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ABSTRACT. In this paper, we study the existence of nontrivial solutions for the following frac-

tional boundary value problem





Dν
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1, n − 1 < ν ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

[Dα
0+u(t)]t=1 = 0, 1 ≤ α ≤ n − 2,

where n ∈ N and n > 3, Dν
0+ is the standard Riemann-Liouville derivative, q may be singular at

t = 0, 1. f may change sign. Our analysis relies on fixed point index theory and Leray-Schauder

degree theory. Conditions are given by the growth behavior of f(t, u)/u for u near 0 and +∞ with

respect to the first eigenvalue of the related linear operator. Several examples are presented to

illustrate our results.

MSC 2010. 26A33; 34A08; 35G60

1. INTRODUCTION

Consider the following fractional boundary value problem (BVP for short)

Dν
0+u(t) + q(t)f(t, u(t)) = 0, t ∈ (0, 1), n− 1 < ν ≤ n,(1.1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0,(1.2)

[Dα
0+u(t)]t=1 = 0, 1 ≤ α ≤ n− 2,(1.3)

where n ∈ N and n > 3, Dν
0+ is the standard Riemann-Liouville derivative, q may be

singular at t = 0 and(or) t = 1. In this paper, we suppose several hypothses on q and

f :

i) q ∈ L1[0, 1] ∩ C(0, 1) with q > 0 on (0, 1);

ii) f : [0, 1] × R → R is continuous.
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Fractional calculus has gained considerable popularity and importance for its appli-

cations in numerous widespread fields such as physics, mechanics, chemistry, biology

science, engineering, control systems etc. With the wide uses for many mathematical

models in science and engineering, fractional differential equations of various types

have emerged as a new branch of applied mathematics. In the past three decades,

many studies on fractional calculus and fractional differential equations have ap-

peared. For details, see [1–7] etc. and the references therein.

Recently, the existence and multiplicity of positive solutions for fractional bound-

ary value problems are established and posed (see [8–16]). In [13], C. S. Goodrich

discussed the positive solutions for BVP (1.1) by Krasnosel’skii’s fixed point theorem

with the nonlinearity f ∈ C([0, 1] × [0,∞), [0,∞)) and growing sublinearly. Based

upon the fixed point index theory on cone, Xu et al. ([15]) also considered the unique-

ness of positive solutions for BVP (1.1) through establishing the lower and upper so-

lutions and proving that the unique positive solution can be uniformly approximated

by an iterative sequence under the assumptions that f ∈ C([0, 1] × [0,∞), (0,∞))

and q ∈ C(0, 1)∩ L(0, 1) is nonnegative and may be singular at t = 0 and (or) t = 1.

But it is worth pointing out that the nonlinearity is usually assumed to be non-

negative in the literature available. It is natural to ask whether the similar existence

results can be obtained if the conditions on the nonlinearity are relaxed, that is, it

may change sign or even be unbounded from below. In [16], Wang et al. studied

positive solutions for the following fractional boundary value problem with changing

sign nonlinearity by applying Krasnosel’skii’s fixed point theorem:




Dα

0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u(1) = 0,

where 2 < α ≤ 3 is a real number, Dα
0+ is the standard Riemann-Liouville derivative,

λ is a positive parameter.

In the present paper, motivated by [13, 14, 15, 16], we will use fixed point in-

dex theory combined with Leray-Schauder degree to discuss the existence results of

nontrivial solutions for BVP (1.1). Compared to [13, 15], f is not necessary to be

nonnegative but bounded even unbounded from below. Our approach and results in

this paper improve and extend the corresponding ones in [13, 14, 15].

The remainder of this paper is organized as follows. In section 2, some preliminary

results are presented. Various criteria on existence of nontrivial solutions for BVP

(1.1) are established and their proofs are given in section 3. Finally, in section 4,

some examples are given to illustrate the main results.
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2. PRELIMINARIES

Definition 2.1. The fractional derivative of order α > 0 of a continuous function

f : (0,+∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

dn

dtn

(∫ t

0

(t− s)n−α−1f(s)ds

)

where n − 1 ≤ α < n and n ∈ N, provided that the right-hand side is pointwise

defined on (0,+∞).

