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ABSTRACT. Let v and T be positive numbers, D = (0,00), 2 = D x (0,T], and D be the closure
of D. This article studies the first initial-boundary value problem,
Ut — Ugy = 0(x — vt) f (u(x,t)) in Q,
u(z,0) = ¢ (z) on D,
u(0,t) =0,u(z,t) = 0asx — oo for 0 < ¢t < T,
where 6 (z) is the Dirac delta function, and f and ¢ are given functions. It is shown that the problem

has a unique continuous solution w, if u exists for ¢ € [0, ;) with ¢, < oo, then u blows up at .

AMS (MOS) Subject Classification. 35K60, 35B35, 35K55, 35K57

1. INTRODUCTION

Let v and T be positive numbers, D = (0,00), 2 = D x (0,T], and D be the
closure of D. We consider the following semilinear parabolic first initial-boundary
value problem,

Hu=9(x —ovt)f (u(x,t)) in Q,
(1.1) u(z,0) = (x) on D,
u(0,t) = 0,u(z,t) > 0asx — oo for 0 <t < T,
where Hu = u; —y,, 0(x) is the Dirac delta function, and f and ¢ are given functions.
We assume that f(0) > 0, f(u) and its derivatives f’(u) and f” (u) are positive for
u > 0, and () is nontrivial, nonnegative and continuous such that  (0) = 0, and

Y (z) = 0as x — o0.
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A solution w of the problem (1.1) is a continuous function satisfying (1.1). A
solution w of the problem (1.1) is said to blow up at the point (z,¢,) if there exists a
sequence {(x,,t,)} such that u(x,,t,) — oo as (z,,t,) — (&,t,). Here, t;, is called
the blow-up time. If ¢, is finite, then wu is said to blow up in a finite time. On the
other hand, if ¢, = oo, then u is said to blow up in infinite time. Related problems
were studied by Kirk and Olmstead [3], and Olmstead [4]. They showed that if the
magnitude of the (constant) velocity v exceeds a certain value, then blowup does not
occur; they also showed that if v is below another value, then blowup occurs. In
Section 2, we convert the problem (1.1) into a nonlinear integral equation and prove
that the integral equation has a unique nonnegative (continuous) solution. We then
show that this solution is the unique solution u of the problem (1.1). We prove that

if u does not exist globally, then u blows up in a finite time.

2. EXISTENCE, UNIQUENESS AND BLOWUP

Green’s function G(z,t;&,7) corresponding to the problem (1.1) is determined

by the following system: for z and £ in D, and ¢ and 7 in (—o0, 00),
HG(2,t;6,7) = 0(x — §)o(t —7),
G(z,t;&,7) =0, t <,
G(0,t;¢,7) =0,G(x,t;€,7) — 0 as x — oo.

For t > 7, it is given by

B (sz—@j B (sz+s>§
4(t—71) __ 4(t—r1
Gla,t;6,7) = :
A (t — 7)

(cf. Dufty [2, p. 183]). To derive the integral equation from the problem (1.1), let us
consider the adjoint operator H*, which is given by H*u = —u; — uy,. Using Green’s

second identity, we obtain
(2.1) u(z, t) = /000 G(z,t;€,0)(&)dE + /Ot Gz, t;vr, 1) f (u(vr, 7)) dT.
Let Q denote the closure of €.
Lemma 2.1. Ifr € C ([0, 7)), then [, G(x,t;v7,7)r (1) dr is continuous on Q.

