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ABSTRACT. This paper focuses on the strict stability for a class of impulsive functional differential

equations with infinite delays by using Lyapunov functions and Razumikhin technique. Some new

Razumikhin type theorems on stability are obtained, which show that impulses do contribute to the

system’s strict stability behavior. Also, we point out a technical error in [7]. Our results improve

and generalize some results in the literature.
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1. INTRODUCTION

Impulsive differential equations have become important in recent years in some

mathematical models of real processes and phenomena studied in physics, chemical

technology, population dynamics, biotechnology and economics. For recent research

we refer the reader to [1–4, 7–9, 11, 13]. Recently, systems with impulses and time

delay have been discussed in [1, 2, 9, 12, 14–16]. In fact, the system stability and con-

vergence properties are strongly affected by time delays, which are often encountered

in many industrial and natural processes due to measurement and computational

delays, transmission and transport lags. In [2, 3, 8, 10], the authors considered the

stability of impulsive differential equations with finite delays. In [4, 14], by using

Lyapunov functions and Razumikhin technique, Li obtained some Razumikhin type

theorems on stability for a class of impulsive functional differential equations with

infinite delays. However very little is known on stability theory for impulsive func-

tional differential systems, especially for infinite delay impulsive functional differential

systems.

On the other hand, as we know, the asymptotic stability of the trivial solution of

a differential system implies that the solutions near the trivial solution tend to zero,

Received May 5, 2012 1056-2176 $15.00 c©Dynamic Publishers, Inc.



172 L. WANG, X. LI, AND D. O’REGAN

but it does not guarantee any information about the rate of decay of the solutions.

In other words, these definitions of stability are one-sided estimates of solutions, so

they are not strict. It is natural to expect that an estimation on the lower bound

for the rate at which solutions approach to the trivial solution would be beneficial.

Such concepts are called stability in tube-like domain or strict stability [5–7]. In [5],

Lakshmikantham and Mohapatra obtained some results on strict stability for ordi-

nary differential systems. Considering the effects of time delay, Lakshmikantham and

Zhang [6] further studied the strict practical stability of delay differential equations.

Recently, Zhang and Sun [7] investigated the strict stability of a class of differential

systems with finite delays and impulsive perturbations by means of Lyapunov func-

tions and Razumikhin technique. The results show that impulses do contribute to the

system’s strict stability behavior. Unfortunately some results in [7] are not correct.

Inspired by the above discussion, in this paper, we consider the strict stability

of impulsive functional differential systems with infinite delays. Some new stability

results are obtained by employing Lyapunov functions and Razumikhin technique.

The results obtained improve and generalize [5–7]. The effects of delays and impulses

which do contribute to the equation’s stability properties will be shown in this paper.

This work is organized as follows. In Section 2, we introduce some notations

and definitions. In Section 3, we establish some strict uniform stability criteria for

impulsive infinite delays differential equations.

2. PRELIMINARIES

Let R denote the set of real numbers, R+ the set of nonnegative real numbers

and Rn the n-dimensional real space equipped with the Euclidean norm ‖ · ‖. For any

t ≥ t0 ≥ 0 > α ≥ −∞, let f(t, x(s)) where s ∈ [t + α, t] or f(t, x(·)) be a Volterra

type functional. In the case when α = −∞, the interval [t+α, t] is understood to be

(−∞, t].

We consider the impulsive functional differential equations

(2.1)







x′(t) = f(t, x(·)), t ≥ t0, t 6= tk,

∆x|t=tk = x(tk) − x(t−k ) = Ik(tk, x(t
−
k )), k = 1, 2 . . . ,

where the impulse times tk satisfy 0 ≤ t0 < t1 < · · · < tk < · · · , lim
k→+∞

tk = +∞ and

x′ denotes the right-hand derivative of x. Also f ∈ C([tk−1, tk)×C, Rn), f(t, 0) = 0,

where C is an open set in PC([α, 0], Rn), where PC([α, 0], Rn) = {ψ : [α, 0] → Rn

is continuous everywhere except at finite number of points t, at which ψ(t+) and

ψ(t−) exist and ψ(t+) = ψ(t)}. For each k = 1, 2 . . . , Ik(t, x) ∈ C([t0,∞) × Rn, Rn),

I(tk, 0) = 0, and for any ρ > 0, there exists a ρ1 > 0 (0 < ρ1 < ρ) such that x ∈ S(ρ1)

implies that x+ I(tk, x) ∈ S(ρ), where S(ρ) = {x : ‖x‖ < ρ, x ∈ Rn}.
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Let PCB(t) = {xt ∈ C : xt is bounded}. For ψ ∈ PCB(t), ‖ψ‖1 is defined by

‖ψ‖1 = supα≤θ≤0 ‖ψ(θ)‖ and ‖ψ‖2 by ‖ψ‖2 = infα≤θ≤0 ‖ψ(θ)‖.