Let E = Cn[0, 1] be equipped with the ordering u ≤ v if u(t) ≤ v(t) for all

t ∈ [0, 1], and the usual maximum norm ‖u‖ = max
0≤t≤1

|u(t)|.

Define the cone P ⊂ E by

P = {u ∈ E | u(t) ≥ 0, t ∈ [0, 1]}.

Lemma 2.1 ([13]). Let g ∈ Cn[0, 1] be given. Then the unique solution to problem

−Dν
0+u(t) = g(t) together with the boundary conditions (1.2) and (1.3) is

u(t) =

∫ 1

0

G(t, s)g(s)ds,

where

G(t, s) =





tν−1(1 − s)ν−α−1 − (t− s)ν−1

Γ(ν)
, 0 ≤ s ≤ t ≤ 1,

tν−1(1 − s)ν−α−1

Γ(ν)
, 0 ≤ t ≤ s ≤ 1.

(2.1)

Observing (2.1), it is clear that G(t, s) is continuous and nonnegative for s, t ∈ [0, 1].

Lemma 2.2. Let T : P → E be an integral operator defined by

(2.2) Tϕ(t) =

∫ 1

0

G(t, s)q(s)ϕ(s)ds,

then T : P → P is completely continuous.

Proof of Lemma 2.2. Since G(t, s) ≥ 0 and q > 0, then Tϕ(t) ≥ 0 for all ϕ ∈ P .

Hence if ϕ ∈ P then Tϕ ∈ P .

Let Ω ⊂ P be bounded, i.e. there exists a positive constant M > 0 such that

‖ϕ‖ ≤M , for all ϕ ∈ Ω.

By the use of the monotonicity of G(t, s) (see Theorem 3.2 of [13]), one has

max
0≤t≤1

G(t, s) = G(1, s) =
1

Γ(ν)
[(1 − s)ν−α−1 − (1 − s)ν−1], for each s ∈ [0, 1].
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For ϕ ∈ Ω, we have

|Tϕ(t)| ≤
∣∣∣∣
∫ 1

0

G(t, s)q(s)ϕ(s)ds

∣∣∣∣

≤
∫ 1

0

G(1, s)q(s)ϕ(s)ds

≤ M

Γ(ν)

∫ 1

0

[(1 − s)ν−α−1 − (1 − s)ν−1]q(s)ds

≤ M

Γ(ν)

∫ 1

0

q(s)ds < +∞.

So, T (Ω) is bounded.

On the other hand, given ε > 0, setting

δ = min



1,

(
Γ(ν)ε

2ν+1M
∫ 1

0
q(s)ds

) 1

ν−1



 ,

then for every ϕ ∈ Ω, t1, t2 ∈ [0, 1], t1 < t2 and t2−t1 < δ, one has |Tϕ(t2) − Tϕ(t1)| <
ε. That is to say, T (Ω) is equicontinuous.

In fact,

|Tϕ(t2) − Tϕ(t1)|

=

∣∣∣∣
∫ 1

0

G(t2, s)q(s)ϕ(s)ds−
∫ 1

0

G(t1, s)q(s)ϕ(s)ds

∣∣∣∣

≤
∫ t1

0

|G(t2, s) −G(t1, s)| q(s)ϕ(s)ds+

∫ 1

t2

|G(t2, s) −G(t1, s)| q(s)ϕ(s)ds

+

∫ t2

t1

|G(t2, s) −G(t1, s)|q(s)ϕ(s)ds

≤ M

Γ(ν)

{∫ t1

0

∣∣(1 − s)ν−α−1(t2
ν−1 − t1

ν−1) − (t2 − s)ν−1 + (t1 − s)ν−1
∣∣ q(s)ds

+

∫ 1

t2

(1 − s)ν−α−1(t2
ν−1 − t1

ν−1)q(s)ds

+

∫ t2

t1

∣∣(1 − s)ν−α−1(t2
ν−1 − t1

ν−1) − (t2 − s)ν−1
∣∣ q(s)ds

}

≤ M

Γ(ν)

