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1. KORENBLUM VARIATION

More than 100 years ago, Camille Jordan [9] introduced the total variation

(1.1) Var(f) = Var(f ; [a, b]) := sup {Var(f, P ; [a, b]) : P ∈ P([a, b])}

of a function f : [a, b] → R, where

(1.2) Var(f, P ) = Var(f, P ; [a, b]) :=
m
∑

j=1

|f(tj) − f(tj−1)|

denotes the variation of f with respect to a partition P = {t0, t1, . . . , tm}, and the

supremum in (1.1) is taken over the family P([a, b]) of all partitions of [a, b]. In the

same paper [9], Jordan proved that every function of bounded total variation can

be represented as difference of two monotonically increasing functions, which means

that the corresponding space BV ([a, b]) of functions of bounded variation is the linear

hull of all monotone functions. This space plays a prominent role in real analysis,

functional analysis, Fourier analysis, geometric measure theory, and even some parts

of mathematical physics.

Subsequently, Jordan’s concept of variation has been generalized in many direc-

tions. Wiener [36] distorted the measurement of intervals in the range using powers

|f(tj)− f(tj−1)|
p in (1.2), while Young [37] used more general distortions of the form
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φ(|f(tj) − f(tj−1)|), with φ being a convex increasing function. The most general

concept by Schramm [34] replaced such distortion functions φ by countable families

Φ. All these extensions have the advantage to make it possible to define quite gen-

eral Riemann-Stieltjes integrals. On the other hand, a flaw is the loss of an effective

decomposition of a function from the corresponding function classes into, hopefully,

simpler functions, such as in the Jordan decomposition for functions from the classical

space BV ([a, b]).

Another important generalization consists in replacing the difference |f(tj) −

f(tj−1)| in (1.2) by certain higher order divided differences; the corresponding higher

order variations have been introduced, as far as we know, by Popoviciu [21, 22]

and subsequently studied in detail by Russell [23–33]. Such variations in fact admit

natural decomposition theorems; for example, one can prove that every function of

bounded second variation can be represented as difference of two convex functions.

In 1975, B. Korenblum [11] considered a completely new kind of variation, called

κ-variation, introducing a function κ for distorting the expression |tj − tj−1| in the

partition itself, rather than the expression |f(tj)−f(tj−1)| in the range. Subsequently,

this class of functions has been studied in some detail in [8] and [13] and applied to

Fourier series in [12]. One advantage of this alternate approach is that a function of

bounded κ-variation may be decomposed into the difference of two simpler functions

called κ-decreasing functions, for the precise definition and a proof of this result see

[8]. In what follows, we will mostly consider, without loss of generality, functions over

[a, b] = [0, 1].

Definition 1.1. A function κ : [0, 1] → [0, 1] is called distortion function if κ is

continuous, increasing, concave, and satisfies κ(0) = 0, κ(1) = 1, and

(1.3) lim
t→0+

κ(t)

t
= ∞,

i.e., has infinite slope at the origin.

Note that from the estimate

κ(s + t) − κ(t)

(s + t) − t
≤

κ(s) − κ(0)

s − 0

it follows that a distortion function is always subadditive in the sense that

κ(s + t) ≤ κ(s) + κ(t) (0 ≤ s, t ≤ 1).

In addition, without loss of generality we may assume that

(1.4) κ(t) ≥ t (0 ≤ t ≤ 1).

The simplest example is of course κ(t) = tα for 0 < α < 1, another interesting

example is κ(t) = t(1 − log t).
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Building on the concept of distortion functions, Korenblum [11] introduced a new

class of functions of bounded variation as follows.

Definition 1.2. Given a partition P = {t0, t1, . . . , tm} ∈ P([0, 1]), a distortion func-

tion κ : [0, 1] → [0, 1], and a function f : [0, 1] → R, the nonnegative real number

(1.5) Varκ(f, P ) = Varκ(f, P ; [0, 1]) :=

m
∑

j=1

|f(tj) − f(tj−1)|

m
∑

j=1

κ(tj − tj−1)

is called the κ-variation of f on [0, 1] with respect to P , while the (possibly infinite)

number

(1.6) Varκ(f) = Varκ(f ; [0, 1]) := sup {Varκ(f, P ; [0, 1]) : P ∈ P([0, 1])} ,

where the supremum is taken over all partitions of [0, 1], is called the total κ-variation

of f on [0, 1]. In case Varκ(f ; [0, 1]) < ∞ we say that f has finite κ-variation on [0, 1]

and write f ∈ κBV ([0, 1]).