For any given σ ≥ t0, the initial condition for system (2.1) is given by

(2.2) xσ = φ,

where φ ∈ PC([α, 0], Rn).

For convenience, we also have the following classes for later use:

K1 = {a ∈ C(R+, R+)| a(0) = 0 and a(s) > 0 for s > 0};

K2 = {a ∈ C(R+, R+)| a(0) = 0 and a is monotone strictly increasing};

PCB1
δ (σ) = {ψ ∈ PCB(σ) : ‖ψ‖1 < δ};

PCB2
ζ (σ) = {ψ ∈ PCB(σ) : ‖ψ‖2 > ζ}.

We assume that the solution for the initial problem (2.1)–(2.2) is unique and is

written in the form x(t, σ, φ), see [1, 16]. Since f(t, 0) = 0, Ik(tk, 0) = 0, k = 1, 2, . . .,

then x = 0 is a solution of (2.1)–(2.2), which is called the zero solution. In this paper,

we always assume that the solution x(t, σ, φ) of (2.1)–(2.2) can be continued to ∞

from the right of σ.

We introduce some definitions as follows:

Definition 2.1. The function V : [α,∞) × C → R+ belongs to class v0 if

(A1) V is continuous on each of the sets [tk−1, tk) × C and lim(t,ϕ)→(t−
k
,ψ) V (t, ϕ) =

V (t−k , ψ) exists;

(A2) V (t, x) is locally Lipschitzian in x and V (t, 0) ≡ 0.

Definition 2.2. Let V ∈ v0, for any (t, ψ) ∈ [tk−1, tk)×C, the upper right-hand Dini

derivative of V (t, x) along the solution of (2.1)–(2.2) is defined by

D+V (t, ψ(0)) = lim sup
h→0+

{V (t+ h, ψ(0) + hf(t, ψ)) − V (t, ψ(0))}/h.

Definition 2.3. Assume x(t) = x(t, σ, φ) be the solution of (2.1)–(2.2) through (σ, φ).

Then the trivial solution of (2.1)–(2.2) is said to be

(1) strictly stable, if for any σ ≥ t0 and ε1 > 0, there exists a δ1 = δ1(ε1, σ) > 0

such that φ ∈ PCB1
δ1

(σ) implies that ‖x(t, σ, φ)‖ < ε1, t ≥ σ, and for every δ2 ∈

(0, δ1], there exists an ε2 ∈ (0, δ2) such that φ ∈ PCB2
δ2

(σ) implies ‖x(t, σ, φ)‖ >

ε2, t ≥ σ;

(2) strictly uniformly stable, if δ1, δ2 and ε2 in (1) are independent of σ;

(3) strictly attractive, if given σ ≥ t0 and δ1 > 0, ε1 > 0, for any δ2 ≤ δ1, there exists

ε2 < ε1, T1 = T1(σ, ε1) and T2 = T2(σ, ε2) such that φ ∈ PCB1
δ1

(σ) ∩ PCB2
δ2

(σ)

implies ε2 < ‖x(t)‖ < ε1, σ + T1 ≤ t ≤ σ + T2;

(4) strictly uniformly attractive, if T1 and T2 in (3) are independent of σ;

(5) strictly asymptotically stable, if (3) holds, and the trivial solution of (1) is stable;
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(6) strictly uniformly asymptotically stable, if (4) holds, and the trivial solution of

(1) is uniformly stable.

It is very important to note that (1) and (3), or (2) and (4) cannot hold at the

same time. When ‖x(t)‖ → 0, t → ∞, or lim inf ‖x(t)‖ = 0, lim sup ‖x(t)‖ 6= 0, the

trivial solution of system (2.1)–(2.2) cannot be strictly stable.

3. MAIN RESULTS

In this section, we shall develop Lyapunov-Razumikhin methods and establish

some theorems which provide sufficient conditions for strict uniform stability of the

trivial solution of (2.1)–(2.2).

