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ABSTRACT. In this paper, we introduce a new concept of square-mean asymptotically almost

automorphy for stochastic processes. Also, we study the properties on the completeness and the

composition of the space that consists of such processes. We then apply the results obtained to

investigate the existence of the square-mean asymptotically almost automorphic mild solutions to

a class of abstract semi-linear stochastic integro-differential equations. Finally, an example is also

given to justify the practical usefulness of the established general theorems. Our main results extend

some known ones in the sense of square-mean almost automorphy.
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1. INTRODUCTION

In this paper, we study the existence of square-mean asymptotically almost auto-

morphic solutions for the following abstract stochastic integro-differential equations

(1.1)

{
dx(t) =

[
Ax(t) +

∫ t

0
B(t − s)x(s)ds

]
dt + f (t, x(t)) dW (t), t ≥ 0,

x(0) = x0,

where A and B(t), t ≥ 0 are densely defined and closed linear operators in a Hilbert

space L2(P, H), W (t) is a two-sided standard one-dimensional Brownian motion de-

fined on the filtered probability space (Ω, F , P, Ft), where Ft = σ{W (u) − W (v);

u, v ≤ t}, x0 is an F0-adapted, H-valued random variable independent of the Wiener
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process W , and f : [0, +∞)×L2(P, H) → L2(P, H) is an appropriate function specified

later.

The concept of almost automorphy was introduced by S. Bochner [5, 6] in relation

to some aspects of differential geometry. It turns out to be an important generalization

of almost periodicity. For more details about this topics and the related works, we

refer the reader to [27, 28].

The asymptotically almost automorphic functions were firstly introduced by

G. M. N’Guérékata in [29]. Since then these functions have became of great interest

to several mathematicians and generated lots of developments and applications, we

refer the reader to [7, 18, 19, 20, 31] and the references therein.

Recently, the existence of almost periodic, almost automorphic and pseudo al-

most automorphic solutions to some stochastic differential equations have been con-

sidered in many publications such as [1–4, 8–14, 30] and references therein. In a

very recent paper [13], the authors introduced a new concept of S2-almost auto-

morphy for stochastic processes including a composition theorem. However, to the

best of our knowledge, there are no results available in the literature on square-mean

asymptotically almost automorphic mild solution to abstract semi-linear stochastic

integro-differential equations. Therefore, motivated by the works [10, 13, 19], the

main purpose of this paper is to introduce the notion of square-mean asymptotically

almost automorphic stochastic process and establish some basic results not only on

the completeness of the space that consists of the square-mean asymptotically almost

automorphic processes but also on the composition of such processes. Also, we apply

this new concept to investigate the existence of square-mean asymptotically almost

automorphic mild solutions to the problem (1.1). The obtained result can be seen as

a contribution to this emerging field.

The rest of this paper is organized as follows. In section 2, we introduce the notion

of square-mean asymptotically almost automorphic processes and study some of their

basic properties. In section 3, we prove the existence of square-mean asymptotically

almost automorphic mild solutions to the problem (1.1). An example is given in

Section 4 to illustrate the results obtained.

2. PRELIMINARIES

In this section, we introduce some basic definitions, notations, lemmas and tech-

nical results which will be used in the sequel. For more details on this section, we

refer the reader to [10, 12, 21].

Throughout the paper, we assume that (H, ‖ · ‖, 〈·, ·〉) and (K, ‖ · ‖K, 〈·, ·〉K) are

two real separable Hilbert spaces. Let (Ω, F , P) be a complete probability space. The
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notation L2(P, H) stands for the space of all H-valued random variables x such that

E‖x‖2 =

∫

Ω

‖x‖2dP < ∞.

For x ∈ L2(P, H), let

‖x‖2 =

(∫

Ω

‖x‖2dP

) 1

2

.

Then it is routine to check that L2(P, H) is a Hilbert space equipped with the norm

‖ · ‖2. The notation C0 (R+; L2(P, H)) stands for the collection of all bounded continu-

ous stochastic processes ϕ from R
+ into L2(P, H) such that limt→+∞ E‖ϕ(t)‖2 = 0. It

is then easy to check that C0 (R+; L2(P, H)) is a Banach space when it is endowed with

the norm ‖ϕ‖C0
:= supt∈R+ ‖ϕ(t)‖2. Similarly, C0 (R+ × L2(P, H); L2(P, H)) stands

for the space of the continuous stochastic processes f : R
+ × L2(P, H) → L2(P, H)

such that

lim
t→+∞

E‖f(t, x)‖2 = 0

uniformly for x ∈ K, where K ⊂ L2(P, H) is any bounded subset. In addition, W (t)

is a two-sided standard one-dimensional Brownian motion defined on the filtered

probability space (Ω, F , P, Ft), where Ft = σ{W (u) − W (v); u, v ≤ t}.