Proof. Let R = maxycpo,r |r (t)]. Since

B (gv—m-)2 B (w—l—m—)z
t—e e 4t-17) _ o Alt-T)
/GxthT ()dT—hm r(7)dr
=0 Jo A (t — 1)

(2.2) < Rlim

[ oo’
T= —,
=0 J, \/m s
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the integral exists for each ¢t € [0,7]. For ¢t > 7, G(z,t;vr,7) is continuous in
D x (0,T). Hence for t > 7, G(x,t;v7,7)r (7) is a continuous function in D x (0,7T].
Let (xo,ty) be any arbitrarily fixed point € D x (0,7T]. Then for any given positive

number ¢, there exists some positive number §; such that \/(:E —z0)’ + (t—t)* < &
implies
£
|G (x, t;or, 7)r (1) — G20, to; 07, 7)1 (T)]| < T
0

Without loss of generality, let ¢ > t,. Also, let 6 = min {d;,7e?/ (4R?)}. Then for
\/(at—xo)2+ (t—to)* < 0,

t to
/ Gz, t;vr, 7)r (1) dr — / G(xo, to;vr, 7)r (1) dr
0 0

to t
< / (G(x,t;vr,T7) — G(xo, to; v7, 7)) 7 (T)| dT —I—/ |G (x, t;or, T)r (T)| dr
0 to

E/0[7‘+R/\/T

2_
e R
S Vi—t
<35 \/— 0
e R [me?
< 4=
Syt aVare ~°©
Therefore, the lemma is proved. O

We modified the techniques in proving Theorems 2.4, 2.5 and 2.6 of Chan and
Tian [1] for a bounded domain to obtain the following two theorems for our unbounded

domain.

Theorem 2.2. There exists some t, such that for 0 < t < t,, the integral equa-
tion (2.1) has a unique nonnegative continuous solution w. If t, is finite, then u is
unbounded in [0, tp).

Proof. For (z,t) € Q, let us construct a sequence {u,}-, by

o, 1) = / G, 1€, 00 (€)d,
0
and forn =0,1,2,.. .,

Hupiq(z,t) = 6(x — vt) f(uy (2, 1)) for (x,t) € Q,
un-l—l(xvo) = ¢('ZC> for x € D7
Un+1(0,t) = 0 and w,11(z,t) — 0 as x — oo for ¢t € (0, 7.

From (2.1),

Upy(z,t) = /000 G(x,t;g,O)w(g)dg—l—/o Gz, t;vr, 7) f(uy (v, 7))drT.
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Let us show that for any n =0,1,2,...,
(2.3) Uy < Up < Uy < -+ < Uy on S

Since .
uy(z, t) — ug(x, t) = / Gz, t;vr, 7) f(uo(vT, 7))dr,
0

it follows from the positivity of G, ug(x,t) > 0 in Q, and f (u) > 0 for u > 0 that the
right-hand side is positive. We have u(x,t) > ug(z, ). Let us assume that for some
positive integer j, ug < u; < ug < --+ < u; on Q. Since u; > u;_y, and f’ > 0, we

have
w1 (2, t) —uj(x,t) = /o G(z,t;vr, 7) (f(uj(vr, 7)) — f(uj—1(vr, 7)) dT > 0.

By the Principle of Mathematical Induction, we have (2.3).

Let u denote lim,,_,, u,,, and M be any positive number such that M > sup,.p ¢ ().
We would like to show that there exists a positive constant t; (< 7T') such that the
sequence {uy,} -, converges uniformly to u for ¢ € [0,¢]. Since each u,, is continuous,

we note that
Ups1(z,t) — up(z,t) = /0 Gz, t; o7, 7) [f (up(vT, 7)) — f(Up_1(vT,7))] dT.

Let S, = sup(, nepx(o,n) [Un(:t) — un—1(x,t)|. By using the Mean Value Theorem
and (2.2),
t
t
Snt1 < f’(M)Sn/ G(x,t;vr, 7)dr < f'(M)4] =S,
0

™

Since lir% f'(M)y/t/m = 0, there exists some positive number o;(< ¢;) such that

(2.4) f’(M)\/% < 1fort € [0,0q].