It is not hard to see that the set κBV ([0, 1]) equipped with the norm

(1.7) ‖f‖κBV = |f(0)| + Varκ(f ; [0, 1])

is a Banach space. Considering the special partition Pt := {0, t, 1} for fixed t, we

have

Varκ(f, Pt) =
|f(1) − f(t)| + |f(t) − f(0)|

κ(1 − t) + κ(t)
≥

|f(t) − f(0)|

2
≥

1

2
(|f(t)| − |f(0)|)

which shows that every function f ∈ κBV ([0, 1]) is bounded with

(1.8) ‖f‖∞ ≤ 2‖f‖κBV ,

where ‖ · ‖∞ denotes the supremum norm.

Of course, Definition 1.2 may be formulated also for functions on an arbitrary

interval [a, b] by defining that f belongs to κBV ([a, b]) if the function x 7→ f((b −

a)x + a) belongs to κBV ([0, 1]). Equivalently, this means that we replace (1.5) by

Varκ(f, P ) = Varκ(f, P ; [a, b]) :=

m
∑

j=1

|f(tj) − f(tj−1)|

m
∑

j=1

κ

(

tj − tj−1

b − a

)

.

From the subadditivity of κ it follows then that

m
∑

j=1

κ

(

tj − tj−1

b − a

)

≥ κ

(

m
∑

j=1

tj − tj−1

b − a

)

= κ(1) = 1.
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For any distortion function κ, the inclusions

(1.9) BV ([0, 1]) ⊆ κBV ([0, 1]) ⊆ R([0, 1])

hold, where R([a, b]) denotes the set of regular functions, i.e., functions which have at

most jump discontinuities. We point out that the slope condition (1.3) ensures that

the first inclusion in (1.9) is strict. In fact, if the limit in (1.3) is finite, one may show

that κBV ([0, 1]) = BV ([0, 1]), see [13].

To find an example of a regular function which does not belong to κBV ([0, 1]) for

a given distortion function κ is easy. In our first example we show that also the first

inclusion in (1.9) is strict by constructing a function f ∈ κBV ([0, 1]) \ BV ([0, 1]).

Example 1.3. Let κ : [0, 1] → [0, 1] be defined by κ(t) = tα for some α ∈ (0, 1). Put

γ :=

∞
∑

k=1

1

k1/α
, tn :=

1

γ

n
∑

k=1

1

k1/α
(n = 1, 2, 3, . . .).

We define a function f : [0, 1] → R by

f(x) :=

{

0 for x = 0 or x = 1,

(x − tn)α for tn ≤ x < tn+1.

Considering partitions containing the points t0, t1, . . . , tn, one easily sees that

Var(f ; [0, 1]) = 2

∞
∑

k=1

κ

(

1

k1/α

)

= 2

∞
∑

k=1

1

k
= ∞,

and so f 6∈ BV ([0, 1]). However, a straightforward computation shows that f(y) −

f(x) ≤ κ(y − x), and so f ∈ κBV ([0, 1]) with ‖f‖κBV = Varκ(f ; [0, 1]) ≤ 1.

2. MAIN RESULT

Now we consider the (autonomous) composition operator

(2.1) Hf(x) := h(f(x)) (0 ≤ x ≤ 1)

generated by some function h : R → R. In what follows, the local Lipschitz condition

(2.2) |h(u) − h(v)| ≤ k(r)|u − v| (|u|, |v| ≤ r)

for h will play a crucial role, because it is both necessary and sufficient for the inclusion

H(X) ⊆ X for many familiar function spaces X. This was shown for the space

BV ([a, b]) by Josephy [10], for the space Lip([a, b]) of Lipschitz continuous functions

by Babaev [5], for the space Lipα([a, b]) of Hölder continuous functions (0 < α < 1)

by Mukhtarov [19], for the space AC([a, b]) of absolutely continuous functions by

the second author [16], for the space HBV ([a, b]) of functions of bounded harmonic

variation by Chaika and Waterman [6], for the space ΛBV ([a, b]) of functions of

bounded Λ-variation by Pierce and Waterman [20], for the space RBVp([a, b]) of
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functions of bounded p-variation in Riesz’s sense by the second author and Rivas

[18], for the space RBVϕ([a, b]) of functions of bounded ϕ-variation in Riesz’s sense

by the second author [17], and for the space WBVϕ([a, b]) of functions of bounded

