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ABSTRACT. The purpose of this paper is to establish and improve the main results of a number

of recent papers for a more general sublinear dynamic equation
(

r(t)x∆(t)
)∆

+ p(t)f (xσ (t)) = 0,

Our results are established for a time scale T without assuming certain restrictive conditions on T,

and where, in addition, r and p are real-valued, rd-continuous functions on T with no explicit sign

assumptions. The function f ∈ C (R, R) is assumed to satisfy xf (x) > 0 and f ′(x) > 0, for x 6= 0.

Some examples are given to illustrate the main results.
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1. PRELIMINARIES

We are concerned with the oscillatory behavior of the following second order

sublinear dynamic equation

(1.1)
(

r(t)x∆(t)
)∆

+ p(t) f (xσ (t)) = 0,

on a time scale T which is unbounded above, where r and p are real-valued, right-

dense continuous functions on T. The function f ∈ C (R, R) is assumed to satisfy

xf (x) > 0 and f ′(x) > 0, for x 6= 0. Here we are interested in the oscillation of

solutions of (1.1) when f(x) satisfies, in addition, the sublinearity condition

(1.2) 0 <

∫ ǫ

0

dx

f(x)
;

∫ 0

−ǫ

dx

f(x)
< ∞, for all ǫ > 0.

By a solution of (1.1) we mean a nontrivial real-valued function x ∈ C1
rd[Tx,∞),

Tx ≥ t0 which has the property that rx∆ ∈ C1
rd[Tx,∞) and satisfies equation (1.1)

on [Tx,∞), where Crd is the space of rd-continuous functions. We shall not consider

solutions which vanish identically in some neighborhood of infinity. A solution of (1.1)

is said to be oscillatory if it is neither eventually positive nor eventually negative.

Otherwise it is said to be nonoscillatory. There has been a great deal of research
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into obtaining criteria for oscillation of all solutions of dynamic equations on time

scales. In most papers dealing with oscillation the assumption is usually made that

the functions r, p are nonnegative. We refer the reader to the papers [1, 2, 11, 12],

and the references cited therein. On the other hand, much less is known for equations

when no explicit sign assumptions are made with respect to the coefficient functions

r and p. This will be one of our main concerns in this paper. We shall also relax a

certain restrictive condition on the time scale, thereby extending the applicability of

our results.

Erbe, Baoguo and Peterson established in [9, 4] some oscillation criteria of Belohorec-

type and Kamenev- type for the special case of (1.1) where r (t) = 1 and f (xσ (t)) =

xγ (σ (t)), where 0 < γ < 1 is a quotient of odd positive integers. Hassan, Erbe and

Peterson [15] improved these results and generalized them to the sublinear dynamic

equation (1.1) with damping term, and f (xσ (t)) = |xσ (t)|γ sgn xσ (t), with 0 < γ < 1

and established Belohorec-type oscillation theorem, where the coefficient functions r

and p are allowed to change sign for large t. For superlinear dynamic equation, see

[3, 6, 10, 13, 14]

However, the results in [3, 4, 9, 14, 15] apply only to time scales satisfying the

so-called Condition (C): There exists an M > 0 such that χ (t) ≤ Mµ (t), t ∈ T,

where χ is the characteristic function of the set T̂ = {t ∈ T : µ (t) > 0}. We note that

if T satisfies condition (C), then the graininess function is bounded away from 0,

uniformly, wherever it is positive. Moreover, it is easy to see that the subset Ť of T

defined by

Ť = {t ∈ T : t > 0 is right-scattered or left-scattered} ,

is necessarily countable and T̂ ⊂ Ť. Then, we can rewrite Ť as

Ť = {ti ∈ T : 0 < t1 < t2 < · · · < tn < · · · } ,

and so

T = Ť∪ [∪n∈A (tn−1, tn)] ,

where A is the set of all integers for which the real open interval (tn−1, tn) is contained

in T. Although most of the standard time scales do satisfy condition (C), which is

an assumption on the graininess function, there are many time scales which do not.

For example, it is easy to see that the time scale given by

T :=

∞
⋃

k=1

Tk, where Tk =

∞
⋃

n=1

{

k +
n + 1

n

}

,

does not satisfy condition (C).

The purpose of this paper is to obtain oscillation criteria for the general nonlinear

dynamic equation (1.1). We note that in our results, the equation involves a more

general function f and the coefficient functions r and p may change sign. Our work
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applies to general time scales without assuming condition (C). Several examples are

given to illustrate the main results.

