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ABSTRACT. Let v and T be positive numbers, D = (0,∞), Ω = D× (0, T ], and D̄ be the closure

of D. This article studies the first initial-boundary value problem,

ut − uxx = δ(x− vt)f (u(x, t)) in Ω,

u(x, 0) = ψ(x) on D̄,

u(0, t) = 0, u(x, t) → 0 as x→ ∞ for 0 < t ≤ T,

where δ (x) is the Dirac delta function, and f and ψ are given functions. It is shown that the problem

has a unique continuous solution u, if u exists for t ∈ [0, tb) with tb <∞, then u blows up at tb.

AMS (MOS) Subject Classification. 35K60, 35B35, 35K55, 35K57

1. INTRODUCTION

Let v and T be positive numbers, D = (0,∞), Ω = D × (0, T ], and D̄ be the

closure of D. We consider the following semilinear parabolic first initial-boundary

value problem,

(1.1)





Hu = δ(x− vt)f (u(x, t)) in Ω,

u(x, 0) = ψ(x) on D̄,

u(0, t) = 0, u(x, t) → 0 as x→ ∞ for 0 < t ≤ T,

where Hu = ut−uxx, δ(x) is the Dirac delta function, and f and ψ are given functions.

We assume that f(0) ≥ 0, f(u) and its derivatives f ′(u) and f ′′ (u) are positive for

u ≥ 0, and ψ(x) is nontrivial, nonnegative and continuous such that ψ (0) = 0, and

ψ (x) → 0 as x→ ∞.
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A solution u of the problem (1.1) is a continuous function satisfying (1.1). A

solution u of the problem (1.1) is said to blow up at the point (x̂, tb) if there exists a

sequence {(xn, tn)} such that u (xn, tn) → ∞ as (xn, tn) → (x̂, tb). Here, tb is called

the blow-up time. If tb is finite, then u is said to blow up in a finite time. On the

other hand, if tb = ∞, then u is said to blow up in infinite time. Related problems

were studied by Kirk and Olmstead [3], and Olmstead [4]. They showed that if the

magnitude of the (constant) velocity v exceeds a certain value, then blowup does not

occur; they also showed that if v is below another value, then blowup occurs. In

Section 2, we convert the problem (1.1) into a nonlinear integral equation and prove

that the integral equation has a unique nonnegative (continuous) solution. We then

show that this solution is the unique solution u of the problem (1.1). We prove that

if u does not exist globally, then u blows up in a finite time.

2. EXISTENCE, UNIQUENESS AND BLOWUP

Green’s function G(x, t; ξ, τ) corresponding to the problem (1.1) is determined

by the following system: for x and ξ in D, and t and τ in (−∞,∞),

HG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ),

G(x, t; ξ, τ) = 0, t < τ,

G(0, t; ξ, τ) = 0, G(x, t; ξ, τ) → 0 as x→ ∞.

For t > τ , it is given by

G(x, t; ξ, τ) =
e
−

(x−ξ)2

4(t−τ) − e
−

(x+ξ)2

4(t−τ)

√
4π (t− τ)

(cf. Duffy [2, p. 183]). To derive the integral equation from the problem (1.1), let us

consider the adjoint operator H∗, which is given by H∗u = −ut − uxx. Using Green’s

second identity, we obtain

(2.1) u(x, t) =

∫
∞

0

G(x, t; ξ, 0)ψ(ξ)dξ +

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ.

Let Ω̄ denote the closure of Ω.

Lemma 2.1. If r ∈ C ([0, T ]), then
∫ t

0
G(x, t; vτ, τ)r (τ) dτ is continuous on Ω̄.

Proof. Let R = maxt∈[0,T ] |r (t)|. Since

∫ t

0

G(x, t; vτ, τ)r (τ) dτ = lim
ε→0

∫ t−ε

0

e
−

(x−vτ)2

4(t−τ) − e
−

(x+vτ)2

4(t−τ)

√
4π (t− τ)

r (τ) dτ

≤ R lim
ε→0

∫ t−ε

0

1√
4π (t− τ)

dτ = R

√
t

π
,(2.2)
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the integral exists for each t ∈ [0, T ]. For t > τ , G(x, t; vτ, τ) is continuous in

D̄ × (0, T ]. Hence for t > τ , G(x, t; vτ, τ)r (τ) is a continuous function in D̄ × (0, T ].