ϕ-variation in Wiener’s sense by the Ciemnoczo lowski and Orlicz [7]. On the other

hand, there are functions spaces in which condition (2.2) is either too strong or too

weak to ensure that the corresponding operator (2.1) maps this space into itself. For

example, it is completely obvious that the operator (2.1) maps the space C([a, b])

into itself if and only if h is continuous on R, and the space C1([a, b]) into itself

if and only if h is continuously differentiable on R. As was shown in [4], a more

sophisticated argument based on Sierpiński’s decomposition theorem [35] implies the

following result in the space R([a, b]) of regular functions:

Theorem 2.1. The composition operator (2.1) maps the space R([a, b]) into itself if

and only if the corresponding function h is continuous on R. Moreover, in this case

the operator (2.1) is automatically bounded in the supremum norm.

All these examples show that the problem of determining the precise class of

all “admissible” functions h such that the corresponding operator H maps a certain

function class into itself, is in general nontrivial and may have an unexpected solution.

A unified approach to this problem for several function spaces is contained in the

following theorem from [1] which we recall for further reference.

Theorem 2.2. The composition operator (2.1) maps the space Lip([a, b]) into the

space BV ([a, b]) if and only if the corresponding function h satisfies (2.2). Moreover,

in this case the operator (2.1) is automatically bounded in the corresponding norms.

Of course, the sufficiency of (2.2) for the inclusion H(Lip) ⊆ BV is evident. Since

(2.3) Lip([a, b]) ⊆ RBVp([a, b]) ⊆ AC([a, b]) ⊆ BV ([a, b]),

Theorem 2.2 contains the results from [5], [10], [16], [18] as special cases. Note that

Theorem 2.2 covers not only the spaces occurring in (2.3), but any other “intermedi-

ate” space between Lip and BV .

Now we are interested in the problem of finding a condition on h, both necessary

and sufficient, under which the operator (2.1) maps the space κBV into itself. Unfor-

tunately, since this space is larger than BV , by (1.9), Theorem 2.2 does not help. In

the recent paper [3] the authors study the Lipschitz continuity of the operator (2.1) in

the norm (1.7), assuming that this operator maps κBV into itself. As far as we know,

conditions for the inclusion H(κBV ) ⊆ κBV have not been given in the literature.

This is our main objective now. First of all, we remark that the fact that h

belongs locally to κBV (R) does not imply that H(κBV ) ⊆ κBV :
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Example 2.3. Let A ⊂ [0, 1] be an uncountable Cantor set of positive measure,

and define f : [0, 1] → R by f(x) := dist(x, A) = inf {|x − a| : a ∈ A}. Clearly,

f is Lipschitz continuous, and therefore belongs to κBV ([0, 1]) for any distortion

function κ. Moreover, the function h := χ{0} certainly belongs to κBV ([a, b]) for any

interval [a, b] ⊂ R. However, the function Hf = h ◦ f = χA is not regular, since it

is discontinuous on the uncountable set A, and so it does not belong to κBV ([0, 1]).

In fact, since all functions in κBV are regular, by (1.9), they cannot have more than

countably many points of discontinuity.

Note that the inclusion (1.9) and Theorems 2.1 and 2.2 imply that the local

Lipschitz condition (2.2) for h is sufficient, while continuity of h is necessary for the

inclusion H(κBV ) ⊆ κBV . In the following theorem which is the main result of this

paper we show that (2.2) is actually the “right” condition:

Theorem 2.4. The composition operator (2.1) maps the space κBV ([a, b]) into itself

if and only if the corresponding function h satisfies (2.2). Moreover, in this case the

operator (2.1) is automatically bounded in the norm (1.7).

Proof. We take [a, b] = [0, b]. The sufficiency of (2.2) for the inclusion H(κBV ) ⊆

κBV is obvious. Choose a positive sequence (εk)k satisfying

(2.4)

∞
∑

k=1

εk ≤
b

5
,

and suppose that h does not satisfy a local Lipschitz condition, which means that

there is some r > 0 for which (2.2) does not hold for any constant k(r) > 0. Then

there exist sequences (uk)k and (vk)k in [−r, r] such that uk < vk,

(2.5) δk := κ−1(vk − uk) < εk,

and

(2.6) |h(vk) − h(uk)| >
1

εk
|vk − uk|

for k = 1, 2, . . .. Passing, if necessary, to a subsequence, we can assume without loss

of generality that (uk)k is increasing and converges to some point u∞ ∈ [−r, r] such

that

(2.7) κ(uk+1 − uk) ≤ εk, κ(uk − u∞) ≤ εk (k = 1, 2, . . .).

