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ABSTRACT. This work focuses on stability of switching diffusions, in which both continuous

dynamics and discrete events coexist. Our attention is devoted to the case that one has asymptotic

stability but the decay rates are slower than exponential. The main effort is on obtaining asymptotic

results in the almost sure sense. Sufficient conditions are provided for switching diffusion systems

whose switching component depends on the diffusion process. Then Markovian regime-switching

diffusions are treated, in which weaker conditions are needed. In addition, systems with delays are

also treated. Examples are provided to demonstrate our results.
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1. INTRODUCTION

This work is concerned with stability of switching diffusion processes (also known

as hybrid switching diffusions). Our focus is on systems whose asymptotic rates of

decay are much slower than exponential (termed as sub-exponential henceforth). The

switching diffusion is a two component process, whose dynamics may be described by

a stochastic differential equation of the continuous component together with transition

rule of the discrete component. One of the distinct features of the switching diffusions

is the coexistence of continuous dynamics and discrete events. In our setup, the

discrete events are modeled as a random switching process α(t) living in a finite

state space M, When the discrete event process takes a particular value i ∈ M, the

continuous component evolves with the drift and diffusion coefficient depend on i.
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When the discrete component jumps from i to j 6= i, the continuous component is a

solution of the stochastic differential equation with drift and diffusion depending on

j. In contrast with the Markovian switching processes [16], we allow the switching

process to be diffusion dependent. As a result, the switching process alone is not a

Markov chain [20].

Recently, switching diffusions have received much attention. This is because

of the needs of modeling and analysis of complex systems, in which the switching

process is used to model the random environment change. Emerging applications have

arisen in control and optimization, multi-agent systems, networked systems, wireless

communications, financial engineering, and risk management. In applications, the

underlying systems have often been in operation for a long time. Thus stability is of

crucial concern. While various modes of stability for switching diffusions have been

invested in the literature from different angles [9, 14, 15], less is known for asymptotic

stability of systems whose decay rates are slower than exponential. This brought us

to the current work.

For diffusion systems, rates of decays different from that of exponential were con-

sidered by many authors; see [3, 4, 10, 11, 13], and the references therein. In [11],

Liu and Mao obtained Lyapunov component-like results with appropriate bounding

constant leading to the desired decay rates. Inspired by their work, this paper con-

centrates on that of switching diffusions. Because of the switching process involved,

the analysis becomes more involved. In addition, we need to take care of the diffusion

dependent switching resulting in further complications. Nevertheless, we show that

similar decay rates as that of diffusions can also be obtained.

The rest of the paper is arranged as follows. The precise problem formulation

is given next. Section 3 presents the main results of sub-exponential decay rates.

To further our understanding, Section 4 provide weaker conditions for Markovian

switching diffusions in which the switching process is a Markov chain independent of

the Brownian motion. Section 5 is devoted to several examples. Section 6 extends the

results to systems with delays. Finally, concluding remarks are made in Section 7.

Before proceeding further, a word of notation is in order. Throughout the paper, we

use z′ to denote the transpose of z ∈ R
l1×l2 with l1 ≥ 1, l2 ≥ 1, whereas R

l×1 is simply

written as R
l; the Euclidean norm of a vector x is denoted by |x|. For a matrix A,

its trace norm is denoted by |A| =
√

tr(AA′). For a set B, its indicator function is

denoted by IB(·).

2. FORMULATION

This section presents the formulation of the problem. Let (Ω,F , {Ft}t≥0,P) be

a complete filtered probability space with a filtration {Ft}t≥0 satisfying the usual

conditions. Let (X(t), α(t)) be a two-component Markov process such that X(·)
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takes values in R
r, and α(·) takes values in a finite set M := {1, 2, . . . , m}. The

processes that we are interested in belong to a class of diffusion processes with regime

switching, which consists of the usual diffusion processes together with a switching

process that depends on the diffusion process and in which random switches take

place within the finite set M, representing the possible regimes of the environment.

Let f : R
r × [0,∞) ×M 7→ R

r, g : R
r × [0,∞) ×M 7→ R

r×d be suitable functions.

Consider the dynamic system given by

(2.1)





dX(t) = f(X(t), t, α(t))dt+ g(X(t), t, α(t))dW (t), t ≥ 0;

X(0) = x0 ∈ R
r, α(0) = i0 ∈ M.

where W (t) is a d-dimensional standard Brownian motion, and α(·) obeys the follow-

ing transition rule:

P (α(t+ ∆t) = j|α(t) = i, (X(t), α(t)), s ≤ t) = qij(X(t))∆t+ o(∆t), i 6= j.

Throughout the paper, we assume that the drift and diffusion coefficients grow at

most linearly in x, satisfy the Lipschitz condition in x, and Q(x) is a bounded and

continuous function. Thus, (2.1) has unique global solution denoted by X(t, x0); see

[20, Chapter 2] for more details).

Remark 2.1. Note that the evolution of the discrete event component α(·) can be

represented by a stochastic integral with respect to a Poisson random measure (see,

for example, [2] and [17], see also [16]). For each x ∈ R
r and i, j ∈ M with j 6= i,

let ∆ij(x) be the consecutive(with respect to the lexicographic ordering on M×M)

left closed and right open intervals of the real line, each having length qij(x). Define

a function h : R
r ×M× R 7→ R by

h(x, i, z) =
∑

j∈M

(j − i)I{z∈∆ij(x)}

That is, with the partition {∆ij(x) : i, j ∈ M} used, for each i ∈ M, if z ∈

∆ij(x),h(x, i, z) = j − i; otherwise h(x, i, z) = 0. Then

dα(t) =

∫

R

h(X(t−), α(t−), z)N1(dt, dz)

where N1(dt, dz) is a Poisson measure with intensity dt ×m1(dz), and m1(·) is the

Lebesgue measure on R. The Poisson measure N1(dt, dz) is independent of the Brow-

nian motion W (·). In what follows, denote the associated compensated Poisson mea-

sure by Ñ1(ds, dz) = N1(ds, dz) − ds×m1(dz).

The process (X(t), α(t)) has a generator L as follows. For each i ∈ M, V (·, ·, i) ∈

C2,1(Rr × [0,∞); R),

(2.2) LV (x, t, i) := L̃V (x, t, i) + QV (x, t, i)
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where

L̃V (x, t, i) :=
∂

∂t
V (x, t, i) +

r∑

k=1

fk(x, t, i)
∂

∂xk
V (x, t, i)

+
1

2

r∑

k,l=1

m∑

j=1

gkj(x, t, i)glj(x, t, i)
∂2

∂xk∂xl
V (x, t, i)

QV (x, t, i) :=
∑

j∈M

qij(x)V (x, t, j)

=
∑

j 6=i,j∈M

qij(x)(V (x, t, j) − V (x, t, i))

In what follows, when we work with Lyapunov functions, V (·, ·, ·) : R
r×[0,∞)×M 7→

R+. For subsequent use, we define two new operators:

QBV (x, t, i) :=

r∑

i,j=1

m∑

k=1

gik(x, t, i)gjk(x, t, i)
∂

∂xi
V (x, t, i)

∂

∂xj
V (x, t, i)

QMV (x, t, i) :=
∑

j 6=i,j∈M

qij(x)|V (x, t, j) − V (x, t, i)|2.

We have the following generalized Itô formula, which is deemed to be well known.

For more details can be found in [17], [16] and [20].

Lemma 2.1. Using the operator L defined in (2.2), the generalized Itô formula is

given by

V (X(t), t, α(t)) =V (x0, t, i0) +

∫ t

0

LV (X(s), s, α(s))ds

+

∫ t

0

r∑

i=1

d∑

k=1

gik(X(s), s, α(s))
∂

∂xi
V (X(s), s, α(s))dW k(s)

+

∫ t

0

∫

R

[
V (X(s−), s−, α(s−) + h(X(s−), α(s−), z))

−V (X(s−), s−, α(s−))
]
Ñ1(ds, dz).

3. MAIN RESULTS

Let us now give the precise definition of almost sure stability with decay rate

function λ(t). Again, we recall that our main concern is for switching diffusions.

More detailed discussion for diffusion systems can be found in [11] and [3].