Let (x0, t0) be any arbitrarily fixed point ∈ D̄ × (0, T ]. Then for any given positive

number ε, there exists some positive number δ1 such that
√

(x− x0)
2 + (t− t0)

2 < δ1

implies

|G(x, t; vτ, τ)r (τ) −G(x0, t0; vτ, τ)r (τ)| < ε

2t0
.

Without loss of generality, let t ≥ t0. Also, let δ = min {δ1, πε2/ (4R2)}. Then for√
(x− x0)

2 + (t− t0)
2 < δ,

∣∣∣∣
∫ t

0

G(x, t; vτ, τ)r (τ) dτ −
∫ t0

0

G(x0, t0; vτ, τ)r (τ) dτ

∣∣∣∣

≤
∫ t0

0

|(G(x, t; vτ, τ) −G(x0, t0; vτ, τ)) r (τ)| dτ +

∫ t

t0

|G(x, t; vτ, τ)r (τ)| dτ

<
ε

2t0

∫ t0

0

dτ +R

∫ t

t0

1√
4π (t− τ)

dτ

≤ ε

2
+

R√
π

√
t− t0

≤ ε

2
+

R√
π

√
πε2

4R2
= ε.

Therefore, the lemma is proved.

We modified the techniques in proving Theorems 2.4, 2.5 and 2.6 of Chan and

Tian [1] for a bounded domain to obtain the following two theorems for our unbounded

domain.

Theorem 2.2. There exists some tb such that for 0 ≤ t < tb, the integral equa-

tion (2.1) has a unique nonnegative continuous solution u. If tb is finite, then u is

unbounded in [0, tb).

Proof. For (x, t) ∈ Ω̄, let us construct a sequence {un}∞n=0 by

u0(x, t) =

∫
∞

0

G(x, t; ξ, 0)ψ(ξ)dξ,

and for n = 0, 1, 2, . . .,

Hun+1(x, t) = δ(x− vt)f(un(x, t)) for (x, t) ∈ Ω,

un+1(x, 0) = ψ(x) for x ∈ D̄,

un+1(0, t) = 0 and un+1(x, t) → 0 as x→ ∞ for t ∈ (0, T ].

From (2.1),

un+1(x, t) =

∫
∞

0

G(x, t; ξ, 0)ψ(ξ)dξ +

∫ t

0

G(x, t; vτ, τ)f(un(vτ, τ))dτ.
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Let us show that for any n = 0, 1, 2, . . .,

(2.3) u0 < u1 < u2 < · · · < un on Ω̄.

Since

u1(x, t) − u0(x, t) =

∫ t

0

G(x, t; vτ, τ)f(u0(vτ, τ))dτ,

it follows from the positivity of G, u0(x, t) > 0 in Ω, and f (u) > 0 for u > 0 that the

right-hand side is positive. We have u1(x, t) > u0(x, t). Let us assume that for some

positive integer j, u0 < u1 < u2 < · · · < uj on Ω̄. Since uj > uj−1, and f ′ > 0, we

have

uj+1(x, t) − uj(x, t) =

∫ t

0

G(x, t; vτ, τ) (f(uj(vτ, τ)) − f(uj−1(vτ, τ))) dτ > 0.

By the Principle of Mathematical Induction, we have (2.3).

Let u denote limn→∞ un, andM be any positive number such thatM > supx∈D̄ ψ (x).

We would like to show that there exists a positive constant t1 (≤ T ) such that the

sequence {un}∞n=0 converges uniformly to u for t ∈ [0, t1]. Since each un is continuous,

we note that

un+1(x, t) − un(x, t) =

∫ t

0

G(x, t; vτ, τ) [f(un(vτ, τ)) − f(un−1(vτ, τ))] dτ.

