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1. INTRODUCTION

The aim of this paper is to present a simple and powerful fixed point result
based on a connectedness and compactness argument. In particular no knowledge
is needed of the theory of fixed points (for example Brouwer’s fixed point theorem
is not assumed). To motivate our fixed point result we begin by presenting some
continuation principles for Fredholm and Volterra integral equations. We remark
here that similar continuation principles to those in this paper could be established for
integral inclusions and discrete equations and inclusions. We also note (see Section 2)
that the existence principles we establish in Section 2 in the Banach space setting
are not as general as those established in the literature via fixed point arguments.
However the advantage of our approach is that it is elementary and no knowledge of
fixed point theory is assumed. Finally we note that the fixed point principle we will
establish at the end of Section 2 will be in a Fréchet space setting (indeed it can be

trivially adjusted to a more general setting, for example complete gauge spaces).
For the space of continuous functions on the closed interval [0,77], denoted by

C10,T] and norm | - | given by

lylo = sup |y(t)],
te[0,T

the Arzéla-Ascoli Theorem gives conditions under which a subset M of C[0,7] is

compact.
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Theorem 1.1 (Arzéla-Ascoli Theorem). Let M C C([0,T],R). If M is uniformly
bounded and equicontinuous, then M is relatively compact in C([0,T],R).

The set of bounded, continuous functions on the half-open interval [0,7"), 0 <

T < 00, denoted by BC0,T), is also a normed space with norm given by

lylo = sup |y(¢)].
te[0,T)

We will require compactness criteria for a subset of BC[0,T'), namely C;[0,7T"). The
space ([0, T) is the set of all bounded, continuous functions y on [0,7), for which

limy_7 y(t) exists. We have the following criterion of compactness on C;[0,7):

Theorem 1.2 (Corduneanu, [2, P. 62]). Let M C Cy([0,00),R). Then M is compact
in C1(]0,00), R) if the following conditions hold:

(i) M is bounded in Cj,
(ii) the functions belonging to M are equicontinuous on any compact interval of
[0, 00),
(iii) the functions from M are equiconvergent, that is, given € > 0, there corresponds
T(e) > 0 such that |f(t) — f(c0)| < € for anyt > T(e) and f € M.

We now turn our attention from continuous functions to measurable functions.
The most important spaces of measurable functions are the Lebesgue spaces LP(I),
1 < p < oo, where I is an interval of R (and indeed could be R"). For y € LP(I),

the norm is given by

1/p
||y||p:(/ |y<t>|pdt) C drl<p<oo
I

[yl = ess supery(?)],  for p = oco.
If |I| < oo, we have the following compactness criteria for a subset M of LP(I),

1<p<oc:

Theorem 1.3 (Riesz Compactness Criteria). Let M C LP([to,t1],R), 1 < p < 0.
Necessary and sufficient conditions for the relative compactness of M in LP are:

(i) M is bounded in LP,
(ii) tzl |z(t + h) — x(t)|P dt — 0 as h — 0 uniformly for x € M.

If I is not necessarily finite, compactness of a subset M of LP(I) is given by

Theorem 1.4 (Yosida, [7, P. 275]). Let S be the real line, B the o-ring of Baire
subsets B of S and m(B) = fB dx the ordinary Lebesgue measure of B. Then a
subset K of LP(S,B,m), 1 < p < oo, is strongly relatively compact if and only if it

satisfies the following conditions:

1
(1) sup,e |zl = sup,e ([ |2(s)Ids)? < oo,
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(ii) limeg [g|z(t 4+ s) — 2(s)[P ds = 0 uniformly in v € K,
(iif) limajeo fiysq [2(s)[P ds = 0 uniformly in z € K.
Let I be an interval in R.

Definition 1.5. A function g : I x R — R is a Carathéodory function if the following

conditions hold:

(i) the map t — g¢(¢,y) is measurable for all y € R,

(ii) the map y — ¢(t,y) is continuous for almost all ¢ € 1.