Definition 3.1. Suppose that λ(t) is a positive function satisfying λ(t) ↑ +∞ as

t→ +∞. Assume there exists a sufficiently large T > 0 such that

(1) log λ(t) is uniformly continuous over t ≥ T ;

(2) there exists a nonnegative constant τ ≥ 0 such that

lim sup
t→∞

log log t

log λ(t)
≤ τ.
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The solution X(t) of equation (2.1) is said to be almost surely stable with rate function

λ(t) of order γ > 0 if and only if

lim sup
t→∞

log |X(t)|

log λ(t)
≤ −γ a.s.

for all initial conditions X(0) = x0 ∈ R
r, α(0) = i0 ∈ M. If in addition 0 is solution

to (2.1), then we call the zero solution is almost surely stable with rate function λ(t)

of order at least γ.

Theorem 3.1. Suppose that for each i ∈ M, V (·, ·, i) ∈ C2,1(Rr × [0,∞); R+), that

c(t) > 0 is a continuous positive function, and that ψ1(t), ψ2(t) are two continuous

nonnegative functions. Assume that for all (x, t, i) ∈ R
r × [0,∞) × M, there exist

two continuous non-increasing positive functions ξ(t) > 0, ζ(t) > 0, positive constant

p > 0, and real numbers ̟, θ, ρ, µ, η such that

(a) c(t)|x|p ≤ V (x, t, i);

(b) LV (x, t, i) + ξ(t)QBV (x, t, i) + ζ(t)QMV (x, t, i) ≤ ψ1(t) + ψ2(t)V (x, t, i);

(c) the following conditions hold:

lim inf
t→∞

log c(t)

log λ(t)
≥ ̟, lim sup

t→∞

log
(∫ t

0
ψ1(s)ds

)

log λ(t)
≤ θ, lim sup

t→∞

∫ t

0
ψ2(s)ds

log λ(t)
≤ ρ,

lim inf
t→∞

log ξ(t)

log λ(t)
≥ −µ, lim inf

t→∞

log ζ(t)

log λ(t)
≥ −η.

Then the solution X(t) of equation (2.1) satisfies

lim sup
t→∞

log |X(t)|

log λ(t)
≤ −

̟ − [µ ∨ η ∨ θ + τ + ρ]

p
a.s.

Proof. The proof is inspired by the work of Liu and Mao [11]. However, we must

treat the switching process with care.

Step 1. By the generalized Itô formula in Lemma 2.1 and the definition of L, we

have

V (X(t), t, α(t)) = V (x0, 0, i0) +

∫ t

0

LV (X(s), s, α(s))ds+M1(t) +M2(t)(3.1)

where

M1(t) =

∫ t

0

r∑

i=1

d∑

k=1

gik(X(s), s, α(s))
∂

∂xi
V (X(s), s, α(s))dW k(s)

M2(t) =

∫ t

0

∫

R

[
V (X(s−), s−, α(s−) + h(X(s−), α(s−), z))

−V (X(s−), s−, α(s−))
]
Ñ1(ds, dz).

are two martingale terms.
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Step 2. By condition (1), the uniform continuity of logλ(t), in Definition 3.1, for

any ε > 0 there exist two positive integers N = N(ε) and k0 = k0(ε) such that,
∣∣∣∣log λ

(
k

2N

)
− log λ(t)

∣∣∣∣ ≤ ε(3.2)

if k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε).

Owing to the exponential martingale inequality, by the definition of QB and QM,

for any ui, vi, and wi > 0 with i = 1, 2,

P

{
ω : sup

0≤t≤w1

[
M1(t) −

∫ t

0

u1

2
QBV (X(s), s, α(s))ds

]
> v1

}
≤ e−u1v1 ,

and

P

{
ω : sup

0≤t≤w2

[
M2(t) −

∫ t

0

u2

2
QMV (X(s), s, α(s))ds

]
> v2

}
≤ e−u2v2 .

In particular, for k = 2, 3, . . ., taking

u1 = 2ξ

(
k

2N

)
, v1 = ξ

(
k

2N

)−1

log
k − 1

2N
, w1 =

k

2N
;

u2 = 2ζ

(
k

2N

)
, v2 = ζ

(
k

2N

)−1

log
k − 1

2N
, w2 =

k

2N
;

By virtue of the Borel-Cantelli lemma, there exist two integers k1(ε, ω) > 0 and

k2(ε, ω) > 0 for almost all ω ∈ Ω such that

M1(t) ≤ ξ

(
k

2N

)−1

log
k − 1

2N
+ ξ

(
k

2N

)∫ t

0

QBV (X(s), s, α(s))ds

M2(t) ≤ ζ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)∫ t

0

QMV (X(s), s, α(s))ds

for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω).

Step 3. Substituting these equations into (3.1) and using condition (b), we have

V (X(t), t, α(t))

≤ V (x0, 0, i0) +

∫ t

0

LV (X(s), s, α(s))ds

+ ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+ ξ

(
k

2N

)∫ t

0

QBV (X(s), s, α(s))ds

+ ζ

(
k

2N

)∫ t

0

QMV (X(s), s, α(s))ds

≤ V (x0, 0, i0) +

∫ t

0

LV (X(s), s, α(s))ds
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+ ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

ξ(s)QBV (X(s), s, α(s))ds+

∫ t

0

ζ(s)QMV (X(s), s, α(s))ds

≤ V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

[ψ1(s) + ψ2(s)V (X(s), s, α(s))]ds a.s.

for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω). Hence, by Gronwall’s inequality,

V (X(t), t, α(t)) ≤

[
V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

ψ1(s)ds

]
exp

(∫ t

0

ψ2(s)ds

)
a.s.

for all 0 ≤ t ≤ k
2N , k ≥ k1(ε, ω) ∨ k2(ε, ω).

Step 4. Now using condition (c) and (3.2) yield that there exists a positive integer

k3(ε, ω) such that

log V (X(t), t, α(t))

≤ log

[
V (x0, 0, i0) + λ

(
k

2N

)µ+ε

+ λ

(
k

2N

)η+ε

+ λ(t)θ+ε

]

+ log log
k − 1

2N
+ (ρ+ ε) log λ(t)

≤ log
[
V (x0, 0, i0) + eε(µ+ε)λ (t)µ+ε + eε(η+ε)λ (t)η+ε + λ(t)θ+ε

]

+ log log
k − 1

2N
+ (ρ+ ε) log λ(t) a.s.

for all k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω) ∨ k3(ε, ω). Immediately we have

lim sup
t→∞

log V (X(t), t, α(t))

log λ(t)
≤ (µ+ ε) ∨ (η + ε) ∨ (θ + ε) + (τ + ε) + (ρ+ ε) a.s.

Finally, by virtue of conditions (a) and (c), and letting ε→ 0 yield

lim sup
t→∞

log |X(t)|

log λ(t)
≤ lim sup

t→∞

1

p

log [c(t)−1V (X(t), t, α(t))]

log λ(t)

≤ −
̟ − [µ ∨ η ∨ θ + τ + ρ]

p
a.s.

The proof is concluded.

In fact, we can use the following lemma to get a more general result.
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Lemma 3.1. Let h(t), u(t) ∈ C([0, T ],R+), the collection of nonnegative continuous

functions, let w(t) be a continuous, nonnegative, and nondecreasing function defined

on [0, T ]. Suppose 0 ≤ β < 1 and

h(t) ≤w(t) +

∫ t

0

u(s)hβ(s)ds, 0 ≤ t ≤ T.

Then

h(t) ≤

(
w(t)1−β + (1 − β)

∫ t

0

u(s)ds

) 1

1−β

, 0 ≤ t ≤ T.

Proof. A proof can be found in [12].

Theorem 3.2. Suppose that for each i ∈ M, V (·, ·, i) ∈ C2,1(Rr × [0,∞); R+), that

c(t) > 0 is a continuous positive function, and that ψ1(t), ψ2(t), ψ3(t) are three

continuous and nonnegative functions. Assume that for all (x, t, i) ∈ R
r × [0,∞) ×

M, there exist two continuous non-increasing positive functions ξ(t) > 0, ζ(t) > 0,

positive constants p > 0, 0 ≤ β < 1, and real numbers ̟, θ, ρ, ϑ, µ, η such that

(a) c(t)|x|p ≤ V (x, t, i);

(b) LV (x, t, i) + ξ(t)QBV (x, t, i) + ζ(t)QMV (x, t, i)

≤ ψ1(t) + ψ2(t)V (x, t, i) + ψ3(t)V (x, t, i)β;

(c) the following conditions hold:

lim inf
t→∞

log c(t)

log λ(t)
≥ ̟, lim sup

t→∞

log
(∫ t

0
ψ1(s)ds

)

log λ(t)
≤ θ, lim sup

t→∞

∫ t

0
ψ2(s)ds

log λ(t)
≤ ρ(1 − β),

lim sup
t→∞

log
(∫ t

0
ψ3(s)ds

)

log λ(t)
≤ ϑ(1 − β), lim inf

t→∞

log ξ(t)

log λ(t)
≥ −µ, lim inf

t→∞

log ζ(t)

log λ(t)
≥ −η.