Then, the sequence {u,} -, converges uniformly to u for any (z,t) € D) x [0, y].
Thus, the integral equation (2.1) has a nonnegative continuous solution u for (z,t) €
D x [0,04]. If 0y < t;, then we replace the initial condition u(x,0) = (z) in (2.1) by
u(€, 01), which is known. We obtain for (z,t) € D x [0y, ],

Upy1(T,t) = /OO G(Sc,t;ﬁ,al)U(ﬁ,m)diJr/ G(x,t; 07, 7) f(up(v7, 7))dT.
0 o1
From

Upt1(x, 1) — up(z,t) = / Gz, t;vr,7) [f(un(vr, 7)) — f(up—1(vT,7))] dT,

g1

we have
t— o1

Sh.-
™

Spi1 < f/(M)S, /t G(z,t;vr, 7)dr < f' (M)

o1
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Thus, there exists 0o = min {oy,%; — o1} > 0 such that

t—O’l
™

< 1 fort S [al,min{201,t1}].

f'(M)

Hence, {u,} -, converges uniformly to u for any (z,t) € D X [0y, min {207, }]. By
proceeding in this way, {u,} >~ converges uniformly to u for any (z,t) € D x [0,].
Therefore, the integral equation (2.1) has a nonnegative continuous solution u on
D X [0, tl].

To show that the solution u is unique, let us suppose that the integral equation

(2.1) has two distinct solutions u and u on the interval [0, ¢;]. Let

&= sup J|u(z,t) —u(x,t).

(z,)eDx[0,t1]

From
u(z,t) —u(z,t)| = /tG(Ijt;vﬂ ) [f(w(or, 7)) = f(ulvr, 7)) dr |,

0

we obtain
o< f'(M)® /tG(ZL',t;UT,T)d’T < fI(M) E(ID.
0 ™

By (2.4), we have a contradiction. Thus, the integral equation (2.1) has a unique

continuous solution u for any (x,t) € D x [0,].

For each M, there exists some t; such that the integral equation (2.1) has a
unique nonnegative continuous solution u. Let ¢, be the supremum of all ¢; such
that the integral equation has a unique nonnegative continuous solution u. We would
like to show that if ¢, is finite, then w is unbounded in [0,%;). Suppose u(zx,t) is
bounded for any (x,t) € D x [0,t,]. We consider the integral equation (2.1) for any
(z,t) € D X [ty,00) with the initial condition u(x,0) = 1 (z) replaced by u(z,t,),

which is known:
U(SL’, t) = /OO G(I, tu é-v tb)u(é-v tb>d£ + /t G(SL’, t7 T, T)f(U(’UT, T)>d7—'
0 ty

For any given positive constant M; > sup,cpu(x,tp), an argument as before shows
that there exists some t5 > 0 such that the integral equation (2.1) has a unique
continuous solution u for any (x,t) € D X [ty, t5]. This contradicts the definition of

tp. Hence, if t; is finite, then u is unbounded in [0, ;). O

Theorem 2.3. The problem (1.1) has a unique solution for 0 <t < t.

Proof. By Lemma 2.1, fot G(x,t;vr, 7) f (u(vr, 7)) d7 exists for x in any compact sub-

set of D and ¢ in any compact subset [t3,t4] of [0,¢,). Thus for any z € D and any
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ls € (Oa t)>

tG t; dr = 1i g C_1/nG ; dr | d
/0 (xz,t;or, 7)f (w(vr, 7)) dT = lim 5 8_C (/0 (x, ot 1) f (u(oT, 7)) 7') ¢

n—oo [,
t5—1/n
(2.5) + lim G(x,t5;v7,7) f (u(vr, 7)) dr.
n—oo Jq
For ( — 7> %,
Ge(x, Gor, 7) f (u(vr, 7))
_ (z—v7)? B (w+v7)? B (x—v7)? B (z+vT)?
(x — ’U7’)2 e U1 —(x+ 07)2 e 4¢-7) e A7) — ¢ A7)
= 5/2 - 3/2 f (U(UT7 T))
8y (¢ —1) 4ym((—7)
O 2+ (- 1)’
< 55—/ (uur, 7)) < s (u(vr, 7)),
8V (C—T) 8y (1)

which is integrable with respect to 7 over (0,¢ — 1/n). It follows from the Leibnitz
rule (cf. Stromberg [5, p. 380]) that