Theorem 3.1. Assume that there exist functions wij ∈ K1, g, h ∈ K2, ci, pi ∈ C(R+, R+),

Vi ∈ v0, i, j = 1, 2 such that the following conditions hold:

(i) wi1(‖x‖) ≤ Vi(t, x) ≤ wi2(‖x‖), i = 1, 2, (t, x) ∈ [α,∞) × S(ρ);

(ii) For any σ ≥ t0 and ψ ∈ PC([α, 0], S(ρ)), if V1(t, ψ(0)) ≥ g(V1(t + θ, ψ(θ))),

α ≤ θ ≤ 0, t 6= tk, then

D+V1(t, ψ(0)) ≤ p1(t)c1(V1(t, ψ(0))).

Also, for all (tk, ψ) ∈ R+ × PC([α, 0], S(ρ1)),

V1(tk, ψ(0) + Ik(tk, ψ)) ≤ g(V1(t
−
k , ψ(0))),

where g(s) < s for any s > 0;

(iii) There exist constants M1,M2 > 0 such that the following inequalities hold:

sup
t≥0

∫ t+τ

t

p1(s)ds = M1 <∞, inf
s>0

∫ s

g(s)

dt

c1(t)
= M2 > M1,

where τ = maxk≥1{tk − tk−1} <∞;

(iv) For any σ ≥ t0 and ψ ∈ PC([α, 0], S(ρ)), if V2(t, ψ(0)) ≤ h2(V2(t + θ, ψ(θ))),

α ≤ θ ≤ 0, t 6= tk, then

D+V2(t, ψ(0)) ≥ p2(t)c2(V2(t, ψ(0))).

Also, for all (tk, ψ) ∈ R+ × PC([α, 0], S(ρ1)),

V2(tk, ψ(0) + Ik(tk, ψ)) ≥ h−1(V2(t
−
k , ψ(0))),

where h(s) > s for any s > 0;

(v) There exist constants J1, J2 > 0 such that the following inequalities hold:

inf
t≥0

∫ t+µ

t

p2(s)ds = J1 <∞, sup
s>0

∫ h2(s)

s

dt

c2(t)
= J2 < J1,

where µ = mink≥1{tk − tk−1} > 0.

Then the trivial solution of (2.1)–(2.2) is strictly uniformly stable.
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Proof. Condition (i) implies that wi1(s) ≤ wi2(s) for s ∈ [0, ρ]. Let Wi1 and Wi2 be

continuous, strictly increasing functions satisfying Wi1(s) ≤ wi1(s) ≤ wi2(s) ≤ Wi2(s)

for all s ∈ [0, ρ]. Thus, for all (t, x) ∈ [α,∞) × S(ρ), we have

Wi1(‖x‖) ≤ Vi(t, x) ≤Wi2(‖x‖).

For any ε1 > 0(< ρ1), one may choose a δ1 = δ1(ε1) > 0 such that W12(δ1) ≤

g(W11(ε1)). Let x(t) = x(t, σ, φ) be a solution of (2.1)–(2.2) through (σ, φ), σ ≥ t0.

Suppose that σ ∈ [tl−1, tl), l ∈ Z+. For any φ ∈ PCB1
δ1

(σ), we shall prove that

‖x(t)‖ < ε1, t ≥ σ. For convenience, let Vi(t) = Vi(t, x(t)).

First, for σ + α ≤ t ≤ σ, we have

(3.1) W11(‖x‖) ≤ V1(t) < W12(δ1) ≤ g(W11(ε1)) < W11(ε1),

which implies that ‖x(t)‖ < ε1 < ρ1, t ∈ [σ + α, σ]. Next we claim that

(3.2) V1(t) < W11(ε1), t ∈ [σ, tl).

Suppose that this assertion is false. Then there exists some t ∈ [σ, tl) such that

V1(t) ≥ W11(ε1). Since V1(σ) < W11(ε1), we can define t̂ = inf{t ∈ [σ, tl) | V1(t) ≥

W11(ε1)}. Thus, t̂ ∈ (σ, tl), V1(t̂) = W11(ε1) and V1(t) < W11(ε1), t ∈ [σ, t̂). Also, in

view of (3.1) we obtain

(3.3) V1(t) < W11(ε1), t ∈ [σ + α, t̂).

On the other hand, note that V1(t̂) = W11(ε1) > g(W11(ε1)) and V1(σ) < g(W11(ε1))

in view of (3.1), we can define t∗ = sup{t ∈ [σ, t̂] | V1(t) ≤ g(W11(ε1))}. Then it is

obvious that t∗ ∈ [σ, t̂), V1(t
∗) = g(W11(ε1)) and V1(t) > g(W11(ε1)) for t ∈ (t∗, t̂].