Our work improves and generalizes those established in [9, 4, 15], and many

known results on nonlinear oscillation. These results have significant importance for

the study of oscillation criteria on discrete time scales such as T = Z, T =hZ, h > 0,

T = {t : t = qk, k ∈ N0, q > 1}, and the harmonic time scale T = Hn.

2. MAIN RESULTS

Before stating our main results, we begin with a couple preliminary lemmas which

will play an important role in the proof of our main results.

Lemma 2.1 ([8, Theorem 5.45]). Let h be a bounded function that is integrable on

[a, b]
T
. Let mH and MH be the infimum and supremum of the function H (t) :=

∫ t

a
h (s) ∆s on [a, b]

T
respectively. Suppose that g is a nonnegative and nonincreasing

function on [a, b]
T
. Then there is some number Λ with mH ≤ Λ ≤ MH such that

∫ b

a

h (t) g (t) ∆t = g (a) Λ.

Lemma 2.2. Assume that x is a positive rd-continuous function on [t0,∞)
T

and

f : (0,∞) → (0,∞) is continuous and increasing. Then

(2.1)

∫ t

t0

x∆(s)

f (xσ(s))
∆s ≤

∫ x(t)

x(t0)

dτ

f (τ)
,

and

(2.2)

∫ t

t0

x∆(s)

f (x(s))
∆s ≥

∫ x(t)

x(t0)

dτ

f (τ)
.

Proof. Let

F (x (s)) :=

∫ x(s)

x(t0)

dτ

f (τ)
for s ∈ [t0,∞)T.

Then, by the Pötzsche chain rule ([7, Theorem 1.90]), we have

(F (x (s)))∆ =

∫ 1

0

F ′ (xh (s)) dh x∆(s) =

∫ 1

0

1

f (xh (s))
dh x∆(s).

Now for any fixed point s ∈ [t0,∞)T, we have

xh (s) = (1 − h)x (s) + hxσ (s)

{

≥ xσ (s) , if x∆ (s) ≤ 0;

≤ xσ (s) , if x∆ (s) ≥ 0,

and therefore this yields

x∆(s)

f (xh (s))
≥

x∆(s)

f (xσ (s))
for s ∈ [t0,∞)T.
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Therefore we have

(F (x (s)))∆ =

∫ 1

0

1

f (xh (s))
dh x∆(s) ≥

∫ 1

0

1

f (xσ (s))
dh x∆(s) =

x∆(s)

f (xσ (s))
.

and so
∫ t

t0

x∆(s)

f (xσ(s))
∆s ≤

∫ t

t0

(F (x (s)))∆ ∆s = F (x (t)) =

∫ x(t)

x(t0)

dτ

f (τ)
.

Also for any fixed point s ∈ [t0,∞)T, we have

xh (s) = (1 − h) x (s) + hxσ (s)

{

≤ x (s) , if x∆ (s) ≤ 0;

≥ x (s) , if x∆ (s) ≥ 0,

which implies

x∆(s)

f (xh (s))
≤

x∆(s)

f (x (s))
for s ∈ [t0,∞)T.

Then

(F (x (s)))∆ =

∫ 1

0

1

f (xh (s))
dh x∆(s) ≤

∫ 1

0

1

f (x (s))
dh x∆(s) =

x∆(s)

f (x (s))
.

and then
∫ t

t0

x∆(s)

f (x(s))
∆s ≥

∫ t

t0

(F (x (s)))∆ ∆s = F (x (t)) =

∫ x(t)

x(t0)

dτ

f (τ)
.

This completes the proof.

2.1. Kamenev Type. In this subsection, we establish oscillation criterion of Kamenev-

type for Eq. (1.1) where r (t) > 0 on [t0,∞)T. As in Philos [18], we consider a non-

negative kernel function h (t, s) defined on D := {(t, s) ∈ T
2 : t ≥ s ≥ t0}. We shall

assume that h (t, s) satisfies the following conditions:

(H1) h (t, t) ≡ 0 for t ≥ t0,

(H2) h∆s (t, s) ≤ 0 for t ≥ s ≥ t0,

where h∆s (t, s) denotes the partial delta derivative of h with respect to s.

(H3)
(

r (s)h∆s (t, s)
)∆s

≥ 0 for t ≥ s ≥ t0,

where h∆2
s (t, s) denotes the second order partial delta derivative of h with respect

to s.

(H4) −h−1 (t, t0) h∆s (t, s)
∣

∣

s=t0
≤ M for large t.

