt = eλjt for all j = 1, 2, . . . , m(= n)

since k = 0. Then, the fundamental matrix solution Φd(t) of (2.5) is given by

Φd(t) =

















eλ1t

















1

λ1

...

λn−2
1

λn−1
1

















eλ2t

















1

λ2

...

λn−2
2

λn−1
2

















. . . eλnt

















1

λn

...

λn−2
n

λn−1
n

































.(4.1)

The following theorem provides the condition of existence of a k-th class (k =

1, 2, . . . , n) of equation (2.2) when matrix A has distinct real eigenvalues.

Theorem 4.1. Let the hypotheses of Theorem 3.6 be satisfied. Furthermore, assume

that the companion matrix A in (2.3) has n distinct real eigenvalues and that condition

(a) of Lemma 3.4 holds for any k = 1, 2, 3, . . . , n. Then, there exist solution processes

for the stochastic system of differential equations (3.3).

Proof. Suppose that the condition in part (a) of Lemma 3.4 holds for some column

k (k = 1, 2, . . . , n). We note that φknB
r
nΦc

dk(t) = −φkn(t)e
λkt
∑n

i=1 σi−1λ
i−1
k . Then,

(3.15) becomes

dck = −φkn(t)eλkt

n
∑

i=1

σi−1λ
i−1
k ck dw(t).(4.2)

Solving this equation for ck yields

ck(t) = ck0e

h

− 1
2

R t

0 (φkn(s)eλks
Pn

i=1 σi−1λi−1
k )

2
ds−

R t

0 φkn(s)eλks
Pn

i=1 σi−1λi−1
k

dw(s)
i

.(4.3)
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and for each j = 1, 2, . . . , k − 1, k + 1, . . . , n− 1, n,

cj(t) = cj0 −
∫ t

0

φjn(s)e
λks

n
∑

i=1

σi−1λ
i−1
k ck(s)dw(s)(4.4)

where cj0 is constant for j = 1, 2, . . . , k − 1, k + 1, . . . , n, and ck(t) is as in (4.3).

The general solution process of equation (2.1) in this case is therefore given in

the form

y(t) = Φr
d1(t)c(t)

= ck(t)e
λkt +

n
∑

j=1,j 6=k

(

cj0 −
∫ t

0

φjn(s)e
λks

n
∑

i=1

σi−1λ
i−1
k ck(s)dw(s)

)

eλjt,(4.5)

where ck(t) is as in (4.3).

Illustration 1: Let us consider a general 2-nd order stochastic differential equations

(4.6) dẏ + a1ẏdt+ a0y dt+ σ1ẏdw(t) + σ0y dw(t) = 0,

where a0, a1, σ1, and σ0 are constants real numbers, and w is a Wiener process. If

a2
1 − 4a0 > 0, the associated companion matrix A has distinct real eigenvalues λ1 =

−a1−
√

a2
1−4a0

2
and λ2 =

−a1+
√

a2
1−4a0

2
. Then, after computing the matrix Φd(t) and its

inverse, the matrix Φ−1
d (t)BΦd(t) in (3.9) reduces to

Φ−1
d (t)BΦd(t) =







(σ0+σ1λ1)
λ2−λ1

(σ0+σ1λ2)e−(λ1−λ2)t

λ2−λ1

− (σ0+σ1λ1)e(λ1−λ2)t

λ2−λ1
− (σ0+σ1λ2)

λ2−λ1






.(4.7)

Moreover, equation (3.3) becomes

dc =

[

σ0+σ1λ1

(λ2−λ1)
σ0+σ1λ2

(λ2−λ1)
e−(λ1−λ2)t

−(σ0+σ1λ1)
(λ2−λ1)

e(λ1−λ2)t −(σ0+σ1λ2)
(λ2−λ1)

]

cdw(t)(4.8)

Our procedure the yields two conditions: σ0 + σ1λ2 = 0 and σ0 + σ1λ1 = 0. From the

application of Theorem 3.6, the general solution of (4.6) corresponding to condition

σ0 + σ1λ1 = 0 is:

y(t) = Φr
d1c(t) = c1(t)e

λ1t + c2(t)e
λ2t

= c10 exp

[

−σ0t

σ1

]

+ c20 exp

[(

−a1 +
σ0

σ1
− σ2

1

2

)

t− σ1w(t)

]

+c20σ1 exp

[

−σ0t

σ1

]
∫ t

0

exp

[(

−a1 +
2σ0

σ1

− σ2
1

2

)

s− σ1w(s)

]

dw(s)

= c10e
−σ0t/σ1 + c20(ξ + σ2

1/2)e−σ0t/σ1

∫ t

0

exp [ξs− σ1w(s)] ds,(4.9)

where ξ = −a1 + 2σ0/σ1 − σ2
1/2, and c10 and c20 6= 0 are arbitrary constants.