¢—1/n
% (/0 G(z, ¢ or, 1) f (u(vr, T))dT)

R P )
(2.6) 4 /0 T G Com ) f (ulor, )

From (2.5) and (2.6),

/mer (u(vr, 7)) dr

LoD AP s

¢— /n
+ hm// 1 (z, o, 7) f (u(vr, 7)) drdC

n—oo

ts—1/n
+ lim Gz, ts; 07, 7) f (uvr, 7)) dT.

n—~0o0 0

Let us consider the problem,

Hw=0 for x and £ in D,0 <71 <,
w(0,t;&,7)=0,w(z,t;€,7) = 0asz — oo for 0 <7 <t <T,
lim w(x,t;&,7) =0 (z —&7).

t—7t
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Using Green’s second identity, we obtain for ¢ > 7,

w(x, t;€,7T) :/OOOG(x,t;y,T)é(y—gT)dy:G(x,t;ﬁT,T).

It follows that

lim G (z,t;61,7) =6 (x — &7).

t—T1t

This implies

(2.7) limG(x,C;v((—%),(—%)zé(x—vg).

n—~o0

Since for x # v(,

o(osefo- D)2 2)

converges uniformly to zero with respect to ( as n tends to infinity, it follows that for

x%UC7
b [0 e D Do) <)
[mo(eee(c ) Dbl

For z = v(,
0 1 1
a_G <UC7C;U <C_ _) 7C_ _)
n n n
v2(1+4n2C2) . ,
e dn [6"” < (2n +0?) + € (—2n — v? + 4n*v?(?)

8n3/2\/m

It follows that for sufficiently large n, G (v(,(;v (¢ —1/n),( — 1/n) is an increasing

function of n. Thus for large n,

(o) Dl -b)

is an increasing sequence of nonnegative functions with respect to n. By the Monotone

Convergence Theorem (cf. Stromberg [5, p. 288]),

b [ o)) D))
[l (oD D)



638 C. Y. CHAN, P. SAWANGTONG, AND T. TREEYAPRASERT

Therefore,

/0 Gz, t;vr, 1) f (u(vr, 7)) dr

=/Ezeol (e (<-—) <-—)f(u<v(<-%)7<-%))]d<

(2.8) + lim Gz, ts;vr, 1) f (u(vr, 7)) dT.

n—~0o0 0

Since f and w are continuous, we have from (2.7) and (2.8) that

/0 Gz, t;07,7)f (u(or, 7)) dr
:/ta(x—vC)f( (v, 0)) d¢

+ lim / /C e (2, G or, 7)f (u(or, 7)) drdC

n—oo

(2.9) +/0 G(z,ts;vr, 7) f (u(vr, 7)) dT.
Let
¢—1/n
gn (,¢) = /0 Ge (z, ¢ or, 1) f (u(vr, 7)) dT.

Without loss of generality, let n > [. We have
¢—1/n

gn (,C) — g1 (z,() = /4—1/1 Ge (x,Gor, 1) f (u(vr, 7)) dT.

Since G¢ (z, (v, 7) € C (D x (7,T]), and f (u (vr, 7)) is nonnegative and integrable
with respect to 7 over (¢ —1/1,{ — 1/n), it follows from the First Mean Value The-
orem for Integrals (cf. Stromberg [5, p. 328]) that for z in any compact subset of
D and ¢ in any compact subset of (0,%,), there exists some real numberr such that
(—re((—1/l,(—1/n) and

¢~1/n

o 00 =1, = G G (=) =) [ (utor 7).

Since

GC("E>C;U(C—€)>C_E)
G- 2).0)

9 9 _ [—(v¢—ve))? 5 ) B [+ (v¢—ve)]?
(ev? + vz —v*()e 4e + (—ev® vz +v¥()e 1e

- 17 ()2
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which converges to 0 with respect to ( as ¢ — 0, it follows that {g,} is a Cauchy
sequence, and hence, {g,} converges uniformly with respect to ¢ in any compact
subset [tg, t7] of (0,¢,). Hence,

t -1/n
lim/ /C 1 Ge(z, G or, 1) f (u(vr, 7)) drd¢
5 J0

n—oo t

t ¢—1/n
:/ lim/ Gel(z, Gor, 1) f (u(vr, 7)) drd(

ts n—oo Jo

t ¢
(2.10) :/ / Ge(z, G or, 1) f (u(vr, 7)) drdC.