Theorem 2.3. Assume that f satisfies (1.2). If there exists a nonnegative kernel

function h (t, s) on D satisfying (H1)–(H4) such that

(2.3) lim sup
t→∞

1

h (t, t0)

∫ t

t0

h (t, σ (s)) p (s) ∆s = ∞,

then every solution of equation (1.1) is oscillatory.
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Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss

of generality, there is a solution x of (1.1) and a T ∈ [t0,∞)T such that x(t) > 0

on [T,∞)T. From the quotient rule and Pötzsche chain rule ([7, Theorem 1.90]) and

then by Eq. (1.1), we get

[

r (t)x∆ (t)

f (x (t))

]∆

=

(

r (t) x∆ (t)
)∆

f (xσ(t))
−

r (t) x∆ (t)

f (x(t)) f (xσ(t))

∫ 1

0

f ′ (xh (t)) dh x∆(t)

= −p (t) −
r (t)

(

x∆ (t)
)2

f (x(t)) f (xσ(t))

∫ 1

0

f ′ (xh (t)) dh

≤ −p (t) ,(2.4)

since r(t) > 0 and xh (t) := (1 − h)x (t) + hxσ (t) > 0, for 0 ≤ h ≤ 1, t ∈ [T,∞)T. In

(2.4), replace t by s and multiply both sides by h (t, σ (s)) and integrate with respect

to s from T to t, t ≥ T

(2.5)

∫ t

T

h (t, σ (s))

[

r (s) x∆ (s)

f (x (s))

]∆

∆s ≤ −

∫ t

T

h (t, σ (s)) p (s) ∆s.

Now using the integration by parts formula and the second mean value theorem

(Lemma 2.1) combined with (H1) – (H3), we get

∫ t

T

h (t, σ (s))

[

r (s) x∆ (s)

f (x (s))

]∆

∆s

= −h (t, T )
r (T )x∆ (T )

f (x (T ))
−

∫ t

T

r (s) h∆s (t, s)
x∆ (s)

f (x (s))
∆s

= −N h (t, T ) − r (T ) h∆s (t, s)
∣

∣

s=T
Λ,(2.6)

where N := r(T )x∆(T )
f(x(T ))

and where mx ≤ Λ ≤ Mx, and where mx and Mx denote the

infimum and supremum, respectively, of the function
∫ t

T

x∆(s)
f(x(s))

∆s. By (2.2) in Lemma

2.2, we have
∫ t

T

x∆ (s)

f (x (s))
∆s ≥

∫ x(t)

x(T )

dτ

f (τ)
=

∫ x(t)

0

dτ

f (τ)
−

∫ x(T )

0

dτ

f (τ)
≥ −

∫ x(T )

0

dτ

f (τ)
.

So

(2.7) Λ ≥ mx ≥ −

∫ x(T )

0

dτ

f (τ)
.

From (2.5), (2.6) and (2.7), we find

−N h (t, T ) + r (T ) h∆s (t, s)
∣

∣

s=T

∫ x(T )

0

dτ

f (τ)
≤ −

∫ t

T

h (t, σ (s)) p (s) ∆s.

Dividing by h (t, T ) and using (H4), we get

−N − M r (T )

∫ x(T )

0

dτ

f (τ)
≤ −

1

h (t, T )

∫ t

T

h (t, σ (s)) p (s) ∆s.
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If we now take the lim inf as t → ∞ of both sides, we get, from (1.2) and (2.3) the

desired contradiction. This completes the proof.

Remark 2.4. In the case r (t) = 1 and f (xσ (t)) = xγ (σ (t)), where 0 < γ < 1 is a

quotient of odd positive integers, the additional assumption was imposed in [4] that

T, T satisfies condition (C). Therefore, Theorem 2.3 improves the main results in [4]

by removing this assumption.

Let us illustrate the previous result for the case when the coefficient changes sign:

Example 2.5. Consider the second order q-difference equation

(2.8)

(

1

qna
x∆(qn)

)∆

+
b (−1)n+1

qn(c+1)
f

(

x
(

qn+1
))

= 0,

for n ∈ N0, where a ≥ 0, b > 0 and c < 0. We choose h (t, s) = t − s = qm − qn for

m ≥ n and m, n ∈ N. It is clear that conditions (H1)–(H4) hold. Since

1

h (t, t0)

∫ t

t0

h (t, σ (s)) p (s) ∆s =
1

t − 1

∫ t

1

(t − σ (s)) p (s) ∆s

>

∫ t

1

p (s) ∆s −
1

t

∫ t

1

σ (s) p (s) ∆s

=

m−1
∑

n=0

b (−1)n+1

qn(c+1)
(q − 1) qn −

1

qm

m−1
∑

n=0

qqn b (−1)n+1

qn(c+1)
(q − 1) qn

= b (q − 1)

[

m−1
∑

n=0

(−1)n+1
q−nc − q1−m

m−1
∑

n=0

(−1)n+1
qn(1−c)

]

.