Therefore, combining with (3.3), we have for t ∈ (t∗, t̂)

V1(t) > g(W11(ε1)) > g(V1(t+ θ)), α ≤ θ ≤ 0.

By assumption (ii), (iii), we have
∫ V1(t̂)

V1(t∗)

ds

c1(s)
=

∫ W11(ε1)

g(W11(ε1))

ds

c1(s)
≥M2 > M1.

However, we note that
∫ V1(t̂)

V1(t∗)

ds

c1(s)
≤

∫ t̂

t∗
p1(s)ds <

∫ t∗+τ

t∗
p1(s)ds ≤M1,

which is a contradiction. Thus (3.2) holds.

Hence, W1(‖x‖) ≤ V1(t) < W11(ε1), t ∈ [σ, tl) implies that ‖x(t−l )‖ < ε1 < ρ1.

Thus, x(tl) ∈ S(ρ). From condition (ii), we have

V1(tl) ≤ g(V1(t
−
l )) ≤ g(W11(ε1)) < W11(ε1).

Next we claim that

V1(t) < W11(ε1), t ∈ [tl, tl+1).
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Suppose on the contrary that there exists some t ∈ [tl, tl+1) such that V1(t) ≥W11(ε1).

Then applying exactly the same argument as in the proof of (3.2) yields our desired

contradiction.

By induction we have in general that for t ∈ [tl+k, tl+k+1), k > 0,

V1(t) < W11(ε1).

Therefore, in view of condition (i) we obtain that ‖x(t)‖ < ε1, t ≥ σ.

Now, for any δ2 ∈ (0, δ1], choose a δ3 ∈ (0, δ2) such that W−1
21 (h(W21(δ3))) ≤ δ2,

and choose ε2 ∈ (0, δ3) such that ε2 < W−1
22 (W21(δ3)). Next we claim that φ ∈

PCB2
δ2

(σ) implies that ‖x‖ > ε2, t ≥ σ. First, for σ + α ≤ t ≤ σ, we have

(3.4) V2(t) ≥ W21(‖φ‖) ≥W21(δ2) ≥ h(W21(δ3)) > W21(δ3) > W22(ε2),

which implies that ‖x(t)‖ > ε2, t ∈ [σ + α, σ]. Next we claim that

(3.5) V2(t) ≥W21(δ3), t ∈ [σ, tl).

Suppose that this assertion is not true. Then there exists some t ∈ [σ, tl) such that

V2(t) < W21(δ3). Since V2(σ) > W21(δ3). we can define t̂ = inf{t ∈ [σ, tl) | V2(t) ≤

W21(δ3)}. Thus, t̂ ∈ (σ, tl), V2(t̂) = W21(δ3), and V2(t) > W21(δ3), t ∈ [σ, t̂). Also,

combining with (3.4), we obtain

(3.6) V2(t) ≥W21(δ3), t ∈ [σ + α, t̂].

On the other hand, considering V2(t̂) = W21(δ3) < h(W21(δ3)) and V2(σ) ≥ h(W21(δ3))

in view of (3.4), we can define t∗ = sup{t ∈ [σ, t̂] | V2(t) ≥ h(W21(δ3))}. Thus,

t∗ ∈ [σ, t̂), V2(t
∗) = h(W21(δ3)), and V2(t) < h(W21(δ3)) for t ∈ (t∗, t̂]. Therefore,

combining with (3.6), we have for t ∈ [t∗, t̂]

V2(t) ≤ h(W21(δ3)) ≤ h(V2(t+ θ)) < h2(V2(t+ θ)), α ≤ θ ≤ 0.

By assumption (iv), we get the inequality D+V2(t, ψ(0)) ≥ p2(t)c2(V2(t, ψ(0))) ≥ 0

holds. Thus function V2(t) is monotone increasing for t ∈ [t∗, t̂]. In particular,

we get V2(t
∗) ≤ V2(t̂). However, this contradicts the fact that V2(t̂) = W21(δ3) <

h(W21(δ3)) = V2(t
∗). Thus (3.5) holds.