From (2.9) and (2.10),

/mer (u(vr, 7)) dr
:/5(:c—v§)f( (v¢,¢)) dc+// Ge(w, G vr, 7)f (u(vr, 7)) drdg

ts

/ G(z,ts;vr, 7) f (u(oT, 7)) dT.

Therefore,
a t
a/o Gz, t;vr, 1) f (u(or, 7)) dr
t
(2.11) =0 (x —vt) f (u(vt,t)) + / Gz, t;vr, 1) f (u(vr, 7)) dT.
0
Fort —7>e¢,
B (x—v7)? B (z+vr)?
Golat ) (vr —z)e =7 4+ (v +x)e AT
Lz, o, T) = 7
AT (t—1)*°
B (z—vT)? B (x4v7)? - (x—vT)? B (x4v7)?
(z—v7)2%e 4(t—7) —(z+vr)2e 4(t—7) e Alt—T) _o A(t—T)
4(t—7)? o 2(t—7)

Gz, tvr, 7) =

2m\t — 1
Thus for each fixed (£, 7) € Dx|[0,T), Gy(z,t;&,7) and Gop(x, t; €, 7) arein C (D x (1,T1).
Fort —7 > ¢,

2

(z—vT) (z+vT)
(vr —x)e A7) 4 (vT+x)e AT
Gl 1,07, 7)f (1 (v7,7)) = = £ (u(or, 7))
T
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which is integrable with respect to 7 over (0,¢ — ). For t — 7 > ¢,

Gaa(z, t 07, 7) f (u (07, 7))

B (x—v7)? B (z4v7)? B (x—v7)? B (z4v7)?
(z—v1)2e 4(t—7) —(z+vr)2e 4(t—7) e At—T1) _o 4A(t-T)
4(t_7—)2 2(t—7)
= u\vr, T
— f (u(or, )
7(32—117-)2
(z—v7)2e A(t—r)

4(t—7)?2
S o= f(u(vr, 7))

(z—v7)?
(x —vr)?e A7)
- ),

which is integrable with respect to T over (0,¢ — ). Using the Leibnitz rule, we have

for any x in any compact subset of D and ¢ in any compact subset of (0, ),

o t—e t—e
%/0 Gz, t;vr, 7) f (u(vr, 7)) dT = /0 Gz, t;or, 7) f (u(vr, 7)) dT,

o t—e t—e
%/0 Gz, t;or, 7)f (u(vr, 7)) dr = /0 Guz(z, t;or, 7) f (u(vr, 7)) dT.

For any x; in any compact subset of D,

t—e

1iII(1) G (x,t;vr,7) f (u(vr, 7)) dT
=% Jo
T o t—e
iy [ (5 [ Gltmn fwnnyar) iy
t—e
+ lim G (xy, tyvor, ) f (u(vr, 7)) dr

E—

e—0

0Jo
= lim ' /t—€ Gy (n, t;or,7) f (u (v, 7)) drdn
x1 JO
(2.12) +/ G (z1,t;07,7) f (u (vr, 7)) dT.
0

We would like to show that

e—0

T t—e
lim/ / Gy (n, tyvr,7) f (u(vr, 7)) drdn
x1 JO

(2.13) = /1‘ lim /(f_6 G, (n, t;vr, 7) f (u (vT, 7)) drdn.

e—0
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By the Fubini Theorem (cf. Stromberg [5, p. 352]),

lirré/ / G, (n, t;vr, ) f (u(vr, 7)) drdn
—hII(l) (f(u uT,T) / G, ( n,tUTT)dn)d
= lin(l)/ f(u(vr, 7)) (G(x,t;vr,7) — G (21,807, 7)) dT