Definition 1.6. A function g : I x R — R is a L?-Carathéodory function if the

following conditions hold:

(i) the map t — g¢(¢,y) is measurable for all y € R,
(ii) the map y — g¢(t,y) is continuous for almost all ¢t € I,
(iii) for any r > 0, there exists u, € L(I) such that |y| < r implies that |g(t,y)| <
- (t) for almost all ¢ € 1.

The following is a result for Carathéodory functions:

Theorem 1.7 (Krasnoselskii, [3, P. 22, 27]). Let g : I x R — R be a Carathéodory
function such that y € LP'(I) implies that g(t,y) € LP*(I) (p1,p2 > 1). Then the
operator G : LP* (1) — LP2(I) defined by Gy(t) = g(t,y(t)), is continuous and bounded.
In particular, there exists a; € LP*(I) and ay > 0 such that

9t 1) < a(t) + asly| .
2. EXISTENCE
We begin this section by establishing an existence principle for
(2.) o0 =)+ [ K09 g(s.06) s, 1€ 0.1]

using a simple connectedness argument (no knowledge of fixed point theory is needed).

Theorem 2.1. Let 1 < p < oo be a constant, and q be such that 1/p+ 1/q = 1.

Assume

(2.2) h € C[0,1],

(2.3) g:10,1] x R — R is an L?-Carathéodory function
(2.4) ki(s) = k(t,s) € LP[0,1], for eacht € [0,1]

and

(2.5) the map t — ky is continuous from [0, 1] — L*[0, 1]

hold. In addition suppose
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(i) there exists a constant M > 0, independent of X, with |ylo < M for any solution
y € C[0,1] to

(2.6) y(t) = A (h(t) +/0 k(t,s)g(s,y(s)) ds) , te]0,1],

for each X\ € [0,1],

(ii) for any Ao € [0, 1] where (2.6),, has a solution in C0, 1] there exists a neighbor-
hood of Ay (one-sided neighborhood of Ao if \g =0 or A\g = 1) so that (2.6), has
a solution in C|0, 1] for all X in the neighborhood of Ao.

Then (2.1) has at least one solution in C|0, 1].

Proof. Let
A={A€[0,1]: (2.6)x has a solution in C]0,1]}.

Note 0 € A. Now we show A is closed. To see this let {\,}{° be a sequence in A with
An — A Let u, € C|0, 1] be a solution to (2.6), corresponding to A = \,,. It is easy
to check that (via the Arzéla-Ascoli Theorem, see [5, Theorem 4.2.2]) that {u,}7° is
relatively compact in C[0,1]. For completeness we present the proof here (however
we note that the compactness arguments in this paper are well known so for our other
results in this paper we will just refer the reader to the appropriate theorem in the
book [5]). Now there exists py € L9]0, 1] such that |g(s, un(s))] < par(s), for almost
every s € [0,1] and n € {1,2,...}. Note

[unlo < |hlo + sup [[kell, lpearllq
te[0,1]

and for any tq, t5 € [0, 1] we have

|wmo—uawnsmao—hwﬂ+<4|mx@—kaﬁww)ﬂmMm

so the Arzéla-Ascoli Theorem implies there is a subsequence S of {1,2,...} and a
u € C0,1] with w,, = u in C[0,1] as n — oo in S. Let N : C[0,1] — C[0, 1] be given
by

Nwwwm+lkwwummw.

It is easy to check (see [5, Theorem 4.2.2]) via the Lebesgue dominated convergence
theorem that N : C|0, 1] — ([0, 1] is continuous. This with

un(t) = Ay, <h(t) + /01 k(t,s) g(s, un(s)) ds) , te]0,1],
implies
u(t) = A (h(t) + /01 k(t,s) g(s,u(s)) ds) , tel0,1].