Moreover, from (1.4) it follows that

(2.8) κ(δk) ≥ δk, κ(uk+1 − uk) ≥ uk+1 − uk (k = 1, 2, . . .).

Denoting by ent(ξ) the integer part of ξ, let

nk := ent

(

εk

κ(δk)
+ 1

)

;
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in particular, we have then

(2.9) εk ≤ κ(δk)nk < 2εk (k = 1, 2, . . .).

Finally, consider the recursively defined sequence (tk)k of points

(2.10) t1 := 0, tk+1 := tk + uk+1 − uk + 2nkδk (k = 1, 2, . . .).

Observe that this sequence is strictly increasing and convergent with

tk → t∞ =

∞
∑

k=1

(tk+1 − tk) = 2

∞
∑

k=1

nkδk +

∞
∑

k=1

(uk+1 − uk)

≤ 2

∞
∑

k=1

nkκ(δk) +

∞
∑

k=1

κ(uk+1 − uk) ≤ 5

∞
∑

k=1

εk ≤ b,

where we have used (2.4), (2.7), (2.8) and (2.9). Now we are ready to define a function

f : [0, b] → R such that f ∈ κBV ([0, b]), but h ◦ f 6∈ κBV ([0, b]), thus proving the

assertion. Consider the zigzag function defined by

f(x) :=



























uk if x = tk + 2jδk for j ∈ {0, . . . , nk},

vk if x = tk + (2j − 1)δk for j ∈ {1, . . . , nk},

u∞ if t∞ ≤ x ≤ b,

linear otherwise.

By means of the sequence (tk)k defined in (2.10), we define partitions

Pk := {tk, tk + δk, tk + 2δk, . . . , tk + 2nkδk} ∈ P([tk, tk + 2nkδk]) (k = 1, 2, . . .)

and put for m ∈ N

Πm :=
m
⋃

k=1

Pk ∪ {t∞, b}.

Since the partitions Πm ∈ P([0, b]) are extremal for f , we get from (2.5) and (2.8)

Varκ(f, Πm) ≤

m
∑

k=1

nk(vk − uk) + (uk+1 − uk) + (uk − u∞)

m
∑

k=1

nkκ(δk) + κ(uk+1 − uk) + κ(tk + mδm − t∞)

≤ 1,

hence f ∈ BVκ([0, b]). On the other hand, the κ-variation of Hf = h ◦ f on Πm may

be estimated from below by

Varκ(Hf, Πm) ≥

m
∑

k=1

2nk|h(uk) − h(vk)|

m
∑

k=1

[2nkκ(δk) + κ(uk+1 − uk)]

≥

m
∑

k=1

2nk

εk
κ(δk)

5
m
∑

k=1

εk

≥
m

b
,
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where we have used (2.4), (2.6), (2.7) and (2.9). We conclude that Hf 6∈ κBV ([0, b]),

and the proof of the first assertion is complete.

It remains to show that, under the hypothesis (2.2), the operator H is bounded.

But from ‖f‖κBV ≤ r it follows that ‖Hf‖κBV ≤ 2k(r), by (1.8), and so H is bounded

in the norm (1.7).

We make some comments on Theorem 2.4. First, merely from the fact that the

operator H maps the space κBV into itself we get its boundedness for free; this

phenomenon is typical for the operator (2.1) in many function spaces. On the other

hand, we do not know whether or not condition (2.2) also implies the continuity of

H in the norm (1.7); this is an open problem even in the simpler space BV .

3. FINAL REMARKS

We point out that the situation becomes much more complicated in the case of

the non-autonomous composition operator

(3.1) Hf(x) := h(x, f(x)) (0 ≤ x ≤ 1)

generated by some function h : [0, 1] × R → R. Here it seems natural to impose a

local Lipschitz condition on h(x, ·) on R, uniformly with respect to x ∈ [0, 1], together

with the requirement h(·, u) ∈ κBV ([0, 1]), uniformly with respect to u ∈ R, in order

to ensure that the corresponding operator (3.1) maps κBV into itself. In fact, this

condition was stated in [14] for the space BV without proof, and afterwards used

as “obvious” by several authors (e.g., in Chapter 6 of the monograph [2]). However,

tempting as this sufficient condition appears at first glance, on reflection it becomes

less convincing. Only quite recently it was shown by Maćkowicz [15] by means of a

counterexample that this is false. So even the harmless looking problem of finding

a sufficient condition for the inclusion H(BV ) ⊆ BV for the operator (3.1) which is

possibly not “too far” from being necessary, is open.
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