= / f(u(vr, 7)) (G (z,t;vr,7) — G (21, t; 07, 7)) dT,
0
which exists by Lemma 2.1. Therefore,
t
[ 1) (G o t0m) = G ntsvr, 7)) dr
0
T t
= [ [ Gyt s o) dran
1 JO
and we have (2.13). From (2.12),
a t t
(2.14) 8_/ Gz, t;vr, 1) f (u(vr, 7)) dT = / Gz, t;or, 1) f (u(vr, 7)) dr.
T Jo 0
For any x5 in any compact subset of D,

t—e

lim Gy (x, t;or, 1) f(u(vr, 7)) dT

e—0 0
T a t—e
= }:lg(l) 5 8_7] </0 G, (n,t;vr, 1) f (u(vr, 7)) dT) dn
t—e
+ 111’[(1) Gn (x27 t;uT, T) f (u (UT? T)) dr
=Y Jo
T t—e
= 1jn%/ / Gy (0, tyvr,7) f (u (vT, 7)) drdn
e z2 JO
¢
(2.15) + / Gy (x2, t;07,7) f (u (07, 7)) dr.
0

We would like to show that

T t—e
tiy [ [ Gy ntior, ) £ (o, )) dr
T t—e
(2.16) :/ lim/ Gy (0, t;v7,7) f (u (vr, 7)) drdn.
0

o9 e—0
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By the Fubini Theorem,

T t—e
lim/ / Gy (0, t;vr,7) f (u (vr, 7)) drdn
0

e—0 -

= lim o (f (u (vT, 7)) /1‘ Gy (0, t; 07, 7) dn) dr

e—0 0 o2

=i [ 7)) (G (007, 7) = Gy o 0,7

e—0 0

= / f(u(vr, 7)) (G (z, t;07,7) — G, (22, t; 07, 7)) dr,

which exists by (2.14). Therefore,
/ f(u(vr, 7)) (G (z, t; 071, 7) — Gy (21, t; 0T, 7)) dT
:/ / Gy (0, tyor, 7) f (u (vr, 7)) drdn
/ hm/ Gy (0, tyvr,7) f (u (vT, 7)) drdn,

where we have (2.16). From (2.15),
¢
/ Gy (z, tyor, 1) f (w(vr, 7)) dr
0

— /x /t Gy (0, t;07,7) f (u (v, T))den+/t Gy (z2, 607, 7) f (u (07, 7)) dT.
z2 JO °

Thus,

o [ !
%/0 G (x, t;or, 1) f (u (v, T))dT—/O Goo(z, 507, 7) f (u(vT, 7)) dT.

Therefore,

(2.17) pye / Gz, t;vr, 1) f (u(oT, 7)) dr :/0 Guo(x, t;or, 7) f (u(vr, 7)) dT.

It follows from the integral equation (2.1), (2.11) and (2.17) that for x € D and
0<t<ty,

Hu:%(/OtG(a:,t;vT,T)f(u(vTT ) - </G (2,07, 7) f (1 (W,T))dT)
5 —vt) f (u (vt ) + /Ot HG (2, ;07 7) f (u (o7, 7)) dr

t—e

:5(x—vt)f(u(vt,t))+li_r)% i d(x—ovr)o(t—7) f (u(vr,7))dr
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From (2.1), limy_ou (z,t) = v (z) for x € D. Since G (0,t;£,7) = 0, we have u (0,t) =

0. By Lemma 2.1,
t

lim [ G(z,t;vr,7) f(u(vr,7))dr = /t lim G (x,t;vr,7) f (u(vr, 7)) dT = 0.
0

Tr—00 0 r— 00

Thus, the nonnegative continuous solution u of the integral equation (2.1) is a solution
of the problem (1.1). Since a solution of the latter is a solution of the former, the

theorem is proved. O

We remark that from the above two theorems, if ¢, is finite, then u blows up at
tp.
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