{∫ 1

0

(1 − s)ν−α−1(t2
ν−1 − t1

ν−1)q(s)ds+

∫ t1

0

[
(t2 − s)ν−1 − (t1 − s)ν−1

]
q(s)ds

+

∫ t2

t1

(t2 − s)ν−1q(s)ds

}

≤ M

Γ(ν)

{
(t2

ν−1 − t1
ν−1)

∫ 1

0

(1 − s)ν−α−1q(s)ds+ (t2 − t1)
ν−1

∫ t2

0

q(s)ds

}



FRACTIONAL BOUNDARY VALUE PROBLEM 161

≤ M
∫ 1

0
q(s)ds

Γ(ν)

[
t2

ν−1 − t1
ν−1 + (t2 − t1)

ν−1
]
.

In the following, we divide the proof into two cases.

Case 1. δ ≤ t1 < t2 < 1, with the use of mean value theorem,

t2
ν−1 − t1

ν−1 ≤ ν − 1

δ2−ν
(t2 − t1) ≤ (ν − 1)δν−1.

Case 2. 0 ≤ t1 < δ, t2 < 2δ,

t2
ν−1 − t1

ν−1 ≤ t2
ν−1 < (2δ)ν−1.

Consequently, we have

max
{
t2

ν−1 − t1
ν−1, (t2 − t1)

ν−1
}
< 2νδν−1,

and

|Tϕ(t2) − Tϕ(t1)| <
M
∫ 1

0
q(s)ds

Γ(ν)
2 · 2νδν−1 ≤ ε.

By means of the Arzela-Ascoli theorem, we have T : P → P is completely

continuous. The proof is complete. �

Lemma 2.3 ([18]). Suppose that T : C[0, 1] → C[0, 1] is a completely continuous

linear operator and T (P ) ⊂ P . If there exist ψ ∈ C[0, 1] \ (−P ) and a constant

c > 0 such that cTψ ≥ ψ, then the spectral radius r(T ) 6= 0 and T has a positive

eigenfunction ϕ1 corresponding to its first eigenvalue λ1 = (r(T ))−1
.

Lemma 2.4. Suppose T is defined by (2.2), then the spectral radius r(T ) > 0 and T

has a positive eigenfunction ϕ1 corresponding to its first eigenvalue λ1 = (r(T ))−1.

Proof of Lemma 2.4.. The proof is similar to that of Lemma 4.4 in [14] and is omitted.

�

Lemma 2.5 ([19]). Let P be a cone in a Banach space X, and Ω(P ) be a bounded

open set in P . Suppose that T : Ω(P ) → P is completely continuous operator. If

there exists u0 ∈ P \ {θ} such that

u− Tu 6= µu0, ∀u ∈ ∂Ω(P ), µ ≥ 0

then the fixed point index i(T,Ω(P ), P ) = 0.

Lemma 2.6 ([19]). Let P be a cone in a Banach space X. Suppose that T : P → P

is a completely continuous operator. If there exists a bounded open set Ω(P ) such that

each solution of

u = σTu, u ∈ P, σ ∈ [0, 1]

satisfies u ∈ Ω(P ), then the fixed point index i(T,Ω(P ), P ) = 1.
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3. MAIN RESULTS AND PROOFS

Define

(3.1) Aϕ(t) =

∫ 1

0

G(t, s)q(s)f(s, ϕ(s))ds, ϕ ∈ E,

Similarly, it is clear that A : E → E is a completely continuous operator. By Lemma

2.1, it means that the solutions for BVP (1.1)–(1.3) correspond to the fixed points of

A.

Theorem 3.1. Suppose there exists a real function b ∈ C([0, 1], (0,+∞)), such that

the following conditions are met:

(A1) f(t, u) ≥ −b(t);
(A2) lim inf

u→0
min
t∈[0,1]

f(t, u)

|u| > λ1;

(A3) lim sup
u→+∞

max
t∈[0,1]

f(t, u)

u
< λ1,

where λ1 is the first eigenvalue of the operator T defined by (2.2). Then BVP (1.1)–

(1.3) has at least a nontrivial solution.