Throughout the rest of the paper, A : D(A) ⊂ L2(P, H) → L2(P, H) is the

infinitesimal generator of a resolvent operator {R(t) : t ≥ 0} in the Hilbert space

L2(P, H) and B(t) : D(B(t)) ⊂ L2(P, H) → L2(P, H), t ≥ 0 is a bounded linear

operator. To obtain our results, we assume that the abstract Cauchy problem

(2.1)

{
dx(t) =

[
Ax(t) +

∫ t

0
B(t − s)x(s)ds

]
dt, t ≥ 0,

x(0) = x0 ∈ L2(P, H),

has an associated resolvent operator of bounded linear operators {R(t) : t ≥ 0} on

L2(P, H).

Definition 2.1. A family of bounded linear operators {R(t) : t ≥ 0} from L2(P, H)

into L2(P, H) is a resolvent operator family for the problem (2.1) if the following

conditions are verified.

(i) R(0) = I (the identity operator on L2(P, H)) and the map t → R(t)x is a

continuous function on [0, +∞) → L2(P, H) for every x ∈ L2(P, H);

(ii) R(t)D(A) ⊂ D(A) for all t ≥ 0 and all x ∈ D(A), AR(t)x is continuous on

[0, +∞) and R(t)x is continuously differentiable on [0, +∞);

(iii) For every x ∈ D(A) and t ≥ 0,

d

dt
R(t)x = AR(t)x +

∫ t

0

B(t − s)R(s)xds,

d

dt
R(t)x = R(t)Ax +

∫ t

0

R(t − s)B(s)xds.
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For more on resolvent of bounded linear operators and related issues, we refer

the reader to [16, 17, 23].

Definition 2.2 ([21]). A stochastic process x : R → L2(P, H) is said to be stochasti-

cally continuous if

lim
t→s

E‖x(t) − x(s)‖2 = 0.

Definition 2.3 ([10]). A stochastically continuous stochastic process x : R → L2(P, H)

is said to be square-mean almost automorphic if for every sequence of real numbers

{s′n}n∈N, there exist a subsequence {sn}n∈N and a stochastic process y : R → L2(P, H)

such that

lim
n→∞

E‖x(t + sn) − y(t)‖2 = 0 and lim
n→∞

E‖y(t− sn) − x(t)‖2 = 0

hold for each t ∈ R. The collection of all square-mean almost automorphic stochastic

processes x : R → L2(P, H) is denoted by AA (R; L2(P, H)).

Definition 2.4 ([10]). A function f : R×L2(P, H) → L2(P, H), (t, x) → f(t, x), which

is jointly continuous, is said to be square-mean almost automorphic if f(t, x) is square-

mean almost automorphic in t ∈ R uniformly for all x ∈ K, where K is any bounded

subset of L2(P, H). That is to say, for every sequence of real numbers {s′n}n∈N, there

exists a subsequence {sn}n∈N and a function f̃ : R × L2(P, H) → L2(P, H) such that

lim
n→∞

E‖f(t + sn, x) − f̃(t, x)‖2 = 0 and lim
n→∞

E‖f̃(t − sn, x) − f(t, x)‖2 = 0

for each t ∈ R and each x ∈ K. Denote by AA (R × L2(P, H); L2(P, H)) the set of all

such functions.

Lemma 2.5 ([21]). (AA (R; L2(P, H)) , ‖ · ‖∞) is a Banach space when it is equipped

with the norm

‖x‖∞ := sup
t∈R

‖x(t)‖2 = sup
t∈R

(E‖x(t)‖2)
1

2 ,

for x ∈ AA (R; L2(P, H)).

Lemma 2.6 ([10]). Let f : R×L2(P, H) → L2(P, H), (t, x) → f(t, x) be square-mean

almost automorphic, and assume that f(t, ·) is uniformly continuous on each bounded

subset K ⊂ L2(P, H) uniformly for t ∈ R, that is for all ε > 0, there exists δ > 0

such that x, y ∈ K and E‖x − y‖2 < δ imply that E‖f(t, x) − f(t, y)‖2 < ε for all

t ∈ R. Then for any square-mean almost automorphic process x : R → L2(P, H), the

stochastic process F : R → L2(P, H) given by F (·) := f (·, x(·)) is square-mean almost

automorphic.