Similarly, the general solution of (4.6) corresponding to condition σ0 + σ1λ2 = 0 is:

y(t) = c1(t)e
λ1t + c2(t)e

λ2t
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= c20e
−σ0t/σ1 + c10(ξ + σ2

1/2)e−σ0t/σ1

∫ t

0

exp [ξs− σ1w(s)] ds,(4.10)

where ξ = −a1 + 2σ0/σ1 − σ2
1/2, and c20 and c10 6= 0 are arbitrary constants.

Example 1: Condition σ0 + σ1λ1 = 0.

Let us assume that σ0 = −σ1λ1 with σ1 6= 0. Then equation (4.6) becomes

dẏ + a1ẏ dt+ a0y dt+ σ1ẏdw(t) − σ1λ1y dw(t) = 0,(4.11)

where λ1 =
−a1−

√
a2
1−4a0

2
= −σ0/σ1. For instance if a0 = 2, a1 = 3, σ1 = −2. The

equation (4.6) becomes

dẏ + 3ẏ dt+ 2y dt− 2ẏdw(t) − 4y dw(t) = 0,(4.12)

λ1 = −2, λ2 = −a1 − λ1 = −1. Under these conditions, the general solution process

of the equation (4.12) is given by

y(t) = c1e
−2t + c2e

(−3t+2w(t)) − 2c2e
−2t

∫ t

0

e(−s+2w(s))dw(s)

= c1e
−2t + c2e

−2t

∫ t

0

e(−s+2w(s))ds(4.13)

where c1 and c2 6= 0 are arbitrary constants. One sample path is displayed in Figure 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

t

x(
t)

Figure 1. Plot of a sample path of the solution process in example 1

The mean and variance of the y(t) are

E[y(t)] = c1e
−2t + c2e

−t

and

Var(y(t)) = 5c22e
2t − 2c22e

−4t − c22e
−2t,

respectively.
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Example 2: Condition σ0 + σ1λ2 = 0.

Let us consider the case where σ0 + σ1λ2 = 0. Then equation (4.6) becomes

dẏ + a1ẏ dt+ a0y dt+ σ1ẏ dw(t) − σ1λ2y dw(t) = 0,(4.14)

For example, taking a0 = 6, a1 = −5, σ1 = −2, we have λ2 =
−a1+

√
a2
1−4a0

2
= 3,

λ1 = −a1 − λ2 = 2. Then equation (4.14) reduces to

dẏ − 5ẏ dt+ 6y dt− 2ẏ dw + 4y dw(t)(t) = 0,(4.15)

Therefore, by applying the result obtained in (4.10), the general solution process of

(4.15) is

y(t) = c1e
−3t+2w(t) + c2e

3t − 2c1e
3t

∫ t

0

e(−3s+2w(s))dw(s)(4.16)

= c1e
3t + c2e

3t

∫ t

0

e(−3s+2w(s))ds(4.17)

where c1 and c2 6= 0 are arbitrary constants. One sample path is displayed in Figure 2.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

t

x(
t)

Figure 2. Plot of sample a path of the solution process in example 2

The mean and variance of the y(t) are

E[y(t)] = c1e
2t + c2e

3t

and

Var(y(t)) =
1

3
c21[5e

10t + c21e
4t − 3e6t],

respectively.

Next, we investigate the solution procedure when the companion matrix A has

some eigenvalue with multiplicity greater than one.
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Case 2: Matrix A has Repeated real eigenvalues without loss of generality,

we assume that the companion matrix A has an eigenvalue λ of multiplicity m, 1 <

m ≤ n (for simplicity, we take λ = λ1 = λ2 = · · · = λm). Furthermore, assume

that the remaining n −m eigenvalues are distinct and real, and we denote them by

λm+1, λm+2, . . . , λn.

We recall here some useful results in the theory of deterministic higher order

differential equations.