By choosing m = 2k + 1, we have

m−1
∑

n=0

(−1)n+1
q−nc − q1−m

m−1
∑

n=0

(−1)n+1
qn(1−c)

= −
1 + q−c(2k+1)

1 + q−c
+ q−2k 1 + q(1−c)(2k+1)

1 + q1−c

=

(

q−2k + qq−c(2k+1)
)

(1 + q−c) −
(

1 + q−c(2k+1)
)

(1 + qq−c)

(1 + q−c) (1 + q1−c)

=
q−2k (1 + q−c) + q−c(2k+1) (q − 1) − 1 − qq−c

(1 + q−c) (1 + q1−c)
→ ∞ as k → ∞.

Therefore

lim sup
t→∞

1

h (t, t0)

∫ t

t0

h (t, σ (s)) p (s) ∆s = ∞.

Then, by Theorem 2.3, every solution of (2.8) is oscillatory.
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2.2. Kiguradze Type. In the next theorem, we establish oscillation criteria of

Kiguradze-type for the sublinear equation (1.1) and for both cases

(2.9)

∫

∞

t0

∆t

φ (t) r (t)
= ∞,

and

(2.10)

∫

∞

t0

∆t

φ (t) r(t)
< ∞.

Theorem 2.6. Assume that f satisfies (1.2). If there exists a C1
rd function φ such

that (2.9) holds and

φ (t) r(t) > 0, φ∆ (t) r (t) ≥ 0,
(

φ∆ (t) r (t)
)∆

≤ 0, for t ∈ [t0,∞)T.

In addition, assume

(2.11)

∫

∞

t0

φσ (t) p (t)∆t = ∞,

hen every bounded solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a bounded nonoscillatory solution x on [t0,∞)T. Then,

without loss of generality, there is a solution x of (1.1) and a T ∈ [t0,∞)T such that

x(t) > 0 on [T,∞)T. There are two cases to consider: either x∆(t) is eventually

negative or x∆(t) is not eventually negative.

Case (i). x∆(t) is eventually negative. Then there exists T1 ≥ T such that x∆(t) < 0

for t ≥ T1. From (2.11)

(2.12)

∫ t

T2

φσ (s) p (s)∆s ≥ 0 for all t ≥ T2.

Multiplying both sides of (1.1) by φσ(t) and integrating from T2 to t for t ∈ T, we

obtain that

(2.13)

∫ t

T2

φσ (s)
(

r(s)x∆(s)
)∆

∆s +

∫ t

T2

φσ (s) p (s) f (xσ (s)) ∆s = 0.

Using integration by parts, we have that for t ≥ T2

∫ t

T2

φσ (s)
(

r(s)x∆(s)
)∆

∆s

= φ (t) r(t)x∆(t) − φ (T2) r(T2)x
∆(T2) −

∫ t

T2

φ∆ (s) r(s)x∆(s)∆s

≥ φ (t) r(t)x∆(t) − φ (T2) r(T2)x
∆(T2).(2.14)

Again by integration by parts and using the Pötzsche chain rule, from (2.12), we get

that for t ∈ [T2,∞)T

∫ t

T2

φσ (s) p (s) f (xσ (s))∆s = f (x (t))

∫ t

T2

φσ (τ) p (τ) ∆τ
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−

∫ t

T2

[
∫ 1

0

f ′ (xh (s)) dh

]

x∆(s)

∫ s

T2

φσ (τ) p (τ) ∆τ ∆s

≥ f (x (t))

∫ t

T2

φσ (τ) p (τ) ∆τ ≥ 0.(2.15)

Applying (2.14) and (2.15) in (2.13), we obtain that

φ (t) r(t)x∆(t) ≤ φ (T2) r(T2)x
∆(T2),

and hence

x(t) − x (T2) ≤ φ (T2) r(T2)x
∆(T2)

∫ t

T2

∆s

φ (s) r(s)
.

Since φ (T2) r(T2)x
∆(T2) < 0, we conclude that limt→∞ x (t) = −∞, which is a con-

tradiction.