Next we claim that V2(t
−
l ) ≥ h2(W21(δ3)). Suppose that this assertion is false,

then V2(t
−
l ) < h2(W21(δ3)). Thus either V2(t) < h2(W21(δ3)) for all t ∈ [tl−1, tl),

or there exists some t ∈ [tl−1, tl) for which V (t) ≥ h2(W21(δ3)). In the first case,

V2(t) < h2(W21(δ3)) ≤ h2(V2(t + θ)), α ≤ θ ≤ 0, t ∈ [tl−1, tl). Also, we obtain

V2(t
−
l ) < h2(V2(tl−1)). Therefore, by virtue of condition (iv), (v), we have

∫ V2(t−
l

)

V2(tl−1)

ds

c2(s)
≤

∫ h2(V2(tl−1))

V2(tl−1)

ds

c2(s)
≤ J2 < J1.
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However, we note

∫ V2(t−
l

)

V2(tl−1)

ds

c2(s)
≥

∫ tl

tl−1

p2(s)ds ≥

∫ tl−1+µ

tl−1

p2(s)ds ≥ J1.

This is a contradiction. In the second case, let t∗ = sup{t ∈ [σ, tl)|V2(t) ≥ h2(W21(δ3))}.

Then V2(t
∗) = h2(W21(δ3)), V (t) < h2(W21(δ3)), t ∈ (t∗, tl). Thus, V2(t) ≤ h2(W21(δ3)) ≤

h2(V2(t + θ)), α ≤ θ ≤ 0, t ∈ [t∗, tl). By assumption (iv), we get the inequality

D+V2(t, ψ(0)) ≥ p2(t)c2(V2(t, ψ(0))) ≥ 0 holds. Then the function V2(t) is mono-

tone increasing for t ∈ [t∗, t̂], which implies that V2(t
∗) ≤ V2(t

−
l ). But this con-

tradicts the fact that V2(t
−
l ) < h2(W21(δ3)) = V2(t

∗). Thus, we have shown that

V2(t
−
l ) ≥ h2(W21(δ3)).

From condition (iv) and the inequality V2(t
−
l ) ≥ h2(W21(δ3)), we have

V2(tl) ≥ h−1(V2(t
−
l )) ≥ h(W21(δ3)) > W21(δ3).

Next

V2(t) ≥W21(δ3), t ∈ [tl, tl+1)

by the same argument that was employed in the proof of (3.5). By induction we have

that for t ∈ [tl+k, tl+k+1), k = 1, 2, . . .

V2(t) ≥W21(δ3),

i.e.,

V2(t) ≥W21(δ3) ≥W22(ε2), t ≥ σ,

which together with condition (i), we obtain ‖x‖ > ε2, t ≥ σ. Therefore, we finally

obtain that ε2 < ‖x‖ < ε1 for φ ∈ PCB1
δ1

(σ) ∩ PCB2
δ2

(σ), t ≥ σ. The proof of

Theorem 3.1 is complete.

Corollary 3.2. Assume that there exist functions wi ∈ K1, g, h ∈ K2, ci, pi ∈

C(R+, R+), i = 1, 2, V ∈ v0 such that the following conditions hold:

(i) w1(‖x‖) ≤ V (t, x) ≤ w2(‖x‖), i = 1, 2, (t, x) ∈ [α,∞) × S(ρ);

(ii) For any σ ≥ t0 and ψ ∈ PC([α, 0], S(ρ)), if g(V (t + θ, ψ(θ))) ≤ V (t, ψ(0)) ≤

h2(V (t+ θ, ψ(θ))), α ≤ θ ≤ 0, t 6= tk, then

p2(t)c2(V (t, ψ(0))) ≤ D+V (t, ψ(0)) ≤ p1(t)c1(V (t, ψ(0))).

Also, for all (tk, ψ) ∈ R+ × PC([α, 0], S(ρ1)),

h−1(V (t−k , ψ(0))) ≤ V (tk, ψ(0) + Ik(tk, ψ)) ≤ g(V (t−k , ψ(0))),

where g(s) < s < h(s) for any s > 0;
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(iii) There exist constants Mi > 0, i = 1, . . . , 4 such that the following inequalities

hold:

sup
t≥0

∫ t+τ

t

p1(s)ds = M1 <∞, inf
s>0

∫ s

g(s)

dt

c1(t)
= M2 > M1,

inf
t≥0

∫ t+µ

t

p2(s)ds = M3 <∞, sup
s>0

∫ h2(s)

s

dt

c2(t)
= M4 < M3,

where µ = mink≥1{tk − tk−1} > 0, τ = maxk≥1{tk − tk−1} <∞.

Then the trivial solution of (2.1)–(2.2) is strictly uniformly stable.

Remark 3.3. In [7], the authors obtained some sufficient conditions for guaranteeing

the strict stability of impulsive functional differential systems with finite delays. How-

ever, there is a technical error in Theorem 2 of [7]. That is, condition (v) contradicts

condition (vi) in Theorem 2 of [7]. In fact, from condition (v), i.e., p ∈ C(R+, R+)

and 0 < ψ2(u) < u, we have
∫ ψ2(u)

u

ds

p(s)
< 0,

which contradicts
∫ ψ2(u)

u

ds

p(s)
≥ B > 0

in condition (vi).