Proposition 4.2 ([2]). For any nth-order linear homogeneous differential equation

of the form

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0(4.18)

whose characteristic equation has a repeated root r of multiplicity k, the linearly in-

dependent solutions of the equation corresponding to r are

ert, tert, t2ert, . . . , tk−1ert

Now, suppose the characteristic equation of (4.18) has m distinct roots r1 (multi-

plicity n1), r2 (multiplicity n2), . . . , rm (multiplicity nm), where n1+n2+ · · ·+nm = n

(mj ≥ 1 for all j = 1, 2, . . . , m. Then the general solution of (4.18) is

y(t) =
[

f10(t)f11(t) . . . f1(n1−1)(t) . . . fm0(t) . . . fm(nm−1)(t)
]

[c1 . . . cn]T ,(4.19)

where [c1c2 . . . cn]T is an n-dimensional constant vector, fjk(t) = tkeλjt, 1 ≤ j ≤ m

and 0 ≤ k ≤ nj − 1. Furthermore, from (2.1), (4.18) and (4.19), the fundamental

matrix solution of the deterministic system of differential equations (2.5) is then given

by

Φd(t) =



































f10(t)

f ′
10(t)
...

f
(n−2)
10 (t)

f
(n−1)
10 (t)

















. . .



















f1(n1−1)(t)

f ′
1(n1−1)(t)

...

f
(n−2)
1(n1−1)(t)

f
(n−1)
1(n1−1)(t)



















. . .

















fm0(t)

f ′
m0(t)

...

f
(n−2)
m0 (t)

f
(n−1)
m0 (t)

















. . .



















fm(nm−1)(t)

f ′
m(nm−1)(t)

...

f
(n−2)
m(nm−1)(t)

f
(n−1)
m(nm−1)(t)





































.

We begin by discussing the case when m = 2. In this case the fundamental matrix

solution Φd(t) of (2.5) is as follows:

Φd(t) =

















eλ1t teλ1t eλ3t . . . eλ(n−1)t

λ1e
λ1t eλ1t + λ1te

λ1t λ3e
λ3t . . . λn−1e

λn−1t

...
...

...
...

...

λn−2
1 eλ1t (n− 2)λn−3

1 eλ1t + λn−2
1 teλ1t λn−2

3 eλ3t . . . λn−2
n−1e

λn−1t

λn−1
1 eλ1t (n− 1)λn−2

1 eλ1t + λn−1
1 teλ1t λn−1

3 eλ3t . . . λn−1
n−1e

λn−1t

















.(4.20)
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And, by using the results in equations (3.9), we obtain

Br
nΦc

dj(t) = −
n
∑

i=1

σi−1λ
i−1
j eλ1t, for j = 1, 3, 4, . . . , n,(4.21)

and

Br
nΦc

d2(t) = −
n
∑

i=2

(i− 1)σi−1λ
i−2
1 eλ1t −

n
∑

i=1

σi−1λ
i−1
1 teλ1t(4.22)

= −
n
∑

i=2

(i− 1)σi−1λ
i−2
1 eλ1t + tBr

nΦc
d1(t)(4.23)

We note that (3.10) of Lemma 3.3 holds only for k = 2. This means that, in the

case of exactly one repeated real eigenvalue of multiplicity 2 of companion matrix

A, the technique utilized to find solution processes of classes of equation (2.1) yields

solutions only for the 2nd class equation.

Theorem 4.3. Let the hypotheses of Theorem 3.6 be satisfied. Furthermore, assume

that the companion matrix A in (2.3) has n−1 distinct real eigenvalues, one of them,

say without loss of generality λ1, with multiplicity 2. Then, the stochastic system of

differential equations (3.3) has at least one solution process, provided that

n
∑

i=1

σi−1λ
i−1
j = 0 for all j = 1, 3, 4, . . . , n.(4.24)

Proof. Assume that the hypotheses of Theorem 4.3 hold and that condition (4.24) is

satisfied. Then equation (3.3) reduces to

dcj = φjn(t)Br
nΦc

d2(t)c2 dw(t) for j = 1, 2 , . . . , n,

= −φjn(t)eλ1t

(

n
∑

i=2

(i− 1)σi−1λ
i−2
1 +

n
∑

i=1

σi−1λ
i−1
1 t

)

c2 dw(t),(4.25)

and for j = 2 we solve the following stochastic differential equation:

dc2 = −φ2n(t)eλ1t

(

n
∑

i=2

(i− 1)σi−1λ
i−2
1 +

n
∑

i=1

σi−1λ
i−1
1 t

)

c2 dw(t).(4.26)

Let’s define

Gj(t) = −φjn(t)eλ1t

(

n
∑

i=2

(i− 1)σi−1λ
i−2
1 +

n
∑

i=1

σi−1λ
i−1
1 t

)

for all j = 1, 2, . . . , n.