Definition 2.7. A stochastically continuous process f : R
+ → L2(P, H) is said

to be square-mean asymptotically almost automorphic if it can be decomposed as

f = g + h, where g ∈ AA (R; L2(P, H)) and h ∈ C0 (R+; L2(P, H)). Denote by
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AAA (R+; L2(P, H)) the collection of all the square-mean asymptotically almost au-

tomorphic processes f : R
+ → L2(P, H).

Definition 2.8. A function f : R
+ × L2(P, H) → L2(P, H), (t, x) → f(t, x), which

is jointly continuous, is said to be square-mean asymptotically almost automorphic

if it can be decomposed as f = g + h, where g ∈ AA (R × L2(P, H); L2(P, H)) and

h ∈ C0 (R+ × L2(P, H); L2(P, H)). Denote by AAA (R+ × L2(P, H); L2(P, H)) the set

of all such functions.

Now, we introduce a few preliminary and important results.

Lemma 2.9. If f , f1 and f2 are all square-mean asymptotically almost automorphic

stochastic processes, then the following hold true:

(I) f1 + f2 is square-mean asymptotically almost automorphic;

(II) λf is square-mean asymptotically almost automorphic for any scalar λ;

(III) there exists a constant M > 0 such that supt∈R+ E‖f(t)‖2 ≤ M .

Proof. The proof of statements (I) and (II) can be performed along the direction of the

proof of Theorem 2.5.3 in [27]. So, we only prove (III). Since f ∈ AAA (R+; L2(P, H)),

we have by definition that f = g + h, where g ∈ AA (R; L2(P, H)) and h ∈ C0(R
+;

L2(P, H)). Then, by [21, Lemma 2.3.(3)], there exists a constant M1 > 0 such that

E‖g(t)‖2 ≤ M1

for each t ∈ R. On the other hand, since limt→+∞ E‖h(t)‖2 = 0, then for any given

ε > 0, there exists a constant T > 0 such that

E‖h(t)‖2 < ε

for each t ∈ (T, +∞). Note that E‖h(t)‖2 is uniformly continuous on [0, T ], therefore

there exists a constant M2 > ε such that

E‖h(t)‖2 ≤ M2

for each t ∈ [0, T ]. Now let M = 2(M1 + M2). Then, for each t ∈ R
+, we have

E‖f(t)‖2 ≤ 2E‖g(t)‖2 + 2E‖h(t)‖2 ≤ 2(M1 + M2) = M.

Lemma 2.10. Suppose that f ∈ AAA (R+; L2(P, H)) admits a decomposition f =

g + h, where g ∈ AA (R; L2(P, H)) and h ∈ C0 (R+; L2(P, H)). Then {g(t) : t ∈ R} ⊂

{f(t) : t ∈ R+}.

Proof. By the definition of AA (R; L2(P, H)), there exists a subsequence {sn}n∈N of

{s′n}n∈N with limn→∞ sn = +∞ such that for a certain stochastic process g̃

(2.2) lim
n→∞

E‖g(t + sn) − g̃(t)‖2 = 0 and lim
n→∞

E‖g̃(t − sn) − g(t)‖2 = 0
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holds for each t ∈ R. For any fixed t0 ∈ R, we note that the sequence t0 + sn → +∞

as n → +∞. Hence, we obtain

lim
n→+∞

E‖f(t0 + sn) − g̃(t0)‖
2 = lim

n→+∞
E‖g(t0 + sn) + h(t0 + sn) − g̃(t0)‖

2

≤ 2 lim
n→+∞

E‖g(t0 + sn) − g̃(t0)‖
2

+2 lim
n→+∞

E‖h(t0 + sn)‖2

= 0.

Therefore, g̃(t0) ∈ {f(t) : t ∈ R+}, which shows that {g̃(t) : t ∈ R} ⊂ {f(t) : t ∈ R+}.

On the other hand, it follows immediately from (2.2) that {g̃(t) : t ∈ R} = {g(t) : t ∈ R}.

Thus, {g(t) : t ∈ R} ⊂ {f(t) : t ∈ R+}.

Using Lemma 2.10, the following key property can be proved. One can refer to

Theorem 2.5.4 in [27] for a detailed proof.

Corollary 2.11. The decomposition of a square-mean asymptotically almost auto-

morphic process is unique.