Case (ii). x∆(t) is not eventually negative. Multiplying both sides of (1.1) by
[

φ (t)

f (x (t))

]σ

and integrating from T to t, t ≥ T , we get

∫ t

T

φσ (s) p(s) ∆s = −

∫ t

T

[

φ (s)

f (x (s))

]σ
(

r(s)x∆(s)
)∆

∆s

By integration by parts we have that for t ≥ T

∫ t

T

φσ (s) p(s) ∆s =

[

φ (T )

f (x (T ))

]

r(T )x∆(T ) −

[

φ (t)

f (x (t))

]

r(t)x∆(t)

+

∫ t

T

[

φ (s)

f (x (s))

]∆

r(s)x∆(s) ∆s

Then, from the quotient rule and the Pötzsche chain rule, we get

∫ t

T

φσ (s) p(s) ∆s =
φ (T ) r(T )x∆(T )

f (x (T ))
−

φ (t) r(t)x∆(t)

f (x (t))

+

∫ t

T

[

φ∆ (s)

f (xσ(s))
−

φ (s)
∫ 1

0
f ′ (xh (s)) dh x∆(s)

f (x(s)) f (xσ(s))

]

r(s)x∆(s) ∆s

=
φ (T ) r(T )x∆(T )

f (x (T ))
−

φ (t) r(t)x∆(t)

f (x (t))

+

∫ t

T

φ∆ (s) r(s)x∆(s)

f (xσ(s))
∆s −

∫ t

T

φ (s) r(s)
∫ 1

0
f ′ (xh (s)) dh

(

x∆(s)
)2

f (x(s)) f (xσ(s))
∆s

where xh (t) := (1−h)x (t)+hxσ (t) > 0, for 0 ≤ h ≤ 1, t ∈ [T,∞)T. Since vf(v) > 0,

f ′ (v) > 0, for all v 6= 0 and φ (t) r(t) > 0, for all t ≥ T , we get

(2.16)
∫ t

T

φσ (s) p(s) ∆s ≤
φ (T ) r(T )x∆(T )

f (x (T ))
−

φ (t) r(t)x∆(t)

f (x (t))
+

∫ t

T

φ∆ (s) r(s)x∆(s)

f (xσ(s))
∆s.
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We claim that
∫ t

T

φ∆(s)r(s)x∆(s)
f(xσ(s))

∆s is bounded above for all t ≥ T . Since φ∆ (t) r(t) ≥ 0

and
(

φ∆ (t) r(t)
)∆

≤ 0, we have from Lemma 2.1 that for each t ∈ [T,∞)T

∫ t

T

φ∆ (s) r(s)x∆(s)

f (xσ(s))
∆s =

(

φ∆r
)

(T ) Λ (t) ,

where m ≤ Λ (t) ≤ M , and where m and M denote the infimum and supremum,

respectively, of the function
∫ s

T

x∆(τ)
f(xσ(τ))

∆τ , for s ∈ [T, t)T. By (2.1) in Lemma 2.2, we

have
∫ t

T

x∆(s)

f (xσ(s))
∆s ≤

∫ x(t)

x(T )

dτ

f (τ)
=

∫ x(t)

0

dτ

f (τ)
−

∫ x(T )

0

dτ

f (τ)
≤

∫ x(t)

0

dτ

f (τ)
.

Hence, for all t ∈ [T,∞)T, we have

∫ t

T

φ∆ (s) r(s)x∆(s)

f (xσ(s))
∆s = φ∆ (T ) r (T ) Λ (t) ≤ φ∆ (T ) r (T ) M

≤ φ∆ (T ) r (T )

∫ x(t)

0

dτ

f (τ)

(1.2)

≤ N.(2.17)

From (2.16) and (2.17), we get for t ∈ [T,∞)T,

φ (t) r(t)x∆(t)

f (x(t))
≤

φ (T ) r(T )x∆(T )

f (x(T ))
+ N −

∫ t

T

φσ (s) q(s)∆s.

In view of condition (2.11), it follows from the last inequality that there exists a

sufficiently large T1 ≥ T such that

x∆ (t) < 0, for t ∈ [T1,∞)T,

which is a contradiction. This completes the proof.

In the following, we assume that there exists a C1
rd function φ such that (2.10)

holds and we establish some sufficient conditions for oscillation of all bounded solu-

tions of equation (1.1).