Then the solution of equation (4.26) is given by

c2(t) = c20 exp

(

−1

2

∫ t

0

G2
2(s)ds+

∫ t

0

G2(s)dw(s)

)

.(4.27)

By using this solution, we obtain the solution process of (4.25) as

cj(t) = cj0 +

∫ t

0

Gj(s)c2(s)dw(s) for all j = 1, 3, 4, . . . , n.(4.28)
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Then, the general solution process of (2.1) is given by

y(t) = Φr
d1(t)c(t)

= [c1(t) + tc2(t)]e
λ1t +

n
∑

j=3

eλjtcj(t).(4.29)

where cj(t) are provided in (4.28).

Now, let’s consider the situation where m > 2. In this case, a fundamental matrix

solution Φd(t) of (2.5) is as follows:

Φd(t) =

































f1(t)

f
(1)
1 (t)

...

f
(n−2)
1 (t)

f
(n−1)
1 (t)

















. . .

















fm(t)

f
(1)
m (t)

...

f
(n−2)
m (t)

f
(n−1)
m (t)

































fm+1(t)

f
(1)
m+1(t)

...

f
(n−2)
m+1 (t)

f
(n−1)
m+1 (t)

















. . .

















fn(t)

f
(1)
n (t)

...

f
(n−2)
n (t)

f
(n−1)
n (t)

































,(4.30)

where fp(t) = fp(λ1, t) := tp−1eλ1t and

f (k)
p (t) =

dk

dtk
fp(t) =

k
∑

j=0

(

k

j

)

dj

dtj
[tp−1]

dk−j

dtk−j
[eλ1t],(4.31)

for p = 1, 2, . . . , m and k = 0, 1, 2, . . . , n− 1. In this case, we have

Br
nΦc

dj(t) = −
n
∑

i=1

σi−1f
(i−1)
j (t)(4.32)

for j = 2, . . . , m, and

Br
nΦc

dj(t) = −
n
∑

i=1

σi−1λ
i−1
j eλjt = −eλj t

n
∑

i=1

σi−1λ
i−1
j ,(4.33)

for j = 1, m+ 1, m+ 2, . . . , n.

Remark 4.4. (i) From (4.32), we observe that Br
nΦc

dj(t) 6= 0 for any j = 2, 3, . . . , m.

Therefore condition (3.10) does not hold here.

(ii) Theorem 3.6 is not applicable since Lemma 3.3 failed to hold.

Illustration 2: Consider the second degree equation (4.6) introduced in the previous

case. When a2
1 − 4a0 = 0, matrix A has one repeated eigenvalue λ1 = λ2 = −a1/2.

Under these conditions, we have

Φ−1
d (t)BΦd(t) =

[

−
(

−σ0 + a1σ1

2

)

t σ0t
2 + σ1

(

1 − a1t
2

)

t

−σ0 + a1σ1

2
−σ0t− σ1(1 − a1t

2
)

]

.(4.34)

Therefore,
[

dc1

dc2

]

=

[

−
(

−σ0 + a1σ1

2

)

t σ1t

−σ0 + a1σ1

2
−σ1

][

c1

c2

]

dw(t).(4.35)
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Our procedure the yields two conditions: −σ0+ a1σ1

2
= 0 and σ1 = 0. If −σ0+ a1σ1

2
= 0

i.e. σ0 = a1σ1

2
, (4.35) becomes

[

dc1

dc2

]

=

[

0 σ1t

0 −σ1

][

c1

c2

]

dw(t) =

[

σ1tc2 dw(t)

−σ1c2 dw(t)

]

.(4.36)

Solving dc2 = −σ1c2 dw(t) yields

c2(t) = c20 exp

(

−1

2
σ2

1t− σ1w(t)

)

(4.37)

and substituting the quantity on the right hand side of (4.37) for c2(t) in dc1(t) =

σ1tc2 dw, and solving for c1(t) we obtain

c1(t) = c10 + c20σ1

∫ t

0

s exp

(

−1

2
σ2

1s− σ1w(s)

)

dw(s).(4.38)

And the general solution process of (4.6) is given by

y(t) = c20σ1e
−

a1
2

t

∫ t

0

s exp

(

−1

2
σ2

1s− σ1w(s)

)

dw(s)

+c20t exp
(

(−a1/2 − σ2
1/2)t− σ1w(t)

)

+ c10e
−

a1
2

t

= c10e
−

a1
2

t + c20e
−

a1
2

t

∫ t

0

exp

(

−1

2
σ2

1s− σ1w(s)

)

ds(4.39)

where c10 and c20 6= 0 are arbitrary constants.