Thus u is a solution of (2.6), i.e. A € A so A is closed.
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Finally (ii) guarantees that A is open. Since A # () is both open and closed in
0, 1] it follows that A = [0, 1]. Since 1 € A then (2.1) has a solution in C[0,1]. O

Remark 2.2. One can put conditions on k& and g (see for example [8, pg 156
157]) so that (ii) in Theorem 2.1 holds. In the literature it is usual to write y(t) —
A (h(t) + kGt s)g(s,y(s))ds) —0,t e [0,1] as F(\,y) = 0 where F : [0,1] x
C[0,1] — C|0, 1] and one approach to guarantee (ii) in Theorem 2.1 is to put condi-
tions so that the implicit function theorem can be applied. Of course if one used an
appropriate fixed point result (for example the Leray-Schauder alternative) instead
of the connectedness approach then condition (ii) is not needed in Theorem 2.1. This
shows how powerful the fixed point approach is. However we remark that the connect-
edness approach is elementary (for example no knowledge is needed of the Brouwer’s
fixed point theorem, the starting off point in fixed point theory) and still a powerful

and applicable topological existence principle can be established.

Next we will look for LP solutions to

1
(2.7) y(t) = h(t) —i—/ k(t,s)g(s,y(s))ds ae. te]0,1].
0
Theorem 2.3. Let p, p1 and py be such that 1 < p; < p < 00 and p% + p% = 1.
Assume
(2.8) h € L0, 1],
(2.9) g:10,1] x R — R is a Cararthéodory function
| and g(t, y(t)) € Lr2[0,1] for y € 17[0, 1]

and

k:[0,1] x [0,1] — R is such that
(2.10) (t,s) — k(t,s) is measurable and

N
<f01 (fol Ik(t, s)|pdzt)F ds) "= My < oo
hold. In addition suppose
(i) there exists a constant M > 0, independent of \, with ||y|l, < M for any solution
y € LP[0,1] to
1
(2.11), y(t) =\ (h(t) —|—/ k(t,s)g(s,y(s)) ds) a.e. tel0,1]
0

for each X € [0,1],

(ii) for any Ao € [0, 1] where (2.11),, has a solution in LP[0, 1] there exists a neigh-
borhood of \g (one-sided neighborhood of Ao if \g =0 or \g = 1) so that (2.11),
has a solution in LP[0,1] for all A in the neighborhood of Ay.

Then (2.7) has at least one solution in LP[0, 1].
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Proof. Let
A={X€]0,1] : (2.11), has a solution in L”[0,1]}.

Note 0 € A. Now we show A is closed. To see this let {\,}° be a sequence in A
with A, — A. Let u,, € LP[0,1] be a solution to (2.11), corresponding to A = \,,.
It is easy to check (via the Riesz compactness criterion, see [5, Theorem 4.2.1]) that
{u,}5° is relatively compact in LP[0,1]. Thus there is a subsequence S of {1,2,...}
and a u € LP[0, 1] with u,, — w in LP[0,1] asn — oo in S. Let G : L?[0,1] — LP?[0, 1]
be
Gy(t) == g(t,y(t)),
K : L”]0,1] — L?[0,1] be

Ky(t) := h(t) —I—/O k(t,s)y(s)ds

and N : L?[0,1] — L?[0,1] be Ny(t) := KGy(t). From Theorem 1.7 we know G is
continuous and bounded and also K is continuous since if y, — y in LP?[0, 1] then

Holder’s inequality guarantees that
||K?/n - Kpr < M IIyn - y||p2 — 0 as n — oo.

As aresult N : LP[0,1] — L?[0,1] is continuous. This with

un(t) = A\ <h(t) + /01 k(t,s) g(s,un(s)) ds) a.e. te[0,1],
implies
u(t) = A (h(t) + /01 k(t,s) g(s,u(s)) ds) a.e. tel0,1].

Thus wu is a solution of (2.11), i.e. A € A so A is closed.

Finally (ii) guarantees that A is open. Since A # () is both open and closed in
0,1] it follows that A = [0, 1]. Since 1 € A then (2.7) has a solution in L?[0,1]. O

More generally we can look for solutions to (2.7) in an Orlicz space. Let P and
@ be complementary N-functions [4]. The Orlicz class, denoted by Op, consists of

measurable functions y : [0,1] — R for which

ply: P) = / Py(x))dz < oo.