Theorem 2.7. Assume that f satisfies (1.2). If there exists a C1
rd function φ such

that (2.11) and (2.10) and

(2.18)

∫

∞

t0

1

φ (t) r(t)

[
∫ t

t0

φσ (s) p (s) ∆s

]

∆t = ∞,

then every bounded solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss

of generality, there is a solution x of (1.1) and a T ∈ [t0,∞)T such that x(t) > 0 on

[T,∞)T. As in the proof of Theorem 2.6, we have two cases to consider: either x∆(t)

is eventually negative or x∆(t) is not eventually negative.
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Case (i). x∆(t) is eventually negative. Then there exists T1 ≥ T such that x∆(t) < 0

for t ≥ T1. Multiplying both sides of (1.1) by

[

φ (t)

f (x (t))

]σ

and integrating from T1 to

t, t ≥ T1, we get

∫ t

T1

φσ (s) p(s) ∆s = −

∫ t

T1

[

φ (s)

f (x (s))

]σ
(

r(s)x∆(s)
)∆

∆s

By integration by parts we have that for t ≥ T1

∫ t

T1

φσ (s) p(s) ∆s =

[

φ (T1)

f (x (T1))

]

r(T1)x
∆(T1) −

[

φ (t)

f (x (t))

]

r(t)x∆(t)

+

∫ t

T1

[

φ (s)

f (x (s))

]∆

r(s)x∆(s) ∆s

Then, from the quotient rule and the Pötzsche chain rule, we get

∫ t

T1

φσ (s) p(s) ∆s =
φ (T1) r(T1)x

∆(T1)

f (x (T1))
−

φ (t) r(t)x∆(t)

f (x (t))

+

∫ t

T1

[

φ∆ (s)

f (xσ(s))
−

φ (s)
∫ 1

0
f ′ (xh (s)) dh x∆(s)

f (x(s)) f (xσ(s))

]

r(s)x∆(s) ∆s

=
φ (T1) r(T1)x

∆(T1)

f (x (T1))
−

φ (t) r(t)x∆(t)

f (x (t))

+

∫ t

T1

φ∆ (s) r(s)x∆(s)

f (xσ(s))
∆s −

∫ t

T1

φ (s) r(s)
∫ 1

0
f ′ (xh (s)) dh

(

x∆(s)
)2

f (x(s)) f (xσ(s))
∆s,

which implies
∫ t

T1

φσ (s) p(s) ∆s ≤ −
φ (t) r(t)x∆(t)

f (x (t))
,

since vf(v) > 0, f ′ (v) > 0, for all v 6= 0 and x∆(t) < 0, and φ (t) r(t) > 0, for all

t ≥ T . Therefore

∫ t

T1

1

φ (s) r(s)

[
∫ s

T1

φσ (u) p (u)∆u

]

∆s ≤ −

∫ t

T1

x∆(t)

f (x (t))
∆s

(2.2)

≤ −

∫ x(t)

x(T1)

dτ

f (τ)

=

∫ x(T1)

x(t)

ds

f (s)
≤

∫ x(T1)

0

ds

f (s)

(1.2)
< ∞,

since x∆(t) < 0, then limt→∞ x(t) ≥ 0, which is a contradiction to (2.18).

Case (iii). The proof is similar to that of Theorem 2.6 and hence is omitted.

2.3. Belohorec type. In the following theorem, we prove oscillation criteria of

Belohorec-type for equation (1.1) where the assumption is made that σ is differ-

entiable on T and r (t) > 0 on [t0,∞)T and where f (xσ (t)) = |xσ (t)|γ sgn xσ (t),

where 0 < γ < 1.
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Theorem 2.8. If there exists a positive C1
rd function φ such that,for t ∈ [t0,∞)T,

(2.19) φ∆ (t) ≥ 0,
(

r (t) φ∆ (t)
)∆

≤ 0,

and

(2.20)

∫

∞

t0

∆t

r (t) φ (t)
=

∫

∞

t0

φγσ (t) p (t) ∆t = ∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss

of generality, there is a solution x of (1.1) and a T ∈ [t0,∞)T such that x(t) > 0 on

[T,∞)T. We can write the equation (1.1) in the form (suppressing arguments)

(2.21)
(

rφ∆
)∆

yσ +
(

rφ∆
)σ

(yσ)∆ + (rφ)∆
y∆ + (rφ)σ

y∆∆ + φγσpyγσ = 0,

where x = φy and so, from the product rule, we get

x∆ = φ∆yσ + φy∆,

and
(

rx∆
)∆

=
(

rφ∆
)∆

yσ +
(

rφ∆
)σ

(yσ)∆ + (rφ)∆ y∆ + (rφ)σ
y∆∆.