Lemma 2.12. AAA (R+; L2(P, H)) is a Banach space when it is equipped with the

norm:

‖f‖AAA(R+;L2(P,H)) := sup
t∈R

‖g(t)‖2 + sup
t∈R+

‖h(t)‖2,

where f = g+h ∈ AAA (R+; L2(P, H)) with g ∈ AA(R; L2(P, H)), h ∈ C0 (R+; L2(P, H)).

Proof. Let {fn}
∞
n=1 be a Cauchy sequence in AAA (R+; L2(P, H)), then by definition

that there exist two sequences of functions {gn}
∞
n=1 and {hn}

∞
n=1 such that fn =

gn + hn, n = 1, 2, . . . , where gn ∈ AA (R; L2(P, H)) and hn ∈ C0 (R+; L2(P, H)) for

n = 1, 2, . . . . From Lemma 2.10, we easily deduce that {gn}
∞
n=1 is also a Cauchy

sequence of square-mean almost automorphic functions with respect to the norm of

the space AA (R; L2(P, H)). Thus there exists a function g ∈ AA (R; L2(P, H)) such

that limn→∞ ‖gn−g‖2 = 0 uniformly. Furthermore, the second terms of the functions

fn : {hn}
∞
n=1 form a Cauchy sequence of continuous functions with respect to the

norm sup. Hence, there exists a continuous function h such that ‖hn − h‖2 → 0

uniformly on R
+, as n → ∞.

Now, using the fact that for each n ∈ N, limt→+∞ ‖hn(t)‖2 = 0 and the equality

h(t) = h(t) − hn(t) + hn(t) for t ∈ R
+, we obtain

lim
t→+∞

‖h(t)‖2 = 0.

Thus f := g + h ∈ AAA (R+; L2(P, H)) and limn→∞ ‖fn − f‖2 = 0, so the space

AAA (R+; L2(P, H)) is a Banach space.
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Lemma 2.13. AAA (R+; L2(P, H)) is a Banach space with the norm:

‖f‖∞ := sup
t∈R+

‖f(t)‖2 = sup
t∈R+

(
E‖f(t)‖2

) 1

2 .

Proof. The proof can be performed along the same line of the proof of [19, Lemma 1.8.],

and we omit the details here.

Remark 2.14. In view of the previous Lemmas it is clear that the two norms are

equivalent in AAA (R+; L2(P, H)).

Lemma 2.15. Let f ∈ AA (R × L2(P, H); L2(P, H)) and let f(t, x) be uniformly con-

tinuous in any bounded subset K ⊂ L2(P, H) uniformly for t ∈ R
+. Then f(t, x) is

uniformly continuous in any bounded subset K ⊂ L2(P, H) uniformly for t ∈ R.

Proof. By the definition of AA (R × L2(P, H); L2(P, H)), there exists a subsequence

{sn}n∈N of {s′n}n∈N with limn→∞ sn = +∞ such that for a certain stochastic process

f̃

(2.3) lim
n→∞

E‖f(t + sn, x) − f̃(t, x)‖2 = 0

and

(2.4) lim
n→∞

E‖f̃(t − sn, x) − f(t, x)‖2 = 0

holds for each t ∈ R and each x ∈ K. Since f(t, x) is uniformly continuous in any

bounded subset K ⊂ L2(P, H) uniformly for t ∈ R
+, then for any ε > 0, there exists

δ > 0 such that for all x, y ∈ K with E‖x − y‖2 < δ and all t ∈ R
+

E‖f(t, x) − f(t, y)‖2 < ε.

Take any t ∈ R. For sufficiently large n, we have t + sn > 0. Thus

E‖f(t + sn, x) − f(t + sn, y)‖2 < ε.

Now, by (2.3), we get that

E‖f̃(t, x) − f̃(t, y)‖2 < ε,

which yields that f̃(t, x) is uniformly continuous in any bounded subset K ⊂ L2(P, H)

uniformly for t ∈ R. Next by (2.4), analogously to the above proof, we can prove

that f(t, x) is uniformly continuous in any bounded subset K ⊂ L2(P, H) uniformly

for t ∈ R.