Proof of Theorem 3.1. By (A2), there exists r1 > 0, such that

f(t, u) ≥ λ1|u|,

for all |u| ≤ r1, t ∈ [0, 1].

For ϕ ∈ B̄r1
, we have A(B̄r1

) ⊂ P . In fact,

(Aϕ)(t) ≥ λ1

∫ 1

0

G(t, s)q(s)|ϕ(s)|ds ≥ 0,

for all t ∈ [0, 1].

For every ϕ ∈ ∂Br1
∩ P , we have

(3.2) (Aϕ)(t) ≥ λ1

∫ 1

0

G(t, s)q(s)ϕ(s)ds = λ1(Tϕ)(t) ≥ 0.

Suppose that A has no fixed point on ∂Br1
∩P (otherwise, the proof is completed).

Let ϕ∗ be the positive eigenfunction of T corresponding to λ1, thus λ1Tϕ
∗ = ϕ∗.

Now we claim

(3.3) ϕ− Aϕ 6= µϕ∗, for all ϕ ∈ ∂Br1
∩ P, µ ≥ 0.

Indeed, if the claim is false, then there exist ϕ1 ∈ ∂Br1
∩P and τ0 ≥ 0, such that

ϕ1 − Aϕ1 = τ0ϕ
∗,

and thus ϕ1 = Aϕ1 + τ0ϕ
∗ ≥ τ0ϕ

∗.

Let τ ∗ = sup {τ | ϕ1 ≥ τϕ∗}. Clearly, +∞ > τ ∗ ≥ τ0 > 0 and ϕ1 ≥ τ ∗ϕ∗.
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In view that T is a linear operator and T (P ) ⊂ P , we have

λ1Tϕ1 ≥ τ ∗λ1Tϕ
∗ = τ ∗ϕ∗.

Therefore, by (3.2),

ϕ1 = Aϕ1 + τ0ϕ
∗ ≥ λ1Tϕ1 + τ0ϕ

∗ ≥ τ ∗ϕ∗ + τ0ϕ
∗ = (τ ∗ + τ0)ϕ

∗,

which contradicts the definition of ϕ∗. Hence (3.3) is ture and by Lemma 2.5 we have

i(A,Br1
∩ P, P ) = 0.

Since cone P of Banach space E is a retract of E and A(B̄r1
) ⊂ P , by the

permanence of the fixed point index, we have

i(A,Br1
, E) = i(A,Br1

∩ P, P ) = 0.

On the other hand, by the definition of fixed point index,

i(A,Br1
, E) = deg(I − A,Br1

, θ) = 0.

This means that

deg(I − A,Br1
, θ) = i(A,Br1

∩ P, P ) = 0.

Define the function

ϕ̃(t) = b(t)

∫ 1

0

G(t, s)q(s)ds.

Clearly, ϕ̃ ∈ P and A : E → P − ϕ̃. Also define the integral operator

Ãϕ = A(ϕ− ϕ̃) + ϕ̃.

Obviously, Ã : E → P .

By (A3), there exist 0 < σ < 1 and r2 > 0, such that f(t, u) ≤ σλ1u, for all

u > r2, t ∈ [0, 1], where r2 > r1 + ‖ϕ̃‖. Let

(3.4) T1ϕ = σλ1Tϕ, ϕ ∈ E.

Then T1 : E → E is a bounded linear operator and T1(P ) ⊂ P .

Denote
1

2
M = max

{
c

∫ 1

0

G(1, s)q(s)ds, ‖ϕ̃‖
}
,

where

c := max
t∈[0,1]

−r2≤u≤r2

|f(t, u)|.

Let W = {ϕ ∈ P | ϕ = µÃϕ, 0 ≤ µ ≤ 1}, we show that W is bounded.