Let Sn = sup(x,t)∈D̄×[0,t1] |un(x, t) − un−1(x, t)|. By using the Mean Value Theorem

and (2.2),

Sn+1 ≤ f ′(M)Sn

∫ t

0

G(x, t; vτ, τ)dτ ≤ f ′(M)

√
t

π
Sn.

Since lim
t→0

f ′(M)
√
t/π = 0, there exists some positive number σ1(≤ t1) such that

(2.4) f ′(M)

√
t

π
< 1 for t ∈ [0, σ1].

Then, the sequence {un}∞n=0 converges uniformly to u for any (x, t) ∈ D̄) × [0, σ1].

Thus, the integral equation (2.1) has a nonnegative continuous solution u for (x, t) ∈
D̄× [0, σ1]. If σ1 < t1, then we replace the initial condition u(x, 0) = ψ(x) in (2.1) by

u(ξ, σ1), which is known. We obtain for (x, t) ∈ D̄ × [σ1, t1],

un+1(x, t) =

∫
∞

0

G(x, t; ξ, σ1)u(ξ, σ1)dξ +

∫ t

σ1

G(x, t; vτ, τ)f(un(vτ, τ))dτ.

From

un+1(x, t) − un(x, t) =

∫ t

σ1

G(x, t; vτ, τ) [f(un(vτ, τ)) − f(un−1(vτ, τ))] dτ,

we have

Sn+1 ≤ f ′(M)Sn

∫ t

σ1

G(x, t; vτ, τ)dτ ≤ f ′(M)

√
t− σ1

π
Sn.
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Thus, there exists σ2 = min {σ1, t1 − σ1} > 0 such that

f ′(M)

√
t− σ1

π
< 1 for t ∈ [σ1,min {2σ1, t1}].

Hence, {un}∞n=0 converges uniformly to u for any (x, t) ∈ D̄ × [σ1,min {2σ1, t1}]. By

proceeding in this way, {un}∞n=0 converges uniformly to u for any (x, t) ∈ D̄ × [0, t1].

Therefore, the integral equation (2.1) has a nonnegative continuous solution u on

D̄ × [0, t1].

To show that the solution u is unique, let us suppose that the integral equation

(2.1) has two distinct solutions u and ũ on the interval [0, t1]. Let

Φ = sup
(x,t)∈D̄×[0,t1]

|u(x, t) − ũ(x, t)| .

From

|u(x, t) − ũ(x, t)| =

∣∣∣∣
∫ t

0

G(x, t; vτ, τ) [f(u(vτ, τ)) − f(ũ(vτ, τ))] dτ

∣∣∣∣ ,

we obtain

Φ ≤ f ′(M)Φ

∫ t

0

G(x, t; vτ, τ)dτ ≤ f ′(M)

√
t

π
Φ.

By (2.4), we have a contradiction. Thus, the integral equation (2.1) has a unique

continuous solution u for any (x, t) ∈ D̄ × [0, t1].

For each M , there exists some t1 such that the integral equation (2.1) has a

unique nonnegative continuous solution u. Let tb be the supremum of all t1 such

that the integral equation has a unique nonnegative continuous solution u. We would

like to show that if tb is finite, then u is unbounded in [0, tb). Suppose u(x, t) is

bounded for any (x, t) ∈ D̄ × [0, tb]. We consider the integral equation (2.1) for any

(x, t) ∈ D̄ × [tb,∞) with the initial condition u(x, 0) = ψ(x) replaced by u(x, tb),

which is known:

u(x, t) =

∫
∞

0

G(x, t; ξ, tb)u(ξ, tb)dξ +

∫ t

tb

G(x, t; vτ, τ)f(u(vτ, τ))dτ.

For any given positive constant M1 > supx∈D̄ u(x, tb), an argument as before shows

that there exists some t2 > 0 such that the integral equation (2.1) has a unique

continuous solution u for any (x, t) ∈ D̄ × [tb, t2]. This contradicts the definition of

tb. Hence, if tb is finite, then u is unbounded in [0, tb).

Theorem 2.3. The problem (1.1) has a unique solution for 0 ≤ t < tb.