We shall denote by Lp([0,1],R) the Orlicz space of all measurable functions y :
[0,1] — R for which
lylp= sup < o0,
plv;Q) <1
v E OQ

/ @) - @)
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Note also Holder’s inequality [4, p. 74] which says

/01 y(z) - v(z)dz

It is known that (Lp([0,1],R),]|-|p) is a Banach space [4]. Let Ep([0,1],R) be the
closure in Lp([0, 1], R) of the set of all bounded functions. Note that Ep C Lp C Op.
We have Ep = Lp = Op if P satisfies the (Ay) condition, which is

< lylp - |v]g-

(As) there exist w, yo > 0 such that for y > yo, we have P(2y) < wP(y).

For a discussion of the (Aj) condition, we refer the reader to [4, p. 23-29]. For

example if P grows faster than a power, then @) satisfies the (A,) condition.

Using the ideas of [4] we can present many topological existence principles in an

Orlicz space; we refer the reader also to [6]. One such result is as follows.

Theorem 2.4. Let P and ) be complementary N -functions. Suppose

(2.12) ¢ and v are complementary N -functions, and the functions
' an satisfy the (Aq) condition,
Q and ¢ fy the (A d
(2.13) k(t,-) € Ep for a.e. t € [0,1] and
' the function t — |k(t,-)|p belongs to Ej,
(2.14) h e Ly[0,1] and g is a Carathéodory function
and

for each r > 0 there ezists n,. € Lo([0,1],R) and K, > 0
(2.15) such that |g(t,w)| < n.(t) + K, Q7 (¢ (%))
for a.e. t€0,1] and every u € R.

In addition assume

(i) there exists a constant M > 0, independent of X, with |y|, < M for any solution
y € Ly[0,1] to (2.11)y for each X € [0, 1],

(ii) for any Ao € [0,1] where (2.11)y, has a solution in L4[0,1] there exists a neigh-
borhood of Ny (one-sided neighborhood of Ay if A\o = 0 or A\g = 1) so that (2.11),
has a solution in Ly[0,1] for all X in the neighborhood of .

Then (2.7) has at least one solution in L0, 1].

Proof. Let
A={XAe0,1]: (2.11), has a solution in L[0,1]}.
Note 0 € A. Now we show A is closed. To see this let {\,}° be a sequence in A
with A, — A. Let u,, € Ly|0, 1] be a solution to (2.11), corresponding to A = \,,. Let
G L¢ — LQ be
Gy(t) == g(t, y(1),
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K:EQ:LQ—>E¢:L¢be

1
Ky(t) := h(t) —I—/ k(t,s)y(s)ds
0
and N : Ly[0, 1] — Ly[0, 1] be Ny(t) := KGy(t). Now Lemma 16.3 and Theorem 16.3
(take My = @, My = ¢ and N; = P) of [4] guarantees that K : Eg = Lo — E, = Ly
is continuous and completely continuous and Theorem 17.6 in [4] guarantees that
G : A — Lg is continuous and G maps bounded sets into bounded sets; here A =
{uelLy:|uly <M} Thus N : A — L, is continuous and completely continuous.
As a result we see that {u,}}° is relatively compact in L4[0,1]. Thus there is a

subsequence S of {1,2,...} and a u € Ly[0,1] with w, — w in L4[0, 1] as n — oo in
S. This also with

un(t) = Ay <h(t) + /01 k(t,s) g(s,un(s)) ds) a.e. te€|0,1],
implies
’ u(t) = A (h(t) + /01 k(t,s)g(s,u(s)) ds) a.e. te0,1].

Thus w is a solution of (2.11), i.e. A € A so A is closed.

Finally (i) guarantees that A is open. Since A # () is both open and closed in
0, 1] it follows that A = [0, 1]. Since 1 € A then (2.7) has a solution in L,[0,1]. O

Remark 2.5. By placing other conditions on k and g (see [4, Sections 15, 16, 17])

we may deduce other existence principles in an Orlicz space.

Next we establish existence principles for the Volterra equation
(2.16) y(t) = h(t) + /Otk(t, s)g(s,y(s))ds, te][0,T]
where T > 0.