Then the solution X(t) of equation (2.1) satisfies

lim sup
t→∞

log |X(t)|

log λ(t)
≤ −

̟ − [µ ∨ η ∨ θ ∨ ϑ+ τ + ρ]

p
a.s.

Proof. The proof is motivated by the approach of [11]. Using similar arguments as in

the proof of Theorem 3.1, we can show that

V (X(t), t, α(t))

≤ V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

[
ψ1(s) + ψ2(s)V (X(s), s, α(s)) + ψ3(s)V (X(s), s, α(s))β

]
ds a.s.

for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω). By Gronwall’s inequality and

Lemma 3.1, we arrive at

V (X(t), t, α(t))
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≤

[
V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

ψ1(s)ds+

∫ t

0

ψ3(s)V (X(s), s, α(s))βds

]
exp

(∫ t

0

ψ2(s)ds

)

≤

{[
V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

ψ1(s)ds

]1−β

exp

(∫ t

0

ψ2(s)ds

)

+(1 − β) exp

(∫ t

0

ψ2(s)ds

)∫ t

0

ψ3(s)ds

} 1

1−β

a.s.

for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω). Hence, we can find a positive

random integer k3(ε, ω) such that

log V (X(t), t, α(t))

≤
1

1 − β
log
{[
V (x0, 0, i0) + eε(µ+ε)λ (t)µ+ε + eε(η+ε)λ (t)η+ε

+λ(t)θ+ε
]1−β

+ λ(t)(1−β)(ϑ+ε)
}

+ log log
k − 1

2N
+ (ρ+ ε) log λ(t) a.s.

for all k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω) ∨ k3(ε, ω).

Using equation (3.2) again, we have

lim sup
t→∞

log V (X(t), t, α(t))

log λ(t)
≤ (µ+ ε) ∨ (η + ε) ∨ (θ + ε) ∨ (ϑ+ ε)

+ (τ + ε) + (ρ+ ε) a.s.

Finally, using conditions (a) and (c) and letting ε→ 0 yield

lim sup
t→∞

log |X(t)|

log λ(t)
≤ lim sup

t→∞

1

p

log [c(t)−1V (X(t), t, α(t))]

log λ(t)

≤ −
̟ − [µ ∨ η ∨ θ ∨ ϑ+ τ + ρ]

p
a.s.,

which yields the desired result.

By applying the generalized Itô formula to the function log V (·), we can obtain

the following useful conclusion.

Theorem 3.3. Suppose that the solution of equation (2.1) satisfies X(t) 6= 0 for all

t > 0 provided x0 6= 0 a.s., and that for each i ∈ M, V (·, ·, i) ∈ C2,1[(Rr − {0}) ×

[0,∞); R+], c(t) and ψ2(t) are two continuous positive functions, ψ1(t) is a real-valued

continuous function, and ψ3(t) is a continuous nonnegative function. Assume that

for all x 6= 0 and t ≥ 0, there exist constants p > 0, ρ ≥ 0, µ ≥ 0, 0 < β < 1, and

real numbers ̟, θ such that
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(a) c(t)|x|p ≤ V (x, t, i);

(b) LV (x, t, i) ≤ ψ1(t)V (x, t, i);

(c) QBV (x, t, i) ≥ ψ2(t)V
2(x, t, i);

(d) QMV (x, t, i) ≤ ψ3(t) minj∈M V 2(x, t, j);

(e) the following conditions hold:

lim inf
t→∞

log c(t)

log λ(t)
≥ ̟, lim sup

t→∞

∫ t

0
ψ1(s)ds

log λ(t)
≤ θ, lim inf

t→∞

∫ t

0
ψ2(s)ds

log λ(t)
≥

2ρ

1 − β
,

lim sup
t→∞

∫ t

0
ψ3(s)ds

log λ(t)
≤ ϑ, lim sup

t→∞

log t

log λ(t)
≤

µβ

2(1 + β)
.

Then the solution X(t) of equation (2.1) satisfies

lim sup
t→∞

log |X(t)|

log λ(t)
≤ −

̟ + ρ− θ − ϑ− µ

p
a.s.

Proof. Step 1. Applying the generalized Itô formula to the function log V (X(t), t, α(t)),

we have

log V (X(t), t, α(t))

= log V (x0, 0, i0) +

∫ t

0

(
L̃V (X(s), s, α(s))

V (X(s), s, α(s))
−

1

2

QBV (X(s), s, α(s))

V 2(X(s), s, α(s))

)
ds

+

∫ t

0

Q log V (X(s), s, α(s))ds+M1(t) +M2(t)(3.3)

where

M1(t) =

∫ t

0

1

V (X(s), s, α(s))

r∑

i=1

d∑

k=1

gik(X(s), s, α(s))
∂

∂xi
V (X(s), s, α(s))dW k(s)

M2(t) =

∫ t

0

∫

R

[
log V (X(s−), s−, α(s−) + h(X(s−), α(s−), z))

− log V (X(s−), s−, α(s−))
]
Ñ1(ds, dz).

are two martingale terms.

Step 2. Using the exponential martingale inequality, for any positive ui, vi, and

wi with i = 1, 2,

P

{
ω : sup

0≤t≤w1

[
M1(t) −

∫ t

0

u1

2

QBV (X(s), s, α(s))

V 2(X(s), s, α(s))
ds

]
> v1

}
≤ e−u1v1 ,

and

P

{
ω : sup

0≤t≤w2

[
M2(t) −

∫ t

0

u2

2
QM log V (X(s), s, α(s))ds

]
> v2

}
≤ e−u2v2 .

As in Step 2 in Theorem 3.1, we use the uniform continuity of logλ(t), for any

ε > 0 there exist two positive integers N = N(ε) and k0 = k0(ε) such that
∣∣∣∣log λ

(
k

2N

)
− log λ(t)

∣∣∣∣ ≤ ε(3.4)
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if k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε).

Now, for k = 2, 3, . . ., taking

u1 = β, v1 = 2β−1 log
k − 1

2N
, w1 =

k

2N
;

u2 = 1, v2 = 2 log
k − 1

2N
, w2 =

k

2N
,

by the Borel-Cantelli lemma, there exist two integers k1(ε, ω) > 0 and k2(ε, ω) > 0

for almost all ω ∈ Ω such that for all k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω) and 0 ≤ t ≤ k
2N ,

M1(t) ≤ 2β−1 log
k − 1

2N
+
β

2

∫ t

0

QBV (X(s), s, α(s))

V 2(X(s), s, α(s))
ds,

M2(t) ≤ 2 log
k − 1

2N
+

∫ t

0

QM log V (X(s), s, α(s))ds.

Step 3. Using the elementary inequality log(1 + x) ≤ x for x ≥ −1, we have

Q log V (x, s, i)

=
∑

j 6=i,j∈M

qij(x) (log V (x, s, j) − log V (x, s, i))

=
∑

j 6=i,j∈M

qij(x) log

(
1 +

V (x, s, j) − V (x, s, i)

V (x, s, i)

)

≤
∑

j 6=i,j∈M

qij(x)

(
V (x, s, j) − V (x, s, i)

V (x, s, i)

)

=
QV (x, s, i)

V (x, s, i)

By the definition of QM, the mean value theorem and condition (d), we have

QM log V (x, t, i)

=
∑

j 6=i,j∈M

qij(x) |log V (x, t, j) − log V (x, t, i)|2

≤
∑

j 6=i,j∈M

qij(x)
|V (x, t, j) − V (x, t, i)|2

V 2(x, t, j) ∧ V 2(x, t, i)

≤
QMV (x, t, i)

minj∈M V 2(x, t, j)

≤ ψ3(t).

Substituting these equations into (3.3), using the definition of L and conditions

(b) and (c), we obtain that there exists a positive integer k3(ε, ω) such that

log V (X(t), t, α(t))

≤ log V (x0, 0, i0) + 2β−1 log
k − 1

2N
+ 2 log

k − 1

2N
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+

∫ t

0

ψ1(s)ds−
1

2
(1 − β)

∫ t

0

ψ2(s)ds+

∫ t

0

ψ3(s)ds a.s.(3.5)

for all k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω) ∨ k3(ε, ω). This is the equivalent

to

log V (X(t), t, α(t))

≤ log V (x0, 0, i0) + (2β−1 + 2) log
k − 1

2N
+ (θ + ε) log λ(t)

−
1

2
(1 − β)

2ρ+ ε

1 − β
log λ(t) + (ϑ+ ε) log λ(t) a.s.