Next, we present an example with a simulated sample path that illustrates the

case of repeated eigenvalue of matrix A.

Example 3: Let a0 = 1, a1 = −2, σ1 = 2, and σ0 = −2. The equation (4.6) becomes

dẏ − 2ẏdt+ y dt+ 2ẏ dw(t) − 2y dw(t) = 0,(4.40)

λ1 = λ2 = 1, and −σ0 + a1σ1

2
= 2 + (−2)(2)

2
= 0. Therefore, from (4.39) the general

solution solution of (4.40) is

y(t) = c1e
t + c2e

t

∫ t

0

exp[−2s− 2w(s)]ds(4.41)

where c1 and c2 are arbitrary constants (c2 6= 0). A sample path of this solution

process is shown in Figure 3.

For obvious reasons, we emphasize that Theorem 3.6 is not applicable to condition

σ1 = 0. Moreover, the coefficient rate matrix Φ−1
d (t)BΦd(t) under this condition is a

time-varying matrix, and its structure exhibits non-trivial coupled interactions with

the components of state vector c. Because of this, one is not able to find the close

form solution of this types of system. This, it is not feasible to find close form solution

of (4.6) corresponding to this condition.



HIGHER ORDER SDE 623

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

t

x(
t)

Figure 3. Plot of a sample path of the solution process of example 3

Remark 4.5. From (4.9), (4.10) and (4.39), we observe that the solution processes

(when the companion matrix A has a repeated eigenvalue or when all its eigenvalues

real and distinct) can be expressed in the following form:

y(t) = P (t) +Q(t)

∫ t

0

exp [ξs− σ1w(s)] ds,(4.42)

where P (t) = c1e
−σ0t/σ1 , Q(t) = c2(ξ + σ2

1/2)e−σ0t/σ1 , ξ = −a1 + 2σ0/σ1 − σ2
1/2, for

distinct eigenvalues of A, and P (t) = c1e
−

a1
2

t, Q(t) = c2e
−

a1
2

t, ξ = −1
2
σ2

1 when A has

a repeated eigenvalue; c1 and c2 6= 0 are arbitrary constants,

In the next section, we examine the situation where the companion matrix A has

complex eigenvalues.

Case 3: Matrix A has distinct complex eigenvalues. Without loss of generality,

let us assume that A has at least one complex eigenvalue, say for simplicity, λ = λ1 =

α+ iβ. Then, its conjugate λ = λ2 = α− iβ is also an eigenvalue of A. Writing λ1 in

the polar form, we have λ1 = r(cos θ+ i sin θ), where r =
√

α2 + β2 and θ ∈ [0, 2π) is

the angle of λ1 in the polar coordinate system. Furthermore, for k = 0, 1, 2, . . . , n−1,

eλ1tλk
1 = rkeαtei(βt+kθ), λ2 = r(cos θ − i sin θ), and eλ2tλk

2 = rkeαtei(−βt−kθ). Note

that the real and imaginary parts of the complex solution process corresponding the

eigenvalue λ = λ1 (or λ = λ2) are also solution processes of the same equation.

Furthermore, those two solution processes are linearly independent. Therefore, it

is convenient to replace the solution process corresponding to λ1 with the real part

of that solution and the solution process corresponding to λ2 with the imaginary

part, respectively. In addition, if we assume that the remaining n− 2 eigenvalues of

the companion matrix A, denoted λi, i = 3, 4, . . . , n, are real and distinct, then the
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fundamental matrix solution Φd(t) of (2.5) is given by

Φd(t) =

















Re
(

eλ1t
)

Im
(

eλ1t
)

eλ3t . . . eλnt

Re
(

λ1e
λ1t
)

Im
(

λ1e
λ1t
)

λ3e
λ3t . . . λne

λnt

...
...

...
...

...