Multiplying both sides of (2.21) by
1

yγσ (t)
and integrating from T to t, t ≥ T , we get

∫ t

T

φγσ (s) p (s)∆s = −

∫ t

T

(

r (s) φ∆ (s)
)∆

yσ (s)

yγσ (s)
∆s

−

∫ t

T

(

r (s) φ∆ (s)
)σ

(yσ (s))∆

yγσ (s)
∆s

−

∫ t

T

(r (s)φ (s))∆
y∆ (s)

yγσ (s)
∆s

−

∫ t

T

(r (s)φ (s))σ
y∆∆ (s)

yγσ (s)
∆s.(2.22)

Integrating by parts, we obtain
∫ t

T

(

r (s) φ∆ (s)
)σ

(yσ (s))∆

yγσ (s)
∆s =

r (t)φ∆ (t) yσ (t)

yγ (t)

−
r (T )φ∆ (T ) yσ (T )

yγ (T )
−

∫ t

T

[

r (s) φ∆ (s)

yγ (s)

]∆

yσ (s) ∆s

≥ −
r (T )φ∆ (T ) yσ (T )

yγ (T )
−

∫ t

T

(

r (s) φ∆ (s)
)∆

yσ (s)

yγσ (s)
∆s

+

∫ t

T

r (s) φ∆ (s) (yγ (s))∆
yσ (s)

yγ (s) yγσ (s)
∆s,(2.23)

It is easy to see by the Pötzsche chain rule ([7, Theorem 1.90]) that

(yγ(s))∆ = γ

∫ 1

0

[

y(s) + hµ(s)y∆(s)
]γ−1

dh y∆(s)
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= γ

∫ 1

0

[(1 − h) y(s) + hyσ(s)]γ−1
dh y∆(s)

≥ γ [yσ(s)]γ−1
y∆(s),(2.24)

since for 0 < γ < 1 and for a fixed point s ∈ [T,∞)T, we have

[(1 − h) y (s) + hyσ (s)]γ−1

{

≤ [yσ (s)]γ−1
, y∆ (s) ≤ 0

≥ [yσ (s)]γ−1
, y∆ (s) ≥ 0,

and so

[(1 − h) y (s) + hyσ (s)]γ−1
y∆ (s) ≥ [yσ (s)]γ−1

y∆(s), for s ∈ [T,∞)T.

By using (2.24) in (2.23), we get

∫ t

T

(

r (s) φ∆ (s)
)σ

(yσ (s))∆

yγσ (s)
∆s

≥ −
r (T )φ∆ (T ) yσ (T )

yγ (T )
−

∫ t

T

(

r (s) φ∆ (s)
)∆

yσ (s)

yγσ (s)
∆s + γ

∫ t

T

r (s)φ∆ (s) y∆(s)

yγ (s)
∆s,

(2.25)

Again by integrating by parts, we have

∫ t

T

(r (s)φ (s))σ
y∆∆ (s)

yγσ (s)
∆s

=
r (t) φ (t) y∆ (t)

yγ (t)
−

r (T )φ (T ) y∆ (T )

yγ (T )
−

∫ t

T

[

r (s) φ (s)

yγ (s)

]∆

y∆ (s) ∆s

=
r (t) φ (t) y∆ (t)

yγ (t)
−

r (T )φ (T ) y∆ (T )

yγ (T )
−

∫ t

T

(r (s) φ (s))∆
y∆ (s)

yγσ (s)
∆s

+ γ

∫ t

T

r (s) φ (s)
∫ 1

0
y

γ−1
h (s) dh

(

y∆ (s)
)2

yγ (s) yγσ (s)
∆s

≥
r (t)φ (t) y∆ (t)

yγ (t)
−

r (T )φ (T ) y∆ (T )

yγ (T )
−

∫ t

T

(r (s)φ (s))∆
y∆ (s)

yγσ (s)
∆s,(2.26)

where yh (t) := (1 − h)y (t) + hyσ (t) ≥ 0, for 0 ≤ h ≤ 1, t ∈ [T,∞)T. From (2.22),

(2.25) and (2.26), we get

(2.27)

∫ t

T

φγσ (s) Q (s)∆s ≤ K1 −
r (t)φ (t) y∆ (t)

yγ (t)
− γ

∫ t

T

r (s)φ∆ (s) y∆(s)

yγ (s)
∆s,

where K1 := r(T )φ∆(T )yσ(T )
yγ(T )