Theorem 2.16. Let f ∈ AAA (R+ × L2(P, H); L2(P, H)) and suppose that f(t, x) is

uniformly continuous in any bounded subset K ⊂ L2(P, H) uniformly for t ∈ R
+. If

u(t) ∈ AAA (R+; L2(P, H)), then f (·, u(·)) ∈ AAA (R+; L2(P, H)).
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Proof. Suppose that f and u have the following decompositions: f = g + h and

u = α+β, where g ∈ AA (R × L2(P, H); L2(P, H)), h ∈ C0 (R+ × L2(P, H); L2(P, H)),

α ∈ AA (R; L2(P, H)) and β ∈ C0 (R+; L2(P, H)).

Now we write

f (t, u(t)) = f (t, u(t)) − f (t, α(t)) + g (t, α(t)) + h (t, α(t))

= I(t) + J(t) + N(t),

where I(t) = f (t, u(t))−f (t, α(t)), J(t) = g (t, α(t)) and N(t) = h (t, α(t)). Combin-

ing limt→+∞ E‖u(t)−α(t)‖2 = 0 with f(t, ·) is uniformly continuous in any bounded

subset K ⊂ L2(P, H) uniformly for t ∈ R
+, we get

lim
t→+∞

E‖I(t)‖2 = lim
t→+∞

E‖f (t, u(t)) − f (t, α(t)) ‖2 = 0.

On the other hand, from the definition of C0 (R+ × L2(P, H); L2(P, H)), it is easy to

see that h is uniformly continuous on K uniformly for t ∈ R
+, where K ⊂ L2(P, H)

is any bounded subset. Thus, the function g is uniformly continuous on any bounded

subset K ⊂ L2(P, H) uniformly for t ∈ R
+. Now, Lemma 2.15 yields that g(t, x)

is uniformly continuous in any bounded subset K ⊂ L2(P, H) uniformly for t ∈

R. By Lemma 2.6, J(·) = g (·, α(·)) ∈ AA (R; L2(P, H)). Furthermore, from h ∈

C0 (R+ × L2(P, H); L2(P, H)), we see that lim
t→+∞

E‖N(t)‖2 = lim
t→+∞

E‖h (t, α(t)) ‖2 =

0. Hence, we have f (·, u(·)) ∈ AAA (R+; L2(P, H)).

We now give the following concept of mild solution of system (1.1).

Definition 2.17. An Ft-adapted stochastic process x : [0, +∞) → L2(P, H) is called

a mild solution of problem (1.1) if x(0) = x0 is F0-measurable and x(t) satisfies the

corresponding stochastic integral equation

x(t) = R(t)x0 +

∫ t

0

R(t − s)f (s, x(s)) dW (s)

for all t ≥ 0.

3. MAIN RESULTS

In this section, we establish the existence of square-mean asymptotically almost

automorphic mild solutions to (1.1). For that, we need the following technical result.

Lemma 3.1. Let {R(t) : t ≥ 0} be a family of bounded linear operators on L2(P, H)

satisfying ‖R(t)‖ ≤ Me−δt for all t ≥ 0, where M, δ > 0 are fixed constants, and

let f ∈ AAA (R+; L2(P, H)). If Υ is the function defined by Υ(t) :=
∫ t

0
R(t −

s)f(s)dW (s), t ≥ 0, then Υ(·) ∈ AAA (R+; L2(P, H)).
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Proof. Suppose that f = g+h, where g ∈ AA (R; L2(P, H)) and h ∈ C0 (R+; L2(P, H)).

Then

Υ(t) =

∫ t

0

R(t − s)g(s)dW (s) +

∫ t

0

R(t − s)h(s)dW (s)

=

∫ t

−∞

R(t − s)g(s)dW (s) −

∫ 0

−∞

R(t − s)g(s)dW (s) +

∫ t

0

R(t − s)h(s)dW (s)

= Υ1(t) + Υ2(t),

where Υ1(t) =
∫ t

−∞
R(t−s)g(s)dW (s) and Υ2(t) =

∫ t

0
R(t−s)h(s)dW (s)−

∫ 0

−∞
R(t−

s)g(s)dW (s).