Re
(

λn−2
1 eλ1t

)

Im
(

λn−2
1 eα1t

)

λn−2
3 eλ3t . . . λn−2

n eλnt

Re
(

λn−1
1 eλ1t

)

Im
(

λn−1
1 eλ1t

)

λn−1
3 eλ3t . . . λn−1

n eλnt

















,(4.43)

where for k = 0, 1, 2, . . . , n − 1, Re
(

λk
1e

λ1t
)

= rkeαt cos(kθ + βt) and Im
(

λk
1e

λ1t
)

=

rkeαt sin(kθ + βt) are the real and imaginary parts of the complex variable function

λk
1e

λ1t. By using the results in equation (3.9), the entries of the matrix Φ−1
d BΦd are

as follows:

for the first column,

φjn(t)Br
nΦc

d1(t) = −φjn(t)

n
∑

k=1

σk−1Re
(

λk−1
1 eλ1t

)

= −φjn(t)eαt

n
∑

k=1

σk−1r
k−1 cos[(k − 1)θ + βt], j = 1, 2, ..., n(4.44)

for the second column,

φjn(t)B
r
nΦc

d2(t) = −φjn(t)
n
∑

k=1

σk−1Im
(

λk−1
1 eλ1t

)

= −φjn(t)e
αt

n
∑

k=1

σk−1r
k−1 sin[(k − 1)θ + βt], j = 1, 2, ..., n(4.45)

and for the l-th column, l = 3, 4, . . . , n,

φjn(t)B
r
nΦc

d1(t) = −φjn(t)e
λlt

n
∑

k=1

σk−1λ
k−1
l , for j = 1, 2, . . . , n,(4.46)

Remark 4.6. (i) From (4.44) and (4.45), we note that Theorem 4.1 is not applicable

in this case. The time-varying coefficient rate matrix Φ−1
d (t)Br

nΦd(t) of the trans-

formed system (3.3) in Theorem 3.1 cannot be reduced to (3.10). Thus, we cannot

utilize the our method to find closed form solution for (2.1). To illustrate this, let’s

consider the second degree equation (4.6) given above and assume that a2
1 − 4a0 < 0

so that the companion matrix A has distinct complex solutions λ1 = α + iβ and

λ2 = α− iβ with β 6= 0, then

Φ−1
d (t)BΦd(t) =

−1

β

[

φ11 φ12

φ21 φ22

]

,

where

φ11 = − sin βt[σ0 cos βt+ σ1(α cosβt− β sin βt)]

φ12 = − sin βt[σ0 sin βt+ σ1(β cosβt+ α sin βt)]



HIGHER ORDER SDE 625

φ21 = cos βt[σ0 cosβt+ σ1(α cos βt− β sin βt)]

φ22 = cos βt[σ0 sin βt+ σ1(β cos βt+ α sin βt)].

The matrix Φ−1
d (t)BΦd(t) is singular. Therefore, (3.3) does not have a unique solution.

(ii) As we shall see in the following example, there are cases where the matrix

Φ−1
d (t)Br

nΦd(t) has exactly one non null column vector.

Consider the 3rd order linear homogeneous Itô-Doob type stochastic differential

equation

(4.47) dy(2) + [y(2) + y(1) + y]dt+ [y(2) + y]dw(t) = 0.

In the vector form, this equation is written as

(4.48) dx = Axdt+Bxdw(t) = 0,

where x ∈ R
3; A and B are 3× 3 deterministic and stochastic companion matrices in

(2.5) and (3.1) relative to (4.48), and they are as:

(4.49) A =







0 1 0

0 0 1

−1 −1 −1






and B =







0 0 0

0 0 0

−1 0 −1






.

The fundamental matrix solution of the deterministic part of (4.48) is

(4.50) Φd(t) =







cos t sin t e−t

sin t cos t −e−t

− cos t − sin t e−t







and its inverse is

(4.51) Φ−1
d (t) =

1

2







cos t− sin t −2 sin t −(cos t+ sin t)

cos t+ sin t 2 cos t cos t− sin t

et 0 et






.

The stochastic system of differential equations (3.3) in the context of (4.48) is

(4.52) dc = Φ−1
d (t)BΦd(t)c dw(t) =







0 0 (cos t+ sin t)e−t

0 0 −(cos t− sin t)e−t

0 0 −1






c dw(t).