Theorem 3.4. Assume that there exist functions wij ∈ K1, g, h ∈ K2, ci, pi ∈

C(R+, R+), Vi(t, x) ∈ v0, i, j = 1, 2 such that the following conditions hold:

(i) wi1(‖x‖) ≤ Vi(t, x) ≤ wi2(‖x‖), i = 1, 2, (t, x) ∈ [α,∞) × S(ρ);

(ii) For any σ ≥ t0 and ψ ∈ PC([α, 0], S(ρ)), if g2(V1(t, ψ(0))) ≥ V1(t + θ, ψ(θ)),

α ≤ θ ≤ 0, t 6= tk, then

D+V1(t, ψ(0)) ≤ −p1(t)c1(V1(t, ψ(0))).

Also, for all (tk, ψ) ∈ R+ × PC([α, 0], S(ρ1)),

V1(tk, ψ(0) + Ik(tk, ψ)) ≤ g(V1(t
−
k , ψ(0))),

where g(s) > s for any s > 0;

(iii) There exist constants M1,M2 > 0 such that the following inequalities hold:

inf
t≥0

∫ t+µ

t

p1(s)ds = M1 > 0, sup
s>0

∫ g2(s)

s

dt

c1(t)
= M2 < M1,

where µ = mink≥1{tk − tk−1} <∞;

(iv) For any σ ≥ t0 and ψ ∈ PC([α, 0], S(ρ)), if h(V2(t, ψ(0))) ≤ V2(t + θ, ψ(θ)),

α ≤ θ ≤ 0, t 6= tk, then

D+V2(t, ψ(0)) ≥ −p2(t)c2(V2(t, ψ(0))).
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Also, for all (tk, ψ) ∈ R+ × PC([α, 0], S(ρ1)),

V2(tk, ψ(0) + Ik(tk, ψ)) ≥ h−1(V2(t
−
k , ψ(0))),

where h(s) < s for any s > 0;

(v) There exist constants J1, J2 > 0 such that the following inequalities hold:

sup
t≥0

∫ t+τ

t

p2(s)ds = J1 <∞, inf
s>0

∫ s

h(s)

dt

c2(t)
= J2 > J1,

where τ = maxk≥1{tk − tk−1} > 0.

Then the trivial solution of (2.1)–(2.2) is strictly uniformly stable.

Proof. As in Theorem 3.1, let Wi1 and Wi2 be continuous, strictly increasing functions

satisfying Wi1(s) ≤ wi1(s) ≤ wi2(s) ≤Wi2(s) for all s ∈ [0, ρ], i = 1, 2. Thus, we have

Wi1(‖x‖) ≤ Vi(t, x) ≤Wi2(‖x‖), (t, x) ∈ [α,∞) × S(ρ).

Consider any ε1 > 0 and assume without loss of generality that ε1 < ρ1. Choose a

δ1 = δ1(ε1) > 0 such that g(W12(δ1)) < W11(ε1). Let x(t) = x(t, σ, φ) be a solution of

(2.1)–(2.2) through (σ, φ), σ ≥ t0. Let φ ∈ PCB1
δ1

(σ), we shall prove that ‖x(t)‖ < ε1,

t ≥ σ. For convenience, let Vi(t) = Vi(t, x(t)). Suppose that σ ∈ [tl−1, tl), l ∈ Z+.

Then for σ + α ≤ t ≤ σ, we have

(3.7) W11(‖x‖) ≤ V1(t) < g(V1(t)) < g(W12(δ1)) < W11(ε1).

Thus, we have ‖x(t)‖ < ε1 < ρ1, t ∈ [σ + α, σ]. Next we claim that

(3.8) V1(t) < W11(ε1), t ∈ [σ, tl).

Suppose that on the contrary there exists some t ∈ [σ, tl) such that V1(t) ≥ W11(ε1).