Theorem 2.6. Let 1 < p < oo be a constant, and q be such that 1/p+ 1/q = 1.

Assume

(2.17) h e Clo,T),
(2.18) g:10,7] x R — R is an L?-Carathéodory function
(2.19) ki(s) = k(t,s) € LP[0,t], for eacht € [0,T]
' and  Supeo 1 fot |k (s)|P ds < oo,
and

for any t,t' € [0, T,
(2.20) fot* |ki(s) — kp(s)[Pds — 0 ast — t/,
where t* = min{t, t'}

hold. In addition suppose
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(i) there ezists a constant M > 0, independent of X, with |ylo < M for any solution
y € C[0,T] to
t
(2.21), y(t) = A (h(t) +/ k(t,s)g(s,y(s)) ds) , tel0,T7,
0

for each X\ € [0,1],

(ii) for any Ao € [0,1] where (2.21)y, has a solution in C[0,T] there exists a neigh-
borhood of \g (one-sided neighborhood of Ao if \g =0 or \g = 1) so that (2.21),
has a solution in C[0,T] for all X in the neighborhood of Ay.

Then (2.16) has at least one solution in C[0,T].

Remark 2.7. In Theorem 2.6 the condition (2.20) can be replaced by

for any ¢,¢ € [0,T],
S ke(s) = k()P ds + [ (ke ()P ds — 0 as £ — ¢,

where t* = min{t,t'} and t** = max{t,t'}.
Note this condition implies sup,¢o fot |k:(s)|P ds < oo in (2.19).

Proof. Let
A={Xe€[0,1]: (2.21)5 has a solution in C[0,T]}.

Note 0 € A. Now we show A is closed. To see this let {\,}}° be a sequence in A
with A, — A. Let u, € C[0,T] be a solution to (2.11), corresponding to A = A,,. Let
N :C[0,T] — C[0,T] be given by

NMﬂzMﬂ+AkW@M&w@Ms

and it is easy to check [5] that N : C[0,T] — C10,T] is continuous and completely
continuous. Thus there is a subsequence S of {1,2,...} and a u € C[0,T] with

u, — u in C[0,7] as n — oo in S and we can conclude immediately that

u(t) = A (h(t) + /Ot k(t,s)g(s,u(s)) ds) , tel0,T].

Thus w is a solution of (2.21), i.e. A € A so A is closed.

Finally (ii) guarantees that A is open. Since A # () is both open and closed in
0,1] it follows that A = [0, 1]. Since 1 € A then (2.16) has a solution in C[0,7]. O

We can also obtain immediately the following two existence principles (using the
results in [4, 5]) for

(2.22) y(t) = h(t) + /Ot k(t,s)g(s,y(s))ds forae. tel0,T]

where T > 0.
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Theorem 2.8. Let p, py and ps be such that 1 < p; < p < o0 and pil + plz = 1.

Assume
(2.23) h € L?[0, T,
(2.24) g:10,T] x R — R is a Cararthéodory function
' and g(t,y(t)) € L7[0,T) for y € 1[0, T)
and
k:]0,T] x [0,t] — R is such that
(2.25) (t,s) — k(t,s) is measurable and

(fo (fs (t,s) |”c11t>p1 ds)p11 < 00

hold. In addition suppose
(i) there exists a constant M > 0, independent of \, with ||y, < M for any solution
y € LP[0,T1] to
t
(2.26) y(t) = A (h(t) +/ k(t,s)g(s,y(s)) ds) a.e. te€[0,T]
0

for each X\ € [0,1],

(ii) for any X\ € [0, 1] where (2.26),, has a solution in LP[0,T] there ezists a neigh-
borhood of Ny (one-sided neighborhood of Ny if A\o = 0 or A\g = 1) so that (2.26),
has a solution in LP[0,T] for all X in the neighborhood of Ag.

Then (2.22) has at least one solution in LP[0,T].