Finally, by virtue of conditions (a) and (e), and letting ε→ 0 yields

lim sup
t→∞

log |X(t)|

log λ(t)
≤ lim sup

t→∞

1

p

log [c(t)−1V (X(t), t, α(t))]

log λ(t)

≤ −
̟ + ρ− θ − ϑ− µ

p
a.s.

The desired result thus follows.

4. MARKOVIAN SWITCHING DIFFUSIONS

This section is devoted to stability in the almost sure sense of the systems when

the switching process is an ergodic Markov chain.

We work on the Markovian switching system, whose α(t) is a continuous-time

Markov chain with constant generator(i.e., Q(x) = Q̂ independent of x). The switch-

ing process is a Markov chain independent of the Brownian motion and the variable

x. We call such processes Markovian switching diffusion processes. We work with

such processes and add a remark after the theorem is obtained as in Yin and Xi [18].

Then, we use the similar approaches to give a corollary which is a more general case

of Theorem 3.3. Another remark is also given to illustrate how we can generalize the

previous results.

In this part, we assume the decay rate λ(t) satisfies following condition:

(4.1) lim sup
t→∞

t

log λ(t)
≤ λ,

where λ > 0 is a positive constant. For each i ∈ M, there are positive continuous

functions Kf(t, i), Kg(t, i), Kd(t, i) and constants K̂f (i), positive constants K̂g(i),

K̂d(i) such that

(4.2)





x′f(x, t, i) ≤ Kf(t, i)|x|2,

|g(x, t, i)|2 ≤ Kg(t, i)|x|2,

|x′g(x, t, i)| ≥
√
Kd(t, i)|x|2,

and





lim supt→∞Kf(t, i) ≤ K̂f (i),

lim supt→∞Kg(t, i) ≤ K̂g(i),

lim inft→∞Kd(t, i) ≥ K̂d(i).
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Theorem 4.1. Assume conditions (4.1) and (4.2) hold. Let the switching process

α(t) be independent of the Brownnian motion and Q(x) = Q̂ be irreducible. Then the

solution X(t) of equation (2.1) satisfies

lim sup
t→∞

log |X(t)|

log λ(t)
≤ λ

m∑

i=1

νi

[
K̂f(i) +

1

2
K̂g(i) − K̂d(i)

]
a.s.

where ν = (ν1, . . . , νm) is the stationary distribution associated with Q̂.

Remark 4.1. By the irreducibility of Q̂, we mean that the system of equations

νQ̂ = 0,
∑

i∈M

νi = 1

has a unique positive solution; see [19, Definition 2.7] for further details. As a conse-

quence, ν = (ν1, . . . , νm) exists and moreover for each i ∈ M, P (α(t) = i) → νi > 0

as t → ∞ exponentially fast. That is, α(t) is a φ-mixing process with exponential

mixing rate. The implication of this is that the associated Markov chain is strongly

ergodic.

Proof. The proof is divided into several steps.

Step 1. Define V (x, t, i) = log |x| for each i ∈ M. Noting V (x, t, i) is independent

of i ∈ M, then we have QV (x, t, i) = 0, LV (x, t, i) = L̃V (x, t, i). An application of

the generalized Itô formula yields that for any t > 0,

V (X(t), t, α(t)) − V (x0, 0, i0)

= log |X(t)| − log |x0|

=

∫ t

0

[
x′(s)f(X(s), s, α(s))

|X(s)|2
−

|x′(s)g(X(s), s, α(s))|2

|X(s)|4

+
|g(X(s), s, α(s))|2

2|X(s)|2

]
ds+M(t).(4.3)

where

M(t) =

∫ t

0

x′(s)g(X(s), s, α(s))

|X(s)|2
dW (s)

is a martingale term.

Step 2. By a standard result in stochastic processes and condition (4.2), the

quadratic variation of M(t) is given by

〈M,M〉(t) =

∫ t

0

|x′(s)g(X(s), s, α(s))|2

|X(s)|4
ds

≤

∫ t

0

|X(s)|2|g(X(s), s, α(s))|2

|X(s)|4
ds

≤

∫ t

0

Kg(s, α(s))ds
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≤ max
(s,i)∈[0,∞)×M

Kg(s, i)t

Thus, an application of the strong law of large numbers for local martingales yields

that M(t)/t → 0 with probability 1 as t→ ∞.

Step 3. We work with the rest of the terms in (4.3). By condition (4.2), for any

ε > 0, there exists a constant T , whenever t > T we have

Kf(t, i) ≤ K̂f (i) +
ε

3
, Kg(t, i) ≤ K̂g(i) +

ε

3
, Kd(t, i) ≥ K̂d(i) −

ε

3
.

In view of the argument in Yin and Xi [18], since Q(x) = Q̂ is irreducible, the

associated Markov chain is ergodic with the associated stationary distribution given

by ν = (ν1, . . . , νM). It is well known that the finite-state Markov chain α(t) is ϕ-

mixing with exponential mixing rate. In fact |E(I{α(t)=i}−νi|α(s))| ≤ K exp(−κ0(t−

s)) for t ≥ s and for some κ0 ≥ 0. Moreover, for each i ∈ M,

1

t

∫ t

0

[
I{α(s)=i} − νi

]
ds→ 0 a.s. as t→ ∞,

Then we can deduce that

lim sup
t→∞

∣∣∣∣
1

t

∫ t

0

x′(s)f(X(s), s, α(s))

|X(s)|2
ds

∣∣∣∣

≤ lim sup
t→∞

∣∣∣∣∣
1

t

m∑

i=1

∫ t

0

x′(s)f(X(s), s, i)

|X(s)|2
I{α(s)=i}ds

∣∣∣∣∣

≤ lim sup
t→∞

1

t

m∑

i=1

∫ t

0

Kf (s, i)I{α(s)=i}ds

≤ lim sup
t→∞

1

t

m∑

i=1

[∫ T

0

(
Kf(s, i) − K̂f(i) +

ε

3

)
I{α(s)=i}ds

+

∫ t

0

(
K̂f(i) +

ε

3

)
I{α(s)=i}ds

]

≤ lim sup
t→∞

m∑

i=1

(
K̂f (i) +

ε

3

) 1

t

∫ t

0

I{α(s)=i}ds

≤
m∑

i=1

νiK̂
f(i) +

ε

3
(4.4)

Moreover, we also have

lim sup
t→∞

∣∣∣∣
1

t

∫ t

0

[
|g(X(s), s, α(s))|2

2|X(s)|2
−

|x′(s)g(X(s), s, α(s))|2

|X(s)|4

]
ds

∣∣∣∣

≤ lim sup
t→∞

1

t

m∑

i=1

∫ t

0

(
1

2
Kg(s, i) −Kd(s, i)

)
I{α(s)=i}ds

≤
m∑

i=1

νi

(
1

2
K̂g(i) − K̂d(i)

)
+

2ε

3
(4.5)
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Hence, by (4.4) and (4.5) we have

lim sup
t→∞

∣∣∣∣
1

t

∫ t

0

[
x′(s)f(X(s), s, α(s))

|X(s)|2
−

|x′(s)g(X(s), s, α(s))|2

|X(s)|4

+
|g(X(s), s, α(s))|2

2|X(s)|2

]
ds

∣∣∣∣

≤
m∑

i=1

νi

(
K̂f (i) +

1

2
K̂g(i) − K̂d(i)

)
+ ε.(4.6)

Step 4. By Definition 3.1 and condition (4.1), we have

lim sup
t→∞

log |X(t)|

log λ(t)
= lim sup

t→∞

log |X(t)|

t

t

log λ(t)
≤ λ lim sup

t→∞

log |X(t)|

t
.

Finally, using the already obtained M(t)/t→ 0 w.p.1 as t→ ∞ and (4.6), and letting

ε→ 0, the desired result follows.

Remark 4.2. We have obtained sufficient conditions ensuring almost sure decay rates

for Markovian switching diffusions. For the corresponding x-dependent counterpart,

stronger conditions are needed due to the x-dependence of Q(x). There are a couple

of possibilities.