For ϕ ∈W , denote e(ϕ) = {t ∈ [0, 1]
∣∣ ϕ(t) − ϕ̃(t) > r2}, then for all ϕ ∈W ,

ϕ(t) = µ(Ãϕ)(t) ≤
∫ 1

0

G(t, s)q(s)f(s, ϕ(s) − ϕ̃(s))ds+ ϕ̃(t)

=

∫

e(ϕ)

G(t, s)q(s)f(s, ϕ(s)− ϕ̃(s))ds
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+

∫

[0,1]\e(ϕ)

G(t, s)q(s)f(s, ϕ(s)− ϕ̃(s))ds+ ϕ̃(t)

≤ σλ1

∫

e(ϕ)

G(t, s)q(s)(ϕ(s) − ϕ̃(s))ds+ c

∫ 1

0

G(t, s)q(s)ds+ ‖ϕ̃‖

≤ σλ1

∫ 1

0

G(t, s)q(s)ϕ(s)ds+ c

∫ 1

0

G(t, s)q(s)ds+ ‖ϕ̃‖

≤ σλ1

∫ 1

0

G(t, s)q(s)ϕ(s)ds+M, t ∈ [0, 1],

hence

(I − T1)ϕ ≤M.

Since λ1 is the first eigenvalue of T and 0 < σ < 1, by (3.4), then r(T1) = σ.

Therefore, the inverse operator (I − T1)
−1 exists and

(I − T1)
−1 = I + T1 + T 2

1 + · · ·+ T n
1 + · · · .

So we have ‖ϕ‖ ≤ ‖(I − T1)
−1‖M , t ∈ [0, 1] and W is bounded.

Choose r3 > max {r2, sup{W} + ‖ϕ̃‖}, then by Lemma 2.6, we have

i(Ã, Br3
∩ P, P ) = 1,

then

(3.5) deg(I − Ã, Br3
, θ) = i(Ã, Br3

∩ P, P ) = 1.

Define

H(t, ϕ) = A(ϕ− tϕ̃) + tϕ̃.

It is easy to know H(t, ϕ) is completely continuous and suppose

ϕ−H(t, ϕ) 6= θ, ∀(t, ϕ) ∈ (0, 1) × ∂Br3
.

In fact, if there exists (t0, ϕ0) ∈ [0, 1] × ∂Br3
such that H(t0, ϕ0) = ϕ0, then

A(ϕ0 − t0ϕ̃) = ϕ0 − t0ϕ̃.

This shows that A has a fixed point ϕ0 − t0ϕ̃.

In view of

‖ϕ0 − t0ϕ̃‖ ≥ ‖ϕ0‖ − t0‖ϕ̃‖ ≥ r3 − r2,

hence, ϕ0 − t0ϕ̃ is a nontrivial solution of BVP (1.1)–(1.3).

If

H(t0, ϕ0) 6= ϕ0,

using (3.5) and homotopy invariance property of Leray-Schauder degree, one has

deg(I −A,Br3
, θ) = deg(I −H(0, ·), Br3

, θ)

= deg(I −H(1, ·), Br3
, θ)
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=

∫ 1

0

G(t, s)q(s)f(s, ψ(s))ds.

Hence, ψ(t) is the fixed point of A. The proof is complete. �

Theorem 3.2. Suppose the following conditions hold:

(B1) uf(t, u) ≥ 0 for all t ∈ [0, 1];

(B2) lim inf
u→0+

min
t∈[0,1]

f(t, u)

u
> λ1;

(B3) lim sup
u→+∞

max
t∈[0,1]

f(t, u)

u
< λ1,

where λ1 is the first eigenvalue of the operator T defined by (2.2). Then BVP (1.1)–

(1.3) has a positive solution and a negative solution.

Proof of Theorem 3.2. By (B1), we obtain A(P ) ⊂ P . The proof for existence of a

positive solution when (B2)–(B3) are satisfied is nearly identical with Theorem 4.2

in [14] and will be omitted. Thereafter, we show that the existence of a negative

solution.

Define

f2(t, u) = −f(t,−u), for all u ∈ R, t ∈ [0, 1],

and

(A2ϕ)(t) =

∫ 1

0

G(t, s)q(s)f2(s, ϕ(s))ds.