As above let P and @ be complementary N-functions. The Orlicz class, denoted

by Op, consists of measurable functions y : [0,7] — R for which

p@mzépwmm<w

We shall denote by Lp([0,7],R) the Orlicz space of all measurable functions y :

[0,7] — R for which
T
/ymwmw
0

< 00.

lylp = sup
p(v;Q) <1
V€ OQ

Theorem 2.9. Let P and ) be complementary N -functions. Suppose

(2.27) ¢ and v are complementary N-functions, and the functions
' Q and ¢ satisfy the (As) condition,

(2.98) k(t,-) € Ep for a.e. t € [0,T] and
' the function t — |k(t,-)|p belongs to Ej,
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(2.29) h € Ly[0,T] and g is a Carathéodory function

and

for each r > 0 there ezists n. € Lo([0,T],R) and K, >0
(2.30) such that |g(t,u)| < n,(t) + K, Q7' (¢ (%))
for a.e. te€[0,T] and every u € R.

In addition assume

(i) there exists a constant M > 0, independent of X, with |y|, < M for any solution
y € Ly[0,T] to (2.26)y for each X € [0, 1],

(ii) for any Ao € [0, 1] where (2.26)y, has a solution in L0, T there exists a neigh-
borhood of Ny (one-sided neighborhood of Ny if A\o = 0 or A\g = 1) so that (2.26),
has a solution in Ly[0,T] for all X in the neighborhood of Ao.

Then (2.22) has at least one solution in Ly[0,T].

Next we turn our attention to finding solutions to

(2.31) o) = hie)+ [ h(ts)gls.u(e)ds, te [0.00).
0

Theorem 2.10. Assume that 1 < p < oo and let g be such that % + % = 1. Suppose
that
(2.32) h € )]0, 00),
(2.33) g is L1-Carathéodory,
(2.34) ki € LP[0, 00) for each t € [0, 00),
(2.35) the map t — ky is continuous from [0,00) to LP[0, 00)
and
(2.36) there exists k € LP[0, 00) such that

' ky — k in LP[0, 00) ast — oo

hold. In addition assume

(i) there exists a constant M > 0, independent of A, with |ylo = supejp o0y |y(t)] < M
for any solution y € 4]0, 00) to

(2.37) y(t) = A (h(t) + /000 k(t,s) g(s,y(s)) ds) , tel0,00)

for each X\ € [0,1],

(ii) for any Ao € [0, 1] where (2.37),, has a solution in C}[0,00) there exists a neigh-
borhood of \g (one-sided neighborhood of Ao if \g =0 or \g = 1) so that (2.37),
has a solution in C;[0,00) for all X in the neighborhood of Xg.
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Then (2.31) has at least one solution in C;[0, 00).
Proof. Let
A={X€[0,1]: (2.37), has a solution in C;[0,00)}.

Note 0 € A. Now we show A is closed. To see this let {\,}7° be a sequence in A with
An — A. Let u, € Cj[0,00) be a solution to (2.37), corresponding to A = \,. Let
N : ([0, 00) — (4]0, 00) be given by

Ny(t) = ht) + / " k(t, ) g5, y(s) ds

and it is easy to check [5, Theorem 5.2.3] (we use Theorem 1.2 and the Lebesgue
dominated convergence theorem) that N : Cj[0,00) — ()]0, 00) is continuous and
completely continuous. Thus there is a subsequence S of {1,2, ...} and au € C}[0, 00)

with u, — u in Cj[0,00) as n — oo in S and we can conclude immediately that

u(t) = A <h(t) + /000 k(t,s) g(s,u(s)) ds) , te]0,00).

Thus u is a solution of (2.37), i.e. A € A so A is closed.

Finally (ii) guarantees that A is open. Since A # () is both open and closed in
0, 1] it follows that A = [0,1]. Since 1 € A then (2.31) has a solution in ([0, 00). O

Next we look for LP solutions to

(2.38) y(t) = h(t) + /000 k(t,s)g(s,y(s))ds a.e. t€]0,00).