Observe that under the conditions of the theorem, the trivial solution 0 is stable

in probability. That is, for any η > 0 and η̃ > 0, there is a δ = δ(η) > 0 such that

whenever |X(0)| = |x0| < δ, P
{
supt≥0 |X

x0,i0(t)| > η̃
}
< η. This indicates that with

probability 1 − η, we have |Xx0,i0(t)| ≤ η̃, which suggests that we work on the set

Seη := {supt≥0 |X
x0,i0(t)| ≤ η̃}. As in Yin and Xi [18], using Q(x) = Q̂+ o(1), Q(x)is

locally like Q̂. Then on the set Seη, we can replace Q(x) by its approximation Q̂. The

corresponding stability result may be obtained but the set Seη will be needed.

Using similar approach as in Theorem 4.1, we can derive the following result,

which is more general than Theorem 3.3 under some special conditions.

Corollary 4.1. Let the switching process α(t) be independent of the Brownnian

motion and Q(x) = Q̂ be irreducible. Assume the solution of (2.1) satisfies that

X(t, x0) 6= 0 for all t > 0, a.s. provided x0 6= 0 a.s.. Suppose V (·, ·, i) ∈ C2,1[(Rr −

{0}) × [0,∞); R+] and ∀i ∈ M, ψ1(t, i) be real continuous functions, ψ3(t, i) be con-

tinuous nonnegative functions, and c(t), ψ2(t, i) be continuous positive functions. As-

sume that for all x 6= 0 and t ≥ 0, there exist constants p > 0, λ > 0, 0 < β < 1,

̟ ∈ R, and ∀i ∈ M, ρi ≥ 0, ϑi ≥ 0, θi ∈ R, such that

(a) c(t)|x|p ≤ V (x, t, i);

(b) LV (x, t, i) ≤ ψ1(t, i)V (x, t, i);

(c) QBV (x, t, i) ≥ ψ2(t, i)V
2(x, t, i);

(d) QMV (x, t, i) ≤ ψ3(t, i) minj∈M V 2(x, t, j);
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(e) the following conditions hold:

lim inf
t→∞

log c(t)

t
≥ ̟, lim sup

t→∞

∫ t

0
ψ1(s, i)ds

t
≤ θi, lim inf

t→∞

∫ t

0
ψ2(s, i)ds

t
≥ 2ρi,

lim sup
t→∞

∫ t

0
ψ3(s, i)ds

t
≤ ϑi, lim sup

t→∞

t

log λ(t)
≤ λ.

Then X(t), the solution of (2.1) satisfies

lim sup
t→∞

log |X(t)|

log λ(t)
≤ −

λ [̟ +
∑m

i=1 νi (ρi − θi − ϑi)]

p
a.s.

Proof. As equation (3.5) in the proof of Theorem 3.3, we can derive that

log V (X(t), t, α(t))

≤ log V (x0, 0, i0) + 2β−1 log
k − 1

2N
+ 2 log

k − 1

2N
+

∫ t

0

ψ1(s, α(s))ds

−
1

2
(1 − β)

∫ t

0

ψ2(s, α(s))ds+

∫ t

0

ψ3(s, α(s))ds a.s.

Using similar approach as in Step 3 in the proof of Theorem 4.1, by condition (e), we

can show that

lim sup
t→∞

1

t

∫ t

0

ψ1(s, α(s))ds = lim sup
t→∞

1

t

m∑

i=1

∫ t

0

ψ1(s, i)I{α(s)=i}ds ≤

m∑

i=1

νiθi a.s.

It is also not difficult to obtain that

lim inf
t→∞

1

t

∫ t

0

ψ2(s, α(s))ds ≥ 2

m∑

i=1

νiρi a.s.

lim sup
t→∞

1

t

∫ t

0

ψ3(s, α(s))ds ≤

m∑

i=1

νiϑi a.s.

Since limt→∞ log t/t = 0, by Step 4 in the proof of Theorem 4.1 and letting β → 0,

we derive the desired result immediately.

Remark 4.3. A comparison of Theorem 3.3 and Corollary 4.1 shows that for the

situation treated in Theorem 3.3 if lim supt→∞ t/ log λ(t) ≤ λ, where λ > 0, and

Q(x) = Q̂ + o(1) with Q̂ being irreducible, we can replace the functions ψj(t) by

ψj(t, i) (for j = 1, 2, 3) and proceed as in the previous theorems to get some more

precise results such as Theorem 4.1 and Corollary 4.1.

5. EXAMPLES

This section provides several simple examples to illustrate the theorems obtained.

Example 5.1. Consider a regime-switching diffusion

dX(t) = −
p

1 + t
X(t)dt+ (1 + t)−pσα(t)dW (t), t ≥ 0,(5.1)
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with initial data x(0) = x0 ∈ R, α(0) = i0 ∈ M = {1, . . . , m}, where p > 1
2

is a constant. We assume W (t) is a one-dimensional standard Brownian motion

and ∀i ∈ M, σi ∈ R. We also assume that α(t) is irreducible (as defined in Yin

and Zhang [19]). Then there exists an associated stationary distribution given by

ν = (ν1, . . . , νm).

We construct a Lyapunov function

V (x, t, i) = (1 + t)2px2, (x, t, i) ∈ R × [0,∞) ×M

It is easy to deduce that for any δ > 1, if we define K = maxj∈M σ2
j , then

LV (x, t, i) = σ2
i ≤ K

QBV (x, t, i) = 4σ2
i V (x, t, i) ≤ 4KV (x, t, i)

QMV (x, t, i) = 0

LV (x, t, i) +
1

4K(1 + t)δ
QBV (x, t, i) ≤ K +

1

(1 + t)δ
V (x, t, i)

Using Theorem 3.1 and letting δ → 1, we can obtain that whenever p > 1
2
, we have

lim sup
t→∞

log |X(t)|

log t
≤ −

(
p−

1

2

)
a.s.

That is the solution is almost sure polynomially stable with order p− 1
2
.

Remark 5.1. In fact, it is easy to obtain the explicit solution of equation (5.1)

X(t) = (x0 +M(t)) (1 + t)−p, t ≥ 0,

where

M(t) =

∫ t

0

σα(s)dW (s)

is a martingale. Since the quadratic variation of M(t) is given by

〈M(t)〉 =

∫ t

0

σ2
α(s)ds

Similar to the treatment in [18],

lim
t→∞

1

t

∫ t

0

σ2
α(s)ds = lim

t→∞

m∑

i=1

1

t

∫ t

0

σ2
i I{α(s)=i}ds =

m∑

i=1

νiσ
2
i a.s.

Note that

lim sup
t→∞

log〈M(t)〉

t
= lim sup

t→∞

log
(

1
t

∫ t

0
σ2

α(s)ds
)

+ log t

t
= 0 a.s.

lim sup
t→∞

log〈M(t)〉

log t
= lim sup

t→∞

log
(

1
t

∫ t

0
σ2

α(s)ds
)

+ log t

log t
= 1 a.s.
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Noting the law of the iterated logarithm

lim sup
t→∞

M(t)√
2〈M(t)〉 log log〈M(t)〉

= 1 a.s.

Therefore,

lim sup
t→∞

log |X(t)|

t
= 0 a.s.

However, we have

lim sup
t→∞

log |X(t)|

log t
≤ −

(
p−

1

2

)
a.s.

That is, the solution is not exponentially stable but polynomially stable with proba-

bility one.

Example 5.2. Consider

dX(t) = −

(
1

2(1 + t)
+

q

(1 + t) log(1 + t)

)
X(t)dt

+ σα(t)(1 + t)−
1

2 (log(1 + t))−qdW (t), t ≥ 0

with initial data x(0) = x0 ∈ R, α(0) = i0 ∈ M = {1, . . . , m}, q > 0 is a positive

constant. We assume W (t) is a one-dimensional standard Brownian motion and

∀i ∈ M, σi ∈ R. As in Example 5.1, we also assume that α(t) is irreducible with the

associated stationary distribution ν = (ν1, . . . , νm).

It is easy to obtain the explicit solution

X(t) = (x0 +M(t)) (1 + t)−1/2[log(1 + t)]−q, t ≥ 0

where

M(t) =

∫ t

0

σα(s)dW (s)

is a martingale as Example 5.1. Therefore, it can be shown that

lim sup
t→∞

log |X(t)|

log t
= 0 a.s.

So the solution of this example is not polynomially stable. However, we can obtain

that whenever q > 0,

lim sup
t→∞

log |X(t)|

log log t
≤ −q a.s.

that is the solution is logarithmically stable with probability one.