Proof. By Lemma 2.1,
∫ t

0
G(x, t; vτ, τ)f (u(vτ, τ)) dτ exists for x in any compact sub-

set of D̄ and t in any compact subset [t3, t4] of [0, tb). Thus for any x ∈ D and any
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t5 ∈ (0, t),

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ = lim
n→∞

∫ t

t5

∂

∂ζ

(∫ ζ−1/n

0

G(x, ζ ; vτ, τ)f (u(vτ, τ)) dτ

)
dζ

+ lim
n→∞

∫ t5−1/n

0

G(x, t5; vτ, τ)f (u(vτ, τ)) dτ.(2.5)

For ζ − τ ≥ 1
n
,

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ))

=




(x− vτ)2 e
−

(x−vτ)2

4(ζ−τ) − (x+ vτ)2 e
−

(x+vτ)2

4(ζ−τ)

8
√
π (ζ − τ)5/2

− e
−

(x−vτ)2

4(ζ−τ) − e
−

(x+vτ)2

4(ζ−τ)

4
√
π (ζ − τ)3/2


 f (u(vτ, τ))

≤ (x− vτ)2 e
−

(x−vτ)2

4(ζ−τ)

8
√
π (ζ − τ)5/2

f (u(vτ, τ)) ≤ x2 + v2
(
ζ − 1

n

)2

8
√
π
(

1
n

)5/2
f (u(vτ, τ)) ,

which is integrable with respect to τ over (0, ζ − 1/n). It follows from the Leibnitz

rule (cf. Stromberg [5, p. 380]) that

∂

∂ζ

(∫ ζ−1/n

0

G(x, ζ ; vτ, τ)f (u(vτ, τ)) dτ

)

= G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))

+

∫ ζ−1/n

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτ.(2.6)

From (2.5) and (2.6),

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ

= lim
n→∞

∫ t

t5

G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))
dζ

+ lim
n→∞

∫ t

t5

∫ ζ−1/n

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτdζ

+ lim
n→∞

∫ t5−1/n

0

G(x, t5; vτ, τ)f (u(vτ, τ)) dτ.

Let us consider the problem,

Hw = 0 for x and ξ in D, 0 ≤ τ < t,

w (0, t; ξ, τ) = 0, w (x, t; ξ, τ) → 0 as x→ ∞ for 0 ≤ τ < t < T,

lim
t→τ+

w (x, t; ξ, τ) = δ (x− ξτ) .
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Using Green’s second identity, we obtain for t > τ ,

w (x, t; ξ, τ) =

∫
∞

0

G (x, t; y, τ) δ (y − ξτ) dy = G (x, t; ξτ, τ) .

It follows that

lim
t→τ+

G (x, t; ξτ, τ) = δ (x− ξτ) .

This implies

(2.7) lim
n→∞

G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
= δ (x− vζ) .

Since for x 6= vζ ,

G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))

converges uniformly to zero with respect to ζ as n tends to infinity, it follows that for

x 6= vζ ,

lim
n→∞

∫ t

t5

G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))
dζ

=

∫ t

t5

lim
n→∞

G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))
dζ.

For x = vζ ,

∂

∂n
G

(
vζ, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)

=
e−

v2(1+4n2ζ2)
4n

[
env2ζ2

(2n+ v2) + ev2ζ (−2n− v2 + 4n2v2ζ2)
]

8n3/2
√
π

.

It follows that for sufficiently large n, G (vζ, ζ ; v (ζ − 1/n) , ζ − 1/n) is an increasing

function of n. Thus for large n,

G

(
vζ, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))

is an increasing sequence of nonnegative functions with respect to n. By the Monotone

Convergence Theorem (cf. Stromberg [5, p. 288]),

lim
n→∞

∫ t

t5

G

(
vζ, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))
dζ

=

∫ t

t5

lim
n→∞

G

(
vζ, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))
dζ.
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Therefore,
∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ

=

∫ t

t5

lim
n→∞

[
G

(
x, ζ ; v

(
ζ − 1

n

)
, ζ − 1

n

)
f

(
u

(
v

(
ζ − 1

n

)
, ζ − 1

n

))]
dζ

+ lim
n→∞

∫ t

t5

∫ ζ−1/n

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ))dτdζ

+ lim
n→∞

∫ t5−1/n

0

G(x, t5; vτ, τ)f (u(vτ, τ)) dτ.(2.8)

Since f and u are continuous, we have from (2.7) and (2.8) that
∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ

=

∫ t

t5

δ (x− vζ) f (u (vζ, ζ)) dζ

+ lim
n→∞

∫ t

t5

∫ ζ−1/n

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτdζ

+

∫ t5

0

G(x, t5; vτ, τ)f (u(vτ, τ)) dτ.(2.9)

Let

gn (x, ζ) =

∫ ζ−1/n

0

Gζ (x, ζ ; vτ, τ) f (u(vτ, τ))dτ.

Without loss of generality, let n > l. We have

gn (x, ζ) − gl (x, ζ) =

∫ ζ−1/n

ζ−1/l

Gζ (x, ζ ; vτ, τ) f (u(vτ, τ)) dτ.

Since Gζ (x, ζ ; vτ, τ) ∈ C (D × (τ, T ]), and f (u (vτ, τ)) is nonnegative and integrable

with respect to τ over (ζ − 1/l, ζ − 1/n), it follows from the First Mean Value The-

orem for Integrals (cf. Stromberg [5, p. 328]) that for x in any compact subset of

D and ζ in any compact subset of (0, tb), there exists some real number r such that

ζ − r ∈ (ζ − 1/l, ζ − 1/n) and

gn (x, ζ) − gl (x, ζ) = Gζ (x, ζ ; v (ζ − r) , ζ − r)

∫ ζ−1/n

ζ−1/l

f (u(vτ, τ)) dτ.

Since

Gζ (x, ζ ; v (ζ − ε) , ζ − ε)

= Gζ (x, ε; v (ζ − ε) , 0)

=
(εv2 + vx− v2ζ) e−

[x−(vζ−vε)]2

4ε + (−εv2 + vx+ v2ζ) e−
[x+(vζ−vε)]2

4ε

4
√
π (ε)3/2

,
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which converges to 0 with respect to ζ as ε → 0, it follows that {gn} is a Cauchy

sequence, and hence, {gn} converges uniformly with respect to ζ in any compact

subset [t6, t7] of (0, tb). Hence,

lim
n→∞

∫ t

t5

∫ ζ−1/n

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτdζ

=

∫ t

t5

lim
n→∞

∫ ζ−1/n

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτdζ

=

∫ t

t5

∫ ζ

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτdζ.(2.10)

From (2.9) and (2.10),
∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ))dτ

=

∫ t

t5

δ (x− vζ) f (u (vζ, ζ)) dζ +

∫ t

t5

∫ ζ

0

Gζ(x, ζ ; vτ, τ)f (u(vτ, τ)) dτdζ

+

∫ t5

0

G(x, t5; vτ, τ)f (u(vτ, τ)) dτ.

Therefore,

∂

∂t

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ

= δ (x− vt) f (u(vt, t)) +

∫ t

0

Gt(x, t; vτ, τ)f (u(vτ, τ)) dτ.(2.11)

For t− τ > ε,

Gx(x, t; vτ, τ) =
(vτ − x) e

−
(x−vτ)2

4(t−τ) + (vτ + x) e
−

(x+vτ)2

4(t−τ)

4
√
π (t− τ)3/2

,

Gxx(x, t; vτ, τ) =

(x−vτ)2e
−

(x−vτ)2

4(t−τ)
−(x+vτ)2e

−

(x+vτ)2

4(t−τ)

4(t−τ)2
− e

−

(x−vτ)2

4(t−τ)
−e

−

(x+vτ)2

4(t−τ)

2(t−τ)

2π
√
t− τ

.

Thus for each fixed (ξ, τ) ∈ D×[0, T ), Gx(x, t; ξ, τ) andGxx(x, t; ξ, τ) are in C (D × (τ, T ]).