+ r(T )φ(T )y∆(T )
yγ(T )

. We claim that
∫ t

T

r(s)φ∆(s)y∆(s)
yγ(s)

∆s is bounded

below for t ≥ T . Since r (s)φ∆ (s) ≥ 0 and
(

r (s)φ∆ (s)
)∆

≤ 0, we have from Second

Mean Value Theorem Lemma [8, Theorem 5.45] that for each t ∈ [T,∞)T

∫ t

T

r (s) φ∆ (s) y∆(s)

yγ (s)
∆s = r (T )φ∆ (T ) Λ (t) ,
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where m ≤ Λ (t) ≤ M , and where m and M denote the infimum and supremum,

respectively, of the function
∫ s

T

y∆(τ)
yγ(τ)

∆τ , for s ∈ [T, t)T. Then
∫ t

t0

x∆(s)
f(x(s))

∆s ≥
∫ x(t)

x(t0)
dτ

f(τ)

∫ t

T

y∆(s)

yγ (s)
∆s

(2.2)

≥

∫ y(t)

y(T )

dτ

τγ
=

1

1 − γ

[

y1−γ (t) − y1−γ (T )
]

≥
y1−γ (T )

γ − 1
.

Hence, for all t ≥ T , we have

(2.28)
∫ t

T

r (s)φ∆ (s) y∆(s)

yγ (s)
∆s = r (T )φ∆ (T ) Λ (t) ≥

1

γ − 1

[

r (T ) φ∆ (T ) y1−γ (T )
]

.

From (2.27) and (2.28), we get, for all t ∈ [T,∞)T,
∫ t

T

φγσ (s) q (s)∆s ≤ K1 −
r (t) φ (t) y∆ (t)

yγ (t)
+

γ

1 − γ

[

y1−γ (T ) r (T )φ∆ (T )
]

.

In view of condition (2.20), it follows from the last inequality that there exists a

sufficiently large T1 ≥ T and a positive constant K2 such that

r (t) φ (t) y∆ (t)

yγ (t)
< −K2, for t ∈ [T1,∞)T,

and so
∫ t

T1

y∆ (s)

yγ (s)
∆s < −K2

∫ t

T1

∆s

r (s)φ (s)
, for t ∈ [T1,∞)T.

Then, from (2.20), we get

(2.29) lim
t→∞

∫ t

T1

y∆ (s)

yγ (s)
∆s = −∞.

Again by (2.2), we have

(2.30)

∫ t

T1

y∆ (s)

yγ (s)
∆s ≥

γ

1 − γ

[

y1−γ (t) − y1−γ (T1)
]

, for t ∈ [T1,∞)T.

Hence from (2.29) and (2.30), we have limt→∞ y (t) = −∞, which is a contradiction.

This completes the proof.

Remark 2.9. In the case T = R and r (t) = 1 Theorem 2.8 is due to Wong [21]

and, when φ (t) = tβ, 0 ≤ β ≤ 1 Theorem 2.8 is due to Belohorec [5]. If T = Z,

r (t) = 1 and p (t) ≥ 0 and φ (t) = (t − 1)β
, 0 ≤ β ≤ 1; then Theorem 2.8 includes

Theorem 4.3 in Hooker and Patula [17, Theorem 4.1] and Mingarelli [20].

Example 2.10. Let t0 > 0 and T is a discrete time scale, i.e. T = {tn : n ∈ N0} such

that tn → ∞, and consider the dynamic equation

(2.31) ∆ (r (tn)∆x(tn)) + p(tn) |x (tn+1)|
γ sgn x (tn+1) = 0,

where 0 < γ < 1 is a positive real number. Define

r (tn) := tβ1

n , p (tn) :=
1

t
γ
n+1

(

1

t
β2

n

+
(−1)n

tntn+1

)

,
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with βi ∈ R, i = 1, 2 such that β1 ≤ 0 and β2 ≤ 1. Let φ (tn) := tn. Then (2.19) is

satisfied. By Example 5.60 in [8], we see that
∫

∞

t0

∆t

r (t) φ (t)
=

∞
∑

n=n0

∆tn

t
β1+1
n

= ∞

and
∫

∞

t0

φγσ (t) p (t) ∆t =

∞
∑

n=n0

(

1

t
β2

n

+
(−1)n

tntn+1

)

∆tn = ∞,

i.e., (2.20) is satisfied. Then, by Theorem 2.8, Eg. (2.31) is oscillatory.
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