In fact, we can simply construct a Lyapunov function as follows:

V (x, t, i) = (log(1 + t))2q+δx2, (x, t, i) ∈ R × [0,∞) ×M
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where δ > −1, and

LV (x, t, i) =
σ2

i (log(1 + t))δ

1 + t
+

δ

(1 + t) log(1 + t)
V (x, t, i) −

1

1 + t
V (x, t, i),

QBV (x, t, i) =
4σ2

i (log(1 + t))δ

1 + t
V (x, t, i),

QMV (x, t, i) = 0.

Taking K = maxj∈M σ2
j , we have

LV (x, t, i) +
1

4K(log(1 + t))δ
QBV (x, t, i)

≤
K(log(1 + t))δ

1 + t
+

δ

(1 + t) log(1 + t)
V (x, t, i).

Using Theorem 3.1 and letting δ → −1, we can obtain the same result.

Example 5.3. Consider a regime-switching diffusion

dX(t) =

(
−

p

1 + t
X(t) +

µα(t)X(t)2β−1

2(1 + t)2p(1−β)

)
dt

+ (1 + t)−pg(X(t), t, α(t))dW (t), t ≥ 0

with initial data x(0) = x0 ∈ R, α(0) = i0 ∈ M, W (t) is a one-dimensional standard

Brownian motion, where 0 ≤ β < 1, p > 1
2(1−β)

are two constants. We assume that

∀i ∈ M, µi > 0 and there exist positive constantsK,N > 0 such thatN = maxj∈M µj

and ∀(x, t, i) ∈ R × [0,∞) ×M, |g(x, t, i)|2 ≤ K.

We construct a Lyapunov function as follows:

V (x, t, i) = (1 + t)2px2, (x, t, i) ∈ R × [0,∞) ×M

It is easy to deduce that for any δ > 1,

LV (x, t, i) ≤ K + µiV
β(x, t, i) ≤ K +NV β(x, t, i)

QBV (x, t, i) ≤ 4KV (x, t, i)

QMV (x, t, i) = 0

LV (x, t, i) +
1

4K(1 + t)δ
QBV (x, t, i)

≤ K +
1

(1 + t)δ
V (x, t, i) +NV β(x, t, i)

Using Theorem 3.2 and letting δ → 1, we can obtain that whenever p > 1
2(1−β)

, we

have

lim sup
t→∞

log |X(t)|

log t
≤ −

(
p−

1

2(1 − β)

)
a.s.

That is the solution is almost sure polynomially stable with order p− 1
2(1−β)

.
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Example 5.4. Consider a regime-switching diffusion that is linear in the x variable,

dX(t) = µα(t)

(
1 +

1

t+ 1

)
X(t)dt+ σα(t)

(
1 +

1

t+ 1

)
X(t)dW (t), t ≥ 0

with initial data x(0) = x0 ∈ R,W (t) is a one-dimensional standard Brownian motion,

α(t) ∈ M = {1, 2}, and

Q =

(
−1 1

3 −3

)

µ1 = −
1

2
, µ2 = 4, σ1 = 1, σ2 = 2.

Then the stationary distribution associated with Q is given by ν = (3/4, 1/4).

Associated with the switching diffusion, there are two diffusions that interact and

switch back and forth. These diffusions are given by

dX(t) = −
1

2

(
1 +

1

t+ 1

)
X(t)dt+

(
1 +

1

t+ 1

)
X(t)dW (t), t ≥ 0

dX(t) = 4

(
1 +

1

t+ 1

)
X(t)dt+ 2

(
1 +

1

t+ 1

)
X(t)dW (t), t ≥ 0

From the classical stability results of diffusions (see [8]), the equilibrium solution of

the first equation is almost sure exponentially stable but that of the second equation

is not stable. However,

x′f(x, t, i) = −µi

(
1 +

1

t+ 1

)
|x|2,

|g(x, t, i)|2 = σ2
i

(
1 +

1

t+ 1

)2

|x|2,

|x′g(x, t, i)| = |σi|

(
1 +

1

t+ 1

)
|x|2,

then by Theorem 4.1, we can obtain

lim sup
t→∞

log |X(t)|

t
≤

2∑

i=1

νi

(
µi −

σ2
i

2

)
= −

1

4
a.s.

That is the switching diffusion is almost sure exponentially stable with order 1/4.

In fact, we can construct a Lyapunov function as follows:

V (x, t, i) = x2, (x, t, i) ∈ R × [0,∞) ×M

It is easy to deduce that

LV (x, t, i) =

(
2µi

(
1 +

1

t+ 1

)
+ σ2

i

(
1 +

1

t+ 1

)2
)
V (x, t, i)

QBV (x, t, i) = 4σ2
i

(
1 +

1

t+ 1

)2

V 2(x, t, i)
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QMV (x, t, i) = 0.

And

lim
t→∞

∫ t

0

(
2µi

(
1 + 1

s+1

)
+ σ2

i

(
1 + 1

s+1

)2)
ds

t
= 2µi + σ2

i ,

lim
t→∞

∫ t

0
4σ2

i

(
1 + 1

s+1

)2
ds

t
= 4σ2

i ,

Hence, taking

̟ = 0, θi = 2µi + σ2
i , ρi = 2σ2

i , ϑi = 0, λ = 1, p = 2

in Corollary 4.1, we can obtain the same result as above. But we can see that Theorem

3.3 does not work. This example explain Remark 4.3 to some extent.

6. HYBRID SWITCHING DIFFUSIONS WITH DELAYS

Nowadays, systems with delays have been extensively studied. For the discussion

of general decay rates of stochastic systems with delays without hybrid switching, we

refer the reader to [1, 3, 5, 7, 10, 11] and the references therein. In this section, we

will concentrate ourselves on the behavior of hybrid switching diffusions with delays.

Let l > 0 and denote by C([−l, 0],Rr) the space of all continuous functions

defined on [−l, 0] with values in R
r. And a norm over this space is given by ‖u‖ =

max{u(s) : −l ≤ s ≤ 0}, u ∈ C([−l, 0],Rr). Addition, let L2(Ω,F0,P;C([−l, 0],Rr))

denote the family of all F0-measurable C([−l, 0],Rr)-valued random variable ϕ(t)

with E‖ϕ‖2 <∞.

Consider a regime-switching diffusion with delays:






dX(t) = f(X(t), X(t− δ(t)), t, α(t))dt

+g(X(t), X(t− δ(t)), t, α(t))dWt, t ≥ 0;

X(t) = ϕ(t), α(t) = i0 t ∈ [−l, 0].

(6.1)

with initial data X(t) = ϕ(t) ∈ L2(Ω,F0,P;C([−l, 0],Rr)), i0 ∈ M. Here f :

R
r × R

r × [0,∞) × M 7→ R
r, g : R

r × R
r × [0,∞) × M 7→ R

r×d are measurable

mappings and δ(·) : [0,∞) → [0, l] is a continuous function which shall play the role

of variable delays. We also assume that the equation (6.1) we considered has a unique

global solution which is denoted by X(t, ϕ) ∈ R
r.

The process (X(t, ϕ), α(t)) has a generator L as follows. For each i ∈ M,

V (·, ·, i) ∈ C2,1(Rr × [0,∞); R+), define the function LV (x, y, t, i) as follows. For
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arbitrary x, y ∈ R
r, t ∈ [0,∞), i ∈ M, we set

LV (x, y, t, i) :=
∂

∂t
V (x, t, i) +

r∑

i=1

f i(x, y, t, i)
∂

∂xi

V (x, t, i)

+
1

2

r∑

i,j=1

m∑

k=1

gik(x, y, t, i)gjk(x, y, t, i)
∂2

∂xixj
V (x, t, i)

+
∑

j∈M

qij(x)V (x, t, j),

and define

QBV (x, y, t, i) :=

r∑

i,j=1

m∑

k=1

gik(x, y, t, i)gjk(x, y, t, i)
∂

∂xi
V (x, t, i)

∂

∂xj
V (x, t, i)

QMV (x, y, t, i) :=
∑

j 6=i,j∈M

qij(x)|V (x, t, j) − V (x, t, i)|2.

Definition 6.1. Suppose that λ(t) is a positive function satisfying λ(t) ↑ +∞ as

t→ +∞. Assume there exists a sufficiently large T > 0 such that

(1) log λ(t) is uniformly continuous over t ≥ T .

(2) For all s, t ≥ T, λ(s)λ(t) ≥ λ(s+ t).

(3) There exists a nonnegative constant τ ≥ 0 such that

lim sup
t→∞

log log t

log λ(t)
≤ τ.