For t− τ > ε,

Gx(x, t; vτ, τ)f (u (vτ, τ)) =
(vτ − x) e

−
(x−vτ)2

4(t−τ) + (vτ + x) e
−

(x+vτ)2

4(t−τ)

4
√
π (t− τ)3/2

f (u (vτ, τ))

≤ (vτ − x) e
−

(x−vτ)2

4(t−τ) + (vτ + x) e
−

(x−vτ)2

4(t−τ)

4
√
π (t− τ)3/2

f (u (vτ, τ))

=
vτe

−
(x−vτ)2

4(t−τ)

2
√
π (t− τ)3/2

f (u (vτ, τ)) ,
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which is integrable with respect to τ over (0, t− ε). For t− τ > ε,

Gxx(x, t; vτ, τ)f (u (vτ, τ))

=

(x−vτ)2e
−

(x−vτ)2

4(t−τ)
−(x+vτ)2e

−

(x+vτ)2

4(t−τ)

4(t−τ)2
− e

−

(x−vτ)2

4(t−τ)
−e

−

(x+vτ)2

4(t−τ)

2(t−τ)

2π
√
t− τ

f (u (vτ, τ))

≤
(x−vτ)2e

−

(x−vτ)2

4(t−τ)

4(t−τ)2

2π
√
t− τ

f (u (vτ, τ))

=
(x− vτ)2 e

−
(x−vτ)2

4(t−τ)

8π (t− τ)5/2
f (u (vτ, τ)) ,

which is integrable with respect to τ over (0, t− ε). Using the Leibnitz rule, we have

for any x in any compact subset of D and t in any compact subset of (0, tb),

∂

∂x

∫ t−ǫ

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ =

∫ t−ǫ

0

Gx(x, t; vτ, τ)f (u(vτ, τ)) dτ,

∂

∂x

∫ t−ǫ

0

Gx(x, t; vτ, τ)f (u(vτ, τ)) dτ =

∫ t−ǫ

0

Gxx(x, t; vτ, τ)f (u(vτ, τ)) dτ.

For any x1 in any compact subset of D,

lim
ε→0

∫ t−ε

0

G (x, t; vτ, τ) f (u (vτ, τ)) dτ

= lim
ε→0

∫ x

x1

(
∂

∂η

∫ t−ε

0

G (η, t; vτ, τ) f (u (vτ, τ)) dτ

)
dη

+ lim
ε→0

∫ t−ε

0

G (x1, t; vτ, τ) f (u (vτ, τ)) dτ

= lim
ε→0

∫ x

x1

∫ t−ε

0

Gη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

+

∫ t

0

G (x1, t; vτ, τ) f (u (vτ, τ)) dτ.(2.12)

We would like to show that

lim
ε→0

∫ x

x1

∫ t−ε

0

Gη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

=

∫ x

x1

lim
ε→0

∫ t−ε

0

Gη (η, t; vτ, τ) f (u (vτ, τ)) dτdη.(2.13)



EXISTENCE, UNIQUENESS AND BLOWUP 641

By the Fubini Theorem (cf. Stromberg [5, p. 352]),

lim
ε→0

∫ x

x1

∫ t−ε

0

Gη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

= lim
ε→0

∫ t−ε

0

(
f (u (vτ, τ))

∫ x

x1

Gη (η, t; vτ, τ) dη

)
dτ

= lim
ε→0

∫ t−ε

0

f (u (vτ, τ)) (G (x, t; vτ, τ) −G (x1, t; vτ, τ)) dτ

=

∫ t

0

f (u (vτ, τ)) (G (x, t; vτ, τ) −G (x1, t; vτ, τ)) dτ,

which exists by Lemma 2.1. Therefore,

∫ t

0

f (u (vτ, τ)) (G (x, t; vτ, τ) −G (x1, t; vτ, τ)) dτ

=

∫ x

x1

∫ t

0

Gη (η, t; vτ, τ) f (u (vτ, τ)) dτdη,

and we have (2.13). From (2.12),

(2.14)
∂

∂x

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ =

∫ t

0

Gx(x, t; vτ, τ)f (u(vτ, τ)) dτ.