Let t̂ = inf{t ∈ [σ, tl) | V1(t) ≥ W11(ε1)}. Since V1(σ) < W11(ε1), we have t̂ ∈

(σ, tl), V1(t̂) = W11(ε1) and V1(t) < W11(ε1), t ∈ [σ, t̂). Hence, we get V1(t) < W11(ε1),

t ∈ [σ+α, t̂). Also, since g(V (t̂)) = g(W11(ε1)) > W11(ε1), and g(V1(σ)) < W11(ε) in

view of (3.7), we can define t∗ = sup{t ∈ [σ, t̂] | g(V1(t)) ≤W11(ε1)}. Then t∗ ∈ [σ, t̂),

g(V1(t
∗)) = W11(ε1) and g(V1(t)) > W11(ε1), t ∈ (t∗, t̂]. Hence, we obtain

g2(V1(t)) ≥ g(V1(t)) ≥ W11(ε1) > V1(t+ θ, ψ(θ)), α ≤ θ ≤ 0, t ∈ [t∗, t̂].

Thus, by assumption (ii), the inequality D+V1(t, ψ(0)) ≤ −p1(t)c1(V1(t, ψ(0))) ≤ 0

holds. Then function V1(t) is monotone nonincreasing for t ∈ [t∗, t̂], which implies

that V1(t
∗) ≥ V1(t̂). Thus, g(W11(ε1)) = g(V1(t̂)) ≤ g(V1(t

∗)) = W11(ε1), which

is a contradiction with g(s) > s. Thus (3.8) holds, which implies x(t−l ) ∈ S(ρ1),

x(tl) ∈ S(ρ).

Next we claim that V1(t
−
l ) ≤ g−2(W11(ε1)). Suppose that this assertion is false.

Then V1(t
−
l ) > g−2(W11(ε1)). Thus either V1(t) > g−2(W11(ε1)) for all t ∈ [tl−1, tl),

or there exists some t ∈ [tl−1, tl) for which V1(t) ≤ g−2(W11(ε1)). In the first case,
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g2(V1(t)) > W11(ε1) > V1(t + θ, ψ(θ)), α ≤ θ ≤ 0 in view of (3.8). In particular, we

obtain g2(V1(t
−
l )) > V1(tl−1). Hence, by virtue of (ii), (iii), we have

∫ V1(tl−1)

V1(t−
l

)

ds

c(s)
≤

∫ g2(V (t−
l

))

V1(t
−

l
)

ds

c1(s)
≤M2 < M1.

However,
∫ V1(tl−1)

V1(t
−

l
)

ds

c1(s)
≥

∫ tl

tl−1

p1(s)ds ≥

∫ tl−1+µ

tl−1

p1(s)ds ≥M1.

This is a contradiction. In the second case, let t∗ = sup{t ∈ [σ, tl) | V1(t) ≤

g−2(W11(ε1))}. Then V1(t
∗) = g−2(W11(ε1)), V1(t) > g−2(W11(ε1)), t ∈ (t∗, tl), which

implies g2(V1(t)) ≥W11(ε1) > V (t+ θ, ψ(θ)), α ≤ θ ≤ 0, t ∈ [t∗, tl). Hence, the func-

tion V1(t) is monotone nonincreasing for t ∈ [t∗, t̂], which implies that V1(t
∗) ≥ V1(t

−
l ).

Thus g−2(W11(ε1)) = V1(t
∗) ≥ V (t−l ) > g−2(W11(ε1)), which is a contradiction. Thus,

we have proven that V1(t
−
l ) ≤ g−2(W11(ε1)).

Furthermore, we obtain

(3.9) V1(tl) ≤ g(V1(t
−
l )) ≤ g−1(W11(ε1)) < W11(ε1).

We have

V1(t) < W11(ε1), t ∈ [tl, tl+1)

by the same argument that was employed in the proof of (3.8). By the induction, we

have that for t ∈ [tl+k, tl+k+1), k = 1, 2, . . .

V1(t) < W11(ε1),

i.e.,

V1(t) < W11(ε1), t ≥ σ,

which together with condition (i), we obtain ‖x‖ < ε1, t ≥ σ.

Now, for any δ2 ∈ (0, δ1], choose a δ3 ∈ (0, δ2) such that W−1
21 (h−1(W21(δ3))) ≤ δ2,

and choose ε2 ∈ (0, δ3) such that ε2 < W−1
22 (W21(δ3)). Next we claim that φ ∈

PCB2
δ2

(σ) implies that ‖x‖ > ε2, t ≥ σ. First, for σ + α ≤ t ≤ σ, we have

(3.10) V2(t) ≥ W21(‖φ‖) ≥ W21(δ2) ≥ h−1(W21(δ3)) > W21(δ3) > W22(ε2)

which implies that ‖x(t)‖ > ε2, t ∈ [σ + α, σ]. Next we claim that

(3.11) V2(t) ≥W21(δ3), t ∈ [σ, tl).