The solution X(t, ϕ) of equation (6.1) is said to be almost surely stable with rate

function λ(t) of order γ > 0 if and only if

lim sup
t→∞

log |X(t, ϕ)|

log λ(t)
≤ −γ a.s.

for initial conditions X(t) = ϕ(t), α(t) = i0, t ∈ [−l, 0]. If in addition 0 is solution to

(6.1), then we call the zero solution is almost surely stable with rate function λ(t) of

order at least γ.

In order to obtain our main conclusion, we need the following lemma.

Lemma 6.1. Assume h(t) is a continuous, nonnegative function defined on [−l, T ]

where 0 < l < T . Let w(t) be a continuous, nonnegative, nondecreasing function and

u1(t), v1(t), u2(t), v2(t) be four continuous nonnegative functions, which are all defined

on [0, T ]. Assume δ(t) is defined as above and 0 ≤ β < 1, such that

h(t)≤ w(t) +

∫ t

0

u1(s)h(s)ds+

∫ t

0

u2(s)h
β(s)ds

+

∫ t

0

v1(s)h(s− δ(s))ds+

∫ t

0

v2(s)h
β(s− δ(s))ds(6.2)
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Then

h(t)≤

(
M(t)1−β + (1 − β)

∫ t

0

(
u2(s) + 2βv2(s)

)
ds

) 1

1−β

× exp

{(
1

1 − β

)∫ t

0

(u1(s) + v1(s)) ds

}
(6.3)

where

M(t) = w(t) +

[
sup

−l≤r≤0
h(r)

] ∫ l

0

v1(s)ds+

[
2 sup
−l≤r≤0

h(r)

]β ∫ l

0

v2(s)ds

for all t ∈ [0, T ].

Remark 6.1. In fact, Lemma 6.1 contains the results in Liu and Mao [11]. For

example, if we take u2(·) ≡ 0, v2(·) ≡ 0 we get Lemma 1.4, and if u2(·) ≡ 0, v1(·) ≡ 0

we get Lemma 1.5 in Liu and Mao [11], respectively.

Proof. We first define a nondecreasing z(t) on [0, T ] as

z(t)= w(t) +

∫ t

0

u1(s)h(s)ds+

∫ t

0

u2(s)h
β(s)ds

+

∫ t

0

v1(s)h(s− δ(s))ds+

∫ t

0

v2(s)h
β(s− δ(s))ds

By (6.2) we have

h(t) ≤ z(t), 0 ≤ t ≤ T.(6.4)

Therefore {
h(s− δ(s)) ≤

[
sup−l≤r≤0 h(r)

]
+ z(s), 0 ≤ s ≤ l;

h(s− δ(s)) ≤ z(s), l ≤ s ≤ T .

By the elementary inequality (|a|+ |b|)c ≤ 2c(|a|c + |b|c) (∀a, b ∈ R, ∀c ∈ R+) we have

z(t)≤ w(t) +

∫ t

0

u1(s)z(s)ds+

∫ t

0

u2(s)z
β(s)ds

+

∫ l

0

v1(s)

[
sup

−l≤r≤0
h(r)

]
ds+

∫ t

0

v1(s)z(s)ds

+ 2β

∫ l

0

v2(s)

[
sup

−l≤r≤0
h(r)

]β

ds+ 2β

∫ t

0

v2(s)z
β(s)ds

≤w(t) +

[
sup

−l≤r≤0
h(r)

] ∫ l

0

v1(s)ds+

[
2 sup
−l≤r≤0

h(r)

]β ∫ l

0

v2(s)ds

+

∫ t

0

(u1(s) + v1(s))z(s)ds+

∫ t

0

(u2(s) + 2βv2(s))z
β(s)ds

Letting

M(t) = w(t) +

[
sup

−l≤r≤0
h(r)

] ∫ l

0

v1(s)ds+

[
2 sup
−l≤r≤0

h(r)

]β ∫ l

0

v2(s)ds,
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by Gronwall’s inequality, we have

z(t) ≤

(
M(t) +

∫ t

0

(u2(s) + 2βv2(s))z
β(s)ds

)
exp

{∫ t

0

(u1(s) + v1(s))ds

}

Using Lemma 3.1, we can deduce that

z(t)≤

([
M(t) exp

{∫ t

0

(u1(s) + v1(s))ds

}]1−β

+(1 − β)

∫ t

0

(u2(s) + 2βv2(s))ds exp

{∫ t

0

(u1(s) + v1(s))ds

}) 1

1−β

≤

(
M(t)1−β + (1 − β)

∫ t

0

(
u2(s) + 2βv2(s)

)
ds

) 1

1−β

× exp

{(
1

1 − β

)∫ t

0

(u1(s) + v1(s)) ds

}
(6.5)

Hence by (6.4) and (6.5), we get the desired conclusion.

Now we are in a position to prove our main result.

Theorem 6.1. Let V (·, ·, i) ∈ C2,1(Rr × [0,∞); R+) for each i ∈ M, and ψj(t) for

j = 1, . . . , 5 be continuous and nonnegative functions. Assume that for all x, y ∈ R
r,

t ≥ 0 and i ∈ M, there exist positive constants c1 > 0, c2 > 0, p > 0, 0 ≤ β < 1, real

numbers ̟, θ, ϑ, γ, ρ, ̺, µ, η, and two continuous non-increasing positive functions

ξ(t) > 0, ζ(t) > 0 such that

(a) c1|x|
pλ(t)̟ ≤ V (x, t, i) ≤ c2|x|

pλ(t)̟, (x, t, i) ∈ R
r × R+ ×M;

(b) LV (x, y, t, i) + ξ(t)QBV (x, y, t, i) + ζ(t)QMV (x, t, i)

≤ ψ1(t) + ψ2(t)V (x, t, i) + ψ3(t)V (y, t, i) + ψ4(t)V (x, t, i)β

+ ψ5(t)V (y, t, i)β, (x, y, t, i) ∈ R
r × R

r × R+ ×M;

(c) the following conditions hold:

lim sup
t→∞

log
(∫ t

0
ψ1(s)ds

)

log λ(t)
≤ θ, lim sup

t→∞

∫ t

0
ψ2(s)ds

log λ(t)
≤ ρ(1 − β),

lim sup
t→∞

∫ t

0
ψ3(s)ds

log λ(t)
≤ ̺(1 − β), lim sup

t→∞

log
(∫ t

0
ψ4(s)ds

)

log λ(t)
≤ ϑ(1 − β),

lim sup
t→∞

log
(∫ t

0
ψ5(s)ds

)

log λ(t)
≤ γ(1 − β), lim inf

t→∞

log ξ(t)

log λ(t)
≥ −µ,

lim inf
t→∞

log ζ(t)

log λ(t)
≥ −η.

Then the solution X(t, ϕ) of equation (6.1) satisfies

lim sup
t→∞

log |X(t, ϕ)|

log λ(t)
≤ −

̟ − [τ + (c2/c1)(ρ+ λ(l)m̺) + µ ∨ η ∨ θ ∨ ϑ ∨ γ]

p
a.s.
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Proof. Step 1. By the generalized Itô formula and the definition of L, we can derive

that

V (X(t), t, α(t)) = V (x0, 0, i0) +

∫ t

0

LV (X(s), X(s− δ(s)), s, α(s))ds

+M1(t) +M2(t)(6.6)

where

M1(t) =

∫ t

0

r∑

i=1

d∑

k=1

gik(X(s), X(s− δ(s)), s, α(s))
∂

∂xi

V (X(s), s, α(s))dW k
s

M2(t) =

∫ t

0

∫

R

[
V (X(s−), s−, α(s−) + h(X(s−), α(s−), z))

−V (X(s−), s−, α(s−))
]
Ñ1(ds, dz).

are two martingale terms.

Step 2. As in Step 2 of the proof of Theorem 3.1, we use the uniform continuity

of log λ(t), for any ε > 0 there exist two positive integers N = N(ε) and k0 = k0(ε)

such that,
∣∣∣∣log λ

(
k

2N

)
− log λ(t)

∣∣∣∣ ≤ ε(6.7)

if k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε).

By the exponential martingale inequality, the definition of QB and QM, for any

ui, vi, and wi > 0 with i = 1, 2,

P

{
ω : sup

0≤t≤w1

[
M1(t) −

∫ t

0

u1

2
QBV (X(s), X(s− δ(s)), s, α(s))ds

]
> v1

}
≤ e−u1v1 ,

P

{
ω : sup

0≤t≤w2

[
M2(t) −

∫ t

0

u2

2
QMV (X(s), X(s− δ(s)), s, α(s))ds

]
> v2

}
≤ e−u2v2 .