Obviously, A2(P ) ⊂ P and f2 satisfies (B2) and (B3). Hence, A2 has a positive fixed

point φ.

For φ ∈ P\{θ} and fixed t ∈ [0, 1],

f2(t, φ) = −f(t,−φ),

one has

(3.11) (A2φ)(t) = −
∫ 1

0

G(t, s)q(s)f(s,−φ(s))ds = φ.

Notice (3.1) and (3.11), −φ is a negative fixed point of A. The proof is complete. �

Theorem 3.3. Let β is a real nonnegative constant. Assume that f(t, u) satisfies

f(t, 0) 6= 0, t ∈ (0, 1) and f(t, u) ≥ −β, and

(3.12) lim sup
|u|→+∞

max
t∈[0,1]

f(t, u)

|u| <
1

∫ 1

0
G(1, s)q(s)ds

.

Then BVP (1.1)–(1.3) has at least a nontrivial solution.

Proof of Theorem 3.3. By (3.12), there exist γ > 0 and Q such that

0 < Q <
1

∫ 1

0
G(1, s)q(s)ds

,
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and

−β ≤ f(t, u) ≤ Q|u| + γ, for t ∈ [0, 1], u ∈ R.

Let

BR = {u ∈ E
∣∣
∣∣∣∣u− γ

∫ 1

0

G(t, s)q(s)ds

∣∣∣∣ ≤ R}.

Since BR is a bounded, convex, closed set, then we have

‖u‖ ≤ R + γ

∫ 1

0

G(1, s)q(s)ds,

and

∣∣∣∣Au(t) − γ

∫ 1

0

G(t, s)q(s)ds

∣∣∣∣

≤
∫ 1

0

G(t, s)q(s) |f(s, u(s)) − γ| ds

≤ max

{
(β + γ)

∫ 1

0

G(1, s)q(s)ds, Q‖u‖
∫ 1

0

G(1, s)q(s)ds

}
,

as long as

R ≥ Qγ(
∫ 1

0
G(1, s)q(s)ds)2

1 −Q
∫ 1

0
G(1, s)q(s)ds

.

So, we obtain A(BR) ⊂ BR. By Schauder fixed point theorem, A has at least one

fixed point in BR and then BVP (1.1)–(1.3) has at least one solution. This completes

the proof. �

Remark 3.2. Assumption (3.12) implies

(3.13) lim sup
|u|→∞

max
t∈[0,1]

f(t, u)

|u| < λ1.

Indeed, by (2.2), one has

(3.14) ‖T‖ ≤
∫ 1

0

G(1, s)q(s)ds,

then by definition of spectral radius of linear operator, we have

λ1 = (r(T ))−1 ≥ ‖T‖−1 ≥ 1
∫ 1

0
G(1, s)q(s)ds

.

Finally, we give some examples to illustrate the results obtained in this paper.
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4. EXAMPLES

Example 4.1. In BVP (1.1)–(1.3), let f(t, u) =
1 − u

1 + u2
+ln

1 + t

2
and q(t) = tr−1(1−

t)s−1, 0 < r, s < 1. Obviously, q is singular at t = 0 and t = 1. Let b(t) = 1 − ln 1+t
2

.

By the direct calculation, we can easily see that assumptions (A1)–(A3) hold. So by

Theorem 3.1, we know that BVP (1.1)–(1.3) has at least a nontrivial solution.

Example 4.2. In BVP (1.1)–(1.3), let

f(u) =





3
√
u, u ≤ 1

ln u+ 1, u > 1.

and q(t) =
1

t
√

1 − t
. It is easy to show that conditions (B1)–(B3) are satisfied. By

Theorem 3.2, BVP (1.1)–(1.3) has a positive solution and a negative solution.

Example 4.3. In BVP (1.1)–(1.3), let

f(u) =






sin4 u

u2
− 1, u 6= 0

−1, u = 0.

and q(t) = (1 − t)2, it is easy to see that f satisfies all the assumptions in Theorem

3.3, then BVP (1.1)–(1.3) has at least a nontrivial solution.
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