For any x2 in any compact subset of D,

lim
ε→0

∫ t−ε

0

Gx (x, t; vτ, τ) f (u (vτ, τ)) dτ

= lim
ε→0

∫ x

x2

∂

∂η

(∫ t−ε

0

Gη (η, t; vτ, τ) f (u (vτ, τ)) dτ

)
dη

+ lim
ε→0

∫ t−ε

0

Gη (x2, t; vτ, τ) f (u (vτ, τ)) dτ

= lim
ε→0

∫ x

x2

∫ t−ε

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

+

∫ t

0

Gη (x2, t; vτ, τ) f (u (vτ, τ)) dτ.(2.15)

We would like to show that

lim
ε→0

∫ x

x2

∫ t−ε

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

=

∫ x

x2

lim
ε→0

∫ t−ε

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη.(2.16)
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By the Fubini Theorem,

lim
ε→0

∫ x

x2

∫ t−ε

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

= lim
ε→0

∫ t−ε

0

(
f (u (vτ, τ))

∫ x

x2

Gηη (η, t; vτ, τ) dη

)
dτ

= lim
ε→0

∫ t−ε

0

f (u (vτ, τ)) (Gη (x, t; vτ, τ) −Gη (x2, t; vτ, τ)) dτ

=

∫ t

0

f (u (vτ, τ)) (Gη (x, t; vτ, τ) −Gη (x2, t; vτ, τ)) dτ,

which exists by (2.14). Therefore,
∫ t

0

f (u (vτ, τ)) (Gη (x, t; vτ, τ) −Gη (x1, t; vτ, τ)) dτ

=

∫ x

x2

∫ t

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη

=

∫ x

x2

lim
ε→0

∫ t−ε

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη,

where we have (2.16). From (2.15),
∫ t

0

Gx (x, t; vτ, τ) f (u (vτ, τ)) dτ

=

∫ x

x2

∫ t

0

Gηη (η, t; vτ, τ) f (u (vτ, τ)) dτdη +

∫ t

0

Gη (x2, t; vτ, τ) f (u (vτ, τ)) dτ.

Thus,

∂

∂x

∫ t

0

Gx (x, t; vτ, τ) f (u (vτ, τ)) dτ =

∫ t

0

Gxx(x, t; vτ, τ)f (u(vτ, τ)) dτ.

Therefore,

(2.17)
∂2

∂x2

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ =

∫ t

0

Gxx(x, t; vτ, τ)f (u(vτ, τ)) dτ.

It follows from the integral equation (2.1), (2.11) and (2.17) that for x ∈ D and

0 < t < tb,

Hu =
∂

∂t

(∫ t

0

G (x, t; vτ, τ) f (u (vτ, τ)) dτ

)
− ∂2

∂x2

(∫ t

0

G (x, t; vτ, τ) f (u (vτ, τ)) dτ

)

= δ (x− vt) f (u (vt, t)) +

∫ t

0

HG (x, t; vτ, τ) f (u (vτ, τ)) dτ

= δ (x− vt) f (u (vt, t)) + lim
ǫ→0

∫ t−ǫ

0

δ (x− vτ) δ (t− τ) f (u (vτ, τ)) dτ

= δ (x− vt) f (u (vt, t))

= δ (x− vt) f (u (x, t)) .



EXISTENCE, UNIQUENESS AND BLOWUP 643

From (2.1), limt→0 u (x, t) = ψ(x) for x ∈ D̄. Since G (0, t; ξ, τ) = 0, we have u (0, t) =

0. By Lemma 2.1,

lim
x→∞

∫ t

0

G (x, t; vτ, τ) f (u (vτ, τ)) dτ =

∫ t

0

lim
x→∞

G (x, t; vτ, τ) f (u (vτ, τ)) dτ = 0.

Thus, the nonnegative continuous solution u of the integral equation (2.1) is a solution

of the problem (1.1). Since a solution of the latter is a solution of the former, the

theorem is proved.

We remark that from the above two theorems, if tb is finite, then u blows up at

tb.
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