Thus, the time varying coefficient matrix rate matrix (3.3) corresponding to the given

stochastic differential equation satisfies the hypothesis of Lemma 3.3. Therefore, the

application of Theorem 3.6, the condition (a) of Theorem 3.6 assures the feasibility

of a closed form solution. Moreover, condition (c) of the same theorem provides the

closed form representation of the general solution of the given differential equation.

Thus, we have

y(t) = c3

[

e−(3/2)t−w(t) + cos t

∫ t

0

(cos s+ sin s)e−(3/2)s−w(s)dw(s)(4.53)
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− sin t

∫ t

0

(cos s− sin s)e−(3/2)s−w(s)dw(s)

]

+ c1 cos t+ c2 sin t.

The following example is a modified version of Chandrasekhar equation. This

version incorporates multiplicative noise rather than the additive noise as in the

original version.

APPLICATIONS: A MODIFIED CHANDRASEKHAR EQUATION

The theory of the Brownian motion of a free particle (i.e., in the absence of an

external field of force) generally starts with the Langevin’s equation

du

dt
= −βu+ a(t),(4.54)

where u denotes the velocity of the particle. According to this equation, the influence

of the surrounding medium on the motion can be split up into two parts: first, a

systematic part −βu representing a dynamical friction experienced by the particle

and second, a fluctuating part a(t) which is characteristic of the Brownian motion.

a(t) is independent of u and varies extremely rapidly compared to the variations of

u. Chandrasekhar [4] generalized the Langevin equation by considering the presence

of an external field of force which leads to the following equation

du

dt
= −βu+ a(t) +K(r, t),(4.55)

where K(r, t) is the acceleration produced by the field. The method of solution is

illustrated sufficiently by a one-dimensional harmonic oscillator describing Brownian

motion.

du

dt
= −βu+ a(t) − ω2t,(4.56)

where ω is denotes the circular frequency of the oscillator. Alternatively, equation

(4.55) can be written in the form

d2y

dt2
+ β

dy

dt
+ ω2y = a(t),(4.57)

or as it is known today

dẏ + (βẏ + νy)dt = σdw(t),(4.58)

for σ 6= 0 and β > 0. If the system is also subject to (the influence of) external

environmental random perturbations, the equation (4.58) becomes

dẏ + (β1ẏ + β0y)dt+ (σ1ẏ + σ0y)dw(t) = 0,(4.59)

with β1, β0, σ1 > 0. The companion matrices for this equation are

A =

[

0 1

−β0 −β1

]

B =

[

0 0

−σ0 −σ1

]

.(4.60)
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The eigenvalues of matrix A are λ1 =
−β1−

√
β2
1−4β0

2
and λ2 =

−β1+
√

β2
1−4β0

2
. If β2

1 >

4β0, these eigenvalues are real and distinct. In this case, the solution process of (4.59)

for is of the form

y(t) = c1e
−σ0t/σ1 + c2(ξ + σ2

1/2)e−σ0t/σ1

∫ t

0

exp [ξs− σ1w(s)] ds,(4.61)

where ξ = −β1 + 2σ0

σ1
− σ2

1

2
, c1 and c2 6= 0 are arbitrary constants. If β2

1 = 4β0 there is

one repeated eigenvalue, namely λ = −β1/2. In this case, equation (4.59) yields the

following solution

y(t) = c1e
−β1t/2 + c2e

−β1t/2

∫ t

0

exp

(

−1

2
σ2

1s− σ1w(s)

)

ds,(4.62)

where c1 and c2 6= 0 are arbitrary constants.

If β2
1 < 4β0 the companion matrix A has two complex eigenvalues. As discussed

earlier, in this case our method for finding solution of (4.59) is not feasible.

Remark 4.7. From Remark 4.5, we note that when the companion matrix A has

repeated or distinct real eigenvalues, the solution process of equation (4.6) is an

isomorphic transformation of the exponential functional of Brownian motion

B
(µ)
t =

∫ t

0

exp(σw(s) + µs)ds,(4.63)

where σ 6= 0 and µ are arbitrary real constants. Therefore, to find probability distri-

bution of y(t), it is enough to obtain the one of B
(µ)
t , t ≥ 0.

The distribution of the process {B(µ)
t , t ≥ 0} has been subject of extensive re-

search in the past two decades thanks to it applications in fields of mathematical

finance, diffusion processes in random environments.

In the following, we examine the probability distribution of the solution processes

y(t) of the second order (n = 2) stochastic differential equation (4.6) in the context

of repeated or distinct real eigenvalues of companion matrix A.