In particular, for k = 2, 3, . . ., taking

u1 = 2ξ

(
k

2N

)
, v1 = ξ

(
k

2N

)−1

log
k − 1

2N
, w1 =

k

2N
;

u2 = 2ζ

(
k

2N

)
, v2 = ζ

(
k

2N

)−1

log
k − 1

2N
, w2 =

k

2N
;

By virtue of the Borel-Cantelli lemma, there exist two integers k1(ε, ω) > 0 and

k2(ε, ω) > 0, for almost all ω ∈ Ω such that

M1(t) ≤ ξ

(
k

2N

)−1

log
k − 1

2N
+ ξ

(
k

2N

)∫ t

0

QBV (X(s), X(s− δ(s)), s, α(s))ds

M2(t) ≤ ζ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)∫ t

0

QMV (X(s), X(s− δ(s)), s, α(s))ds

for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω).
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Step 3. Substituting these equations into (6.6) and using the condition (b),

V (X(t), t, α(t))

≤ V (x0, 0, i0) +

∫ t

0

LV (X(s), X(s− δ(s)), s, α(s))ds

+ ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+ ξ

(
k

2N

)∫ t

0

QBV (X(s), X(s− δ(s)), s, α(s))ds

+ ζ

(
k

2N

)∫ t

0

QMV (X(s), X(s− δ(s)), s, α(s))ds

≤ V (x0, 0, i0) +

∫ t

0

LV (X(s), X(s− δ(s)), s, α(s))ds

+ ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

ξ(s)QBV (X(s), X(s− δ(s)), s, α(s))ds

+

∫ t

0

ζ(s)QMV (X(s), X(s− δ(s)), s, α(s))ds

≤ V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

[ψ1(s) + ψ2(s)V (X(s), s, α(s)) + ψ3(s)V (X(s− δ(s)), s, α(s))

+ψ4(s)V (X(s), s, α(s))β + ψ5(s)V (X(s− δ(s)), s, α(s))β
]
ds a.s.

for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω). Then, from condition (a) and

condition (2) of Definition 6.1, we have

c1|X(t)|pλ(t)̟

≤

{(
V (x0, 0, i0) + ξ

(
k

2N

)−1

log
k − 1

2N
+ ζ

(
k

2N

)−1

log
k − 1

2N

+

∫ t

0

ψ1(s)ds+

[
sup

−l≤r≤0
ϕ(r)

]
c2
c1
λ(l)̟

∫ l

0

ψ3(s)ds

+

[
2 sup
−l≤r≤0

ϕ(r)

]β [
c2
c1

]β

λ(l)β̟

∫ l

0

ψ5(s)ds

)1−β

+

[
c2
c1

]β ∫ l

0

ψ4(s)ds+

[
c2
c1

]β

2βλ(l)β̟

∫ l

0

ψ5(s)ds

} 1

1−β

× exp

{(
1

1 − β

)(
c2
c1

∫ t

0

ψ2(s)ds+
c2
c1
λ(l)̟

∫ t

0

ψ3(s)ds

)}
a.s.
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for all 0 ≤ t ≤ k
2N , k ≥ k0(ε) ∨ k1(ε, ω) ∨ k2(ε, ω).

Step 4. By virtue of condition (c) and inequality (6.7), there exists a positive

integer k3(ε, ω) such that

log (c1|X(t)|pλ(t)̟)

≤ log

{(
V (x0, 0, i0) + λ(t)(µ+ε)(1+ε) log

k − 1

2N
+ λ(t)(η+ε)(1+ε) log

k − 1

2N

+ λ(t)θ+ε +

[
sup

−l≤r≤0
ϕ(r)

]
c2
c1
λ(l)̟

∫ l

0

ψ3(s)ds

+

[
2 sup
−l≤r≤0

ϕ(r)

]β [
c2
c1

]β

λ(l)β̟

∫ l

0

ψ5(s)ds

)1−β

+

[
c2
c1

]β

λ(t)(1−β)(ϑ+ε) +

[
c2
c1

]β

2βλ(l)β̟λ(t)(1−β)(γ+ε)

} 1

1−β

+
c2
c1

(ρ+ ε) log λ(t) +
c2
c1
λ(l)̟(̺+ ε) log λ(t) a.s.

for all k−1
2N ≤ t ≤ k

2N , k ≥ k0(ε)∨ k1(ε, ω)∨ k2(ε, ω)∨ k3(ε, ω). Then, by condition (3)

of Definition 6.1, it implies that

lim sup
t→∞

log (c1|X(t)|pλ(t)̟)

log λ(t)

≤ (τ + ε) +
c2
c1

[(ρ+ ε) + λ(l)̟(̺+ ε)]

+ (µ+ ε)(1 + ε) ∨ (η + ε)(1 + ε) ∨ (θ + ε) ∨ (ϑ+ ε) ∨ (γ + ε) a.s.

Finally, letting ε→ 0 yields

lim sup
t→∞

log |X(t)|

log λ(t)

≤ lim sup
t→∞

1

p

log [λ(t)−̟ (c1|X(t)|pλ(t)̟)]

log λ(t)

≤ −
1

p

(
̟ −

[
τ +

c2
c1

(ρ+ λ(l)̟̺) + µ ∨ η ∨ θ ∨ ϑ ∨ γ

])
a.s.

Remark 6.2. Similar to Lemma 6.1, Theorem 6.1 is more general than that of the

results in Liu and Mao [11]. For example, if we take ψ4(·) ≡ 0, ψ5(·) ≡ 0 or ψ3(·) ≡ 0,

ψ4(·) ≡ 0 in Theorem 6.1, we get the similar results in the regime-switching case as

Theorem 4.1 and 4.2 in Liu and Mao [11], respectively.

As in Section 4, if we put more conditions to the generator Q(x) and the decay

rate λ(t), we may replace the functions ψj(t) by ψj(t, i) in Theorem 6.1 to get more

precise results such as Remark 4.3.

We close this section with the following example.
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Example 6.1. Consider a regime-switching diffusion with constant time delay

dX(t) =

(
−

p

1 + t
X(t) +

1

(1 + t)
X(t− l)

)
dt

+

(
µα(t)

2(1 + t)2p(1−β)
X(t)2β−1 +

ϑα(t)

2(1 + t)2p(1−β)

X(t− l)2β

X(t)

)
dt

+ (1 + t)−pg(X(t), X(t− l), t, α(t))dW (t), t ≥ 0

with initial data X(t) = ϕ(t), t ∈ [−l, 0]. Here p, l are two positive numbers and

0 ≤ β < 1. W (t) is a one-dimensional standard Brownian motion.

We assume that there exists a stationary distribution ν = (ν1, . . . , νm) associated

with Q, and µi > 0, ϑi > 0, ∀i ∈ M. We also assume there exist positive constants

K,N > 0 such that N = maxj(µi ∨ ϑi) and |g(x, y, t, i)|2 ≤ K, ∀(x, y, t, i) ∈ R × R ×

[0,∞) ×M.

We construct a Lyapunov function as follows:

V (x, t, i) = (1 + t)2px2, (x, t, i) ∈ R × [0,∞) ×M

It is easy to deduce that for any δ > 1,

LV (x, y, t, i) ≤ K +
1

1 + t
V (x, t, i) +

1

1 + t
V (y, t, i)

+ µiV
β(x, t, i) + ϑiV

β(y, t, i)

QBV (x, y, t, i) ≤ 4KV (x, t, i)

QMV (x, y, t, i) = 0

LV (x, t, i) +
1

4K(1 + t)δ
QBV (x, t, i)

≤ K +

(
1

(1 + t)δ
+

1

1 + t

)
V (x, t, i) +

1

1 + t
V (y, t, i)

+NV β(x, t, i) +NV β(y, t, i).

Thus, the conditions of Theorem 6.1 are verified. Letting δ → 1, we can obtain that

whenever p > 1+l2p/2
1−β

, we have

lim sup
t→∞

log |X(t)|

log t
≤ −

(
p−

1 + l2p/2

1 − β

)
a.s.

That is the solution is almost sure polynomially stable with order p− 1+l2p/2
1−β

.

7. CONCLUDING REMARKS

This work focused on stability of switching diffusions that decay slower than

exponential. If we assume that the switching diffusion evolves on a compact set, and

the switching process jump changes much faster than the diffusion part (for example,

assume the generator is given by Q(x)/ε), then the switching process can be treated
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as a noise. In this case, it may be possible to get the desired results by means of

two-time-scale approach; see [6] for a possible such model. Nevertheless, much care

and thoughts have to be given.
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