Theorem 2.11. Assume that p, p1 and ps are such that 1 < p; < p < oo and
p% + p% =1 are satisfied. Suppose that

(2.39) h € LP[0,00),
(2.40) g:[0,00) x R — R is a Cararthéodory function, and
' g(t,y(t)) € L*2[0,00) fory € L?[0, c0)
and
k:[0,00) x [0,00) — R is such that
(2.41) (t,s) — k(t s) is measurable and
157 (7 k(2 s |pdt) ds) Z < o0

hold. In addition assume

(i) there exists a constant M > 0, independent of X, with ||ly||, # M, for any solution
y € LP[0,00) to

(2.42), y(t) = A (h(t) + /000 k(t,s)g (s,y(s)) ds) a.e. t€[0,00)

for each X € [0,1],
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(i) for any Ao € [0, 1] where (2.42),, has a solution in LP|0,00) there exists a neigh-
borhood of \g (one-sided neighborhood of Ao if \g =0 or \g = 1) so that (2.42),
has a solution in LP[0,00) for all X in the neighborhood of Xg.

Then (2.38) has at least one solution in LP[0, c0).

Proof. Let
A={\e€[0,1]: (2.42), has a solution in LP[0,00)}.

Note 0 € A. Now we show A is closed. To see this let {\,}7° be a sequence in A with
An — A Let u, € LP[0,00) be a solution to (2.42), corresponding to A = \,,. Let
N : L]0, 00) — LP[0, 00) be given by

Ny(t) = ht) + / T k(t, ) g5, y(s) ds

and it is easy to check [5, Theorem 5.2.1] (we use Theorem 1.4) that N : LP[0, c0) —
LP[0, 00) is continuous and completely continuous. Thus there is a subsequence S of
{1,2,...} and a u € LP[0,00) with u, — u in L”[0,00) as n — oo in S and we can

conclude immediately that

u(t) =\ (h(t) + /000 k(t,s)g(s,u(s)) ds) a.e. t € [0,00).

Thus w is a solution of (2.42), i.e. A € A so A is closed.

Finally (ii) guarantees that A is open. Since A # () is both open and closed in
0, 1] it follows that A = [0, 1]. Since 1 € A then (2.38) has a solution in L”[0,00). O

We can also obtain the following two existence principles (using the results in [5])

for the Volterra equation
t
(2.43) y(t) = h(t) + / k(t,s) g(s,y(s)) ds, t € [0,00).
0

Theorem 2.12. Assume that 1 < p < oo, and let q be such that % + % = 1. Suppose
that

(2.44) h € )]0, 00),

(2.45) g is L?-Carathéodory,

(2.46) { ki(s) = k(t,s) € LP[0,t] for each t € [0, 00)

and  SUPye(g ) 3 [Ke(s)|P ds < oo,

for any t,t' € [0, 00),
(2.47) f(f* |ki(s) — kp(s)[Pds — 0 ast — t/,

where t* = min {t,t'}
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and

there exists k € LP[0,00) such that

2.48 - 1
(2.48) lim; oo (f(f |ki(s) — k(s)|P ds) "=0
hold. In addition assume
(i) there exists a constant M > 0, independent of A\, with |y|o < M for any solution
y € (4]0, 00) to
t

(2.49), y(t) = A (h(t) —i—/ k(t,s)g(s,y(s)) ds) , te]0,00)

0

for each X € [0,1],

(i) for any Ao € [0, 1] where (2.49)y, has a solution in C)[0,00) there exists a neigh-
borhood of Ny (one-sided neighborhood of Ny if A\o = 0 or A\g = 1) so that (2.49),
has a solution in C;[0,00) for all X in the neighborhood of Xg.