Suppose that this assertion is not true. Then there exists some t ∈ [σ, tl) such that

V2(t) < W21(δ3). Since V2(σ) > W21(δ3), we can define t̂ = inf{t ∈ [σ, tl) | V2(t) ≤

W21(δ3)}. Thus, t̂ ∈ (σ, tl), V2(t̂) = W21(δ3), and V2(t) > W21(δ3), t ∈ [σ, t̂). Also,

combining with (3.10), we obtain

(3.12) V2(t) ≥W21(δ3), t ∈ [σ + α, t̂].
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On the other hand, considering h(V2(t̂)) = h(W21(δ3)) < W21(δ3) and h(V2(σ)) >

W21(δ3) in view of (3.10), we can define t∗ = sup{t ∈ [σ, t̂] | h(V2(t)) ≥ W21(δ3)}.

Thus, t∗ ∈ [σ, t̂), h(V2(t
∗)) = W21(δ3), and h(V2(t)) < W21(δ3) for t ∈ (t∗, t̂]. Conse-

quently, combining with (3.12), we have for t ∈ [t∗, t̂],

h(V2(t)) ≤W21(δ3) ≤ V2(t+ θ), α ≤ θ ≤ 0.

By assumption (iv), we get the inequality D+V2(t, ψ(0)) ≥ −p2(t)c2(V2(t, ψ(0)))

holds. Hence, we note that
∫ V2(t̂)

V2(t∗)

ds

c2(s)
=

∫ h(V2(t∗))

V2(t∗)

ds

c2(s)
= −

∫ V2(t∗)

h(V2(t∗))

ds

c2(s)
≤ −J2 < −J1.

However, we also have
∫ V2(t̂)

V2(t∗)

ds

c2(s)
≥ −

∫ t̂

t∗
p2(s)ds ≥ −

∫ t∗+τ

t∗
p2(s)ds ≥ −J1,

which is a contradiction. Thus (3.11) holds.

From condition (iv) and (3.11), we have

V2(tl) ≥ h−1(V2(t
−
l )) ≥ h−1(W21(δ3)) > W21(δ3).

Next

V2(t) ≥ W21(δ3), t ∈ [tl, tl+1)

by the same argument that was employed in the proof of (3.11). By induction we

have that for t ∈ [tl+k, tl+k+1), k = 1, 2, . . .

V2(t) ≥W21(δ3),

i.e.,

V2(t) ≥W21(δ3) ≥W22(ε2), t ≥ σ,

which together with condition (i), we obtain ‖x‖ > ε2, t ≥ σ. Therefore, we finally

obtain that ε2 < ‖x‖ < ε1 for φ ∈ PCB1
δ1

(σ) ∩ PCB2
δ2

(σ), t ≥ σ. The proof of

Theorem 3.4 is complete.

Corollary 3.5. Assume that there exist functions wi ∈ K1, g, h ∈ K2, ci, pi ∈

C(R+, R+), V (t, x) ∈ v0, i = 1, 2 such that the following conditions hold:

(i) w1(‖x‖) ≤ V (t, x) ≤ w2(‖x‖), (t, x) ∈ [α,∞) × S(ρ);

(ii) For any σ ≥ t0 and ψ ∈ PC([α, 0], S(ρ)), if h(V (t, ψ(0))) ≤ V (t + θ, ψ(θ)) ≤

g2(V (t, ψ(0))), α ≤ θ ≤ 0, t 6= tk, then

−p2(t)c2(V (t, ψ(0))) ≤ D+V (t, ψ(0)) ≤ −p1(t)c1(V (t, ψ(0))).

Also, for all (tk, ψ) ∈ R+ × PC([α, 0], S(ρ1)),

h−1(V (t−k , ψ(0))) ≤ V (tk, ψ(0) + Ik(tk, ψ)) ≤ g(V (t−k , ψ(0))),

where h(s) < s < g(s) for any s > 0;
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(iii) There exist constants Mi > 0, i = 1, . . . , 4 such that the following inequalities

hold:

inf
t≥0

∫ t+µ

t

p1(s)ds = M1 > 0, sup
s>0

∫ g2(s)

s

dt

c1(t)
= M2 < M1,

sup
t≥0

∫ t+τ

t

p2(s)ds = M3 <∞, inf
s>0

∫ s

h(s)

dt

c2(t)
= M4 > M3,

where τ = maxk≥1{tk − tk−1} <∞, µ = mink≥1{tk − tk−1} > 0.

Then the trivial solution of (2.1)–(2.2) is strictly uniformly stable.
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