5. THE PROBABILITY DISTRIBUTION y(t) WHEN n = 2

The probability distribution of the solution process y(t) (for n = 2) is identical

to the that of At =
∫ t

0
exp [ξs− σ1w(s)] ds. At is exponential functional of Brownian

motion which has been of interest to researchers in Mathematical finance, diffusion

processes in random environments, stochastic analysis related to Brownian motions

on hyperbolic spaces. Various approaches were adopted to determine the law of At.

One approach by Dufresne [7] focusses on the reciprocal of the integral At. A partial

differential equation is derived for its Laplace transform and then used to derive an ex-

pression for the density. Another very popular approach derives the law of At thought
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Bessel processes [14, 16]. Thanks to scaling properties of Brownian motion, to deter-

mine the law of At, it suffices to determine the law of A
(ν)
t =

∫ t

0
exp [2(w(s) + νs)] ds.

The conversion rule between At and A
(ν)
t is given by (ref. [3], pp. 43)

∫ T

0

exp[µs+ σw(s)]ds
law
=

4

σ2
A

(ν)
t , t =

σ2T

4
, ν =

2µ

σ2
,(5.1)

where T > 0 and t ∈ [0, T ].

The probability distribution of A
(ν)
t , taken at a fixed time t (was obtained by

Yor [15]) is determined by

P
(

A
(ν)
t ∈ du|w(t) + νt = x

)

def.
= at(x, u)du.(5.2)

In relation (5.2), at(x, u) satisfies

1√
2πt

exp

(

−x
2

2t

)

at(x, u) =
1

u
exp

(

− 1

2u
(1 + e2x)

)

θ

(

ex

u
, t

)

(5.3)

where

θ(r, t) =
reπ2/2t

√
2π3t

∫ ∞

0

e−ξ2/2te−r cosh(ξ) sinh(ξ) sin

(

πξ

t

)

dξ(5.4)

This means that the probability density function of A
(ν)
t is the integral of at(·, u)

times the normal density function with mean νt and variance t. It follows [16] from

(5.2) that

P
(

A
(ν)
t ∈ du

)

= duγ
(ν)
t (u),(5.5)

where

γ
(ν)
t (u) =

∫ ∞

0

θ(z, t)(uz)ν−1 exp

(−ν2t

2

)

exp

[

−1

2

(

1

u
+ uz2

)]

dz(5.6)

Given the complexity of the distribution of A
(ν)
t , it is worth looking into its moments

to gain some partial information about its distribution.

The Moments. Although the first two moments of A
(ν)
t can easily by obtained by

integration, higher moments are not obtained that way. The higher moments were

can be computed using Itô’s Lemma, time reversal, and a recurrence argument were

(Dufresne [5, 6]) or using Laplace transform (Geman and Yor [16], pp. 49-54). They

obtained the formula

E

[(
∫ t

0

exp [λ(νs + w(s))]ds

)n]

=
n!

λ2n

{

n
∑

j=0

d
(ν/λ)
j exp

[(

λ2j2

2
+ λjν

)

t

]

}

,(5.7)

where

d
(β)
j = 2n

∏

i6=j

0≤i≤n

[

(β + j)2 − (β + i)2
]−1

,(5.8)
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By applying this result to the solution process {y(t), t ≥ 0} in its formulation pre-

sented in Remark 4.5 in the case of distinct and repeated eigenvalues of matrix A, we

have the following formula for the moments of y(t):

E [(y(t))n] =

n
∑

k=0

(

n

k

)

P n−k(t)Qk(t)E

[

(
∫ t

0

exp [λ(νs+ w(s))] ds

)k
]

=
n
∑

k=0

(

n

k

)

P n−k(t)Qk(t)
k!

λ2k

{

k
∑

j=0

d
(ν/λ)
j exp

[(

λ2j2

2
+ λjν

)

t

]

}

,(5.9)

where d
(β)
j is defined in (5.8) and λ = −σ1, νλ = ξ; P (t), Q(t) and ξ are defined in

Remark 4.5.

6. CONCLUSION

In this paper, we provided a method of finding classes of solution processes of

higher order stochastic differential equations (HOSDE). Although higher order de-

terministic and matrix differential equations are available in literature, we note that

HOSDE remains an interesting problem. Our current research project includes ap-

plications of such equations and as well as the stability of their solution processes.
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