Then (2.43) has at least one solution in C}[0, 00).
Now we consider
t
(2.50) y(t) = h(t) —|—/ k(t,s)g(s,y(s))ds a.e. te0,00).
0

Theorem 2.13. Assume that p, p1 and ps satisfy 1 < p; < p < oo and pil + plz = 1.
Suppose that

(2.51) h € LP|0, ),
(2.52) { g:[0,00) x R — R is a Cararthéodory function, and
g(t,y(t)) € LP*[0,00) fory € LP[0,00)
and
k:]0,00) x [0,t] — R is such that
(2.53) (t,s) — k(t s) is measurable and

1

(fooo ts\pdt)f’ ds>p1<oo

hold. In addition assume

(1) there exists a constant M > 0, independent of X, with ||y||, # M, for any solution
y € LP[0,00) to

(2.54), y(t) = A (h(t) +/0 k(t,s)g (s,y(s)) ds) a.e. t€[0,00)

for each X\ € [0,1],

(ii) for any Ao € [0, 1] where (2.54)y, has a solution in LP[0, 00) there exists a neigh-
borhood of \g (one-sided neighborhood of Ao if \g =0 or \g = 1) so that (2.54),
has a solution in LP[0,00) for all X in the neighborhood of Xg.
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Then (2.50) has at least one solution in LP[0, 00).

Remark 2.14. All the results in this section extend in an straightforward way to

systems.

Remark 2.15. One can obtain similar existence principles to those in this section

for Fredholm and Volterra integral inclusions.

Our next result (which contains all our previous principles in this section) was
motivated partly from our previous work; see [1] and the references therein. In our
next theorem E = (E,{| - |m}men) (here N = {1,2,...}) will be a Fréchet space
generated by the family of semi-norms {| - |,, : m € N}. Recall a subset X of E is
bounded if for every m € N there exists r,, > 0 with |z|,, < 7, for all z € X. We

consider the operator equation

(2.55) r=Nu.

Theorem 2.16. Let E be a Fréchet space and assume

(2.56) N : E — E s continuous and completely continuous.

In addition suppose

(i) for each m € N there exists a constant M,, > 0, independent of \, with |y, <
M, for any solution y € E to

(2.57) y=ANy

for each X € [0,1],

(i) for any Ao € [0, 1] where (2.57)y, has a solution in E there exists a neighborhood
of Ao (one-sided neighborhood of Ay if \g = 0 or \g = 1) so that (2.57), has a
solution in E for all \ in the neighborhood of \.

Then (2.55) has at least one solution in E.

Proof. Let

A={XAe€[0,1]: (2.57), has a solution in E}.
Note 0 € A. Now we show A is closed. To see this let {\,}}° be a sequence in A
with A, — A. Let u,, € E be a solution to (2.57), corresponding to A = A,. Note for
each m € N that |uy, |, < M, for each n € N. Now (2.56) guarantees that there is a
subsequence S of N and a u € F with u,, — v in F as n — oo in S. This with (2.56)
and u, = A\, N u, implies u = A N u. Thus u is a solution of (2.57), i.e. A € Aso A

is closed.

Finally (i) guarantees that A is open. Since A # () is both open and closed in
0,1] it follows that A = [0, 1]. Since 1 € A then (2.55) has a solution in E. O
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Remark 2.17. It is clear from the above proof that one could replace (2.56) with
the condition

N : A — FE is continuous and compact;

here A={zx € E: |x|,, < M,, for all m € N}. Indeed one could replace N : A — F

compact with the condition:

for any sequence {A,}0>, C[0,1] with =, a
solution to (2.57), corresponding to A, the

sequence {z,}°°, has a convergent subsequence.

Remark 2.18. We stated the previous result when E is a Fréchet space but it is

clear that one could consider more general spaces.

Our previous result extends in a straightforward way to the inclusion

(2.58) x € Nuzx.

Theorem 2.19. Let E be a Fréchet space and assume
(2.59) N :E —2F s a closed and completely continuous map.
In addition suppose

(i) for each m € N there exists a constant M,,, > 0, independent of \, with |y|m, <
M,, for any solution y € E to

(2.60) ye ANy

for each X\ € [0,1],

(i) for any Ao € [0, 1] where (2.60)y, has a solution in E there exists a neighborhood
of Ao (one-sided neighborhood of \g if \g = 0 or \g = 1) so that (2.60), has a
solution in E for all \ in the neighborhood of \.

Then (2.58) has at least one solution in E.

Remark 2.20. Note one could replace (2.59) with the condition
N :A—2F isa closed and compact map;

here A={x € E: |z|,, <M, forall meN}.
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