First we prove that Υ1(t) ∈ AA (R; L2(P, H)). Let {s′n}n∈N be an arbitrary se-

quence of real numbers. Since g ∈ AA (R; L2(P, H)), there exists a subsequence

{sn}n∈N of {s′n}n∈N such that for a certain stochastic process g̃

(3.1) lim
n→∞

E‖g(t + sn) − g̃(t)‖2 = 0 and lim
n→∞

E‖g̃(t − sn) − g(t)‖2 = 0.

hold for each t ∈ R. Now, let W̃ (σ) := W (σ + sn)−W (sn) for each σ ∈ R. Note that

W̃ is also a Brownian motion and has the same distribution as W . Moreover, if we

let Υ̃1(t) =
∫ t

−∞
R(t− s)g̃(s)dW (s), then by making a change of variables σ = s− sn

to get (please see equation (10.6.6) in [25])

E‖Υ1(t + sn) − Υ̃1(t)‖
2

= E

∥∥∥∥
∫ t+sn

−∞

R(t + sn − s)g(s)dW (s)−

∫ t

−∞

R(t − s)g̃(s)dW (s)

∥∥∥∥
2

= E

∥∥∥∥
∫ t

−∞

R(t − σ)[g(σ + sn) − g̃(σ)]dW̃ (σ)

∥∥∥∥
2

and hence, using the Ito’s isometry property of stochastic integral, we have the fol-

lowing estimations

E‖Υ1(t + sn) − Υ̃1(t)‖
2 ≤ E

(∫ t

−∞

‖R(t − σ)[g(σ + sn) − g̃(σ)]‖2dσ

)

≤ M2

∫ t

−∞

e−2δ(t−σ)E‖g(σ + sn) − g̃(σ)‖2dσ

≤
M2

2δ
sup
t∈R

E‖g(t + sn) − g̃(t)‖2.

Thus, by (3.1), we immediately obtain that

lim
n→∞

E‖Υ1(t + sn) − Υ̃1(t)‖
2 = 0

for each t ∈ R. A similar reasoning establishes that

lim
n→∞

E‖Υ̃1(t − sn) − Υ1(t)‖
2 = 0

for each t ∈ R. Thus we conclude that Υ1(·) ∈ AA (R; L2(P, H)).
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Next, let us show that Υ2 ∈ C0 (R+; L2(P, H)). Since h ∈ C0 (R+; L2(P, H)), for

any sufficiently small ε > 0, there exists a constant T > 0 such that E‖h(s)‖2 ≤ ε

for all s ≥ T . Then, for all t ≥ 2T , we obtain

E‖Υ2(t)‖
2 = E

∥∥∥∥∥

∫ t

2

0

R(t − s)h(s)dW (s) +

∫ t

t

2

R(t − s)h(s)dW (s)

−

∫ 0

−∞

R(t − s)g(s)dW (s)

∥∥∥∥
2

≤ 3E

(∫ t

2

0

‖R(t − s)h(s)‖2ds

)
+ 3E

(∫ t

t

2

‖R(t − s)h(s)‖2ds

)

+3E

(∫ 0

−∞

‖R(t − s)g(s)‖2ds

)

≤ 3M2

∫ t

2

0

e−2δ(t−s)E‖h(s)‖2ds + 3M2

∫ t

t

2

e−2δ(t−s)E‖h(s)‖2ds

+3M2

∫ 0

−∞

e−2δ(t−s)E‖g(s)‖2ds

≤
3M2

2δ
[e−δt − e−2δt] sup

t∈R+

E‖h(t)‖2

+
3M2

2δ
[1 − e−δt]ε +

3M2

2δ
e−2δt sup

t∈R

E‖g(t)‖2

≤ 3M22δMhe
−δt +

3M2

2δ
ε +

3M2

2δ
Mge

−2δt,

where Mh = supt∈R+ E‖h(t)‖2 and Mg = supt∈R E‖g(t)‖2. Therefore, the last es-

timation converges to zero as t → +∞ since ε is arbitrary. Thus, it leads to

limt→+∞ E‖Υ2(t)‖
2 = 0. Recalling that Υ(t) = Υ1(t) + Υ2(t) for all t ≥ 0, we

get Υ(t) ∈ AAA (R+; L2(P, H)). The proof is completed.

Let us list the following assumptions:

(H1) There exists a resolvent operator {R(t) : t ≥ 0} of Eq. (1.1) and {R(t) : t ≥ 0}

is uniformly exponentially stable, that is, there are constants M, δ > 0 such that

‖R(t)‖ ≤ Me−δt for all t ≥ 0.

(H2) The function f ∈ AAA (R+ × L2(P, H); L2(P, H)) and there exists a continuous

and nondecreasing function Lf : [0, +∞) → [0, +∞) such that for each r ≥ 0 and for

all E‖x‖2 ≤ r, E‖y‖2 ≤ r,

E‖f(t, x) − f(t, y)‖2 ≤ Lf (r)E‖x − y‖2

for all t ∈ R
+.

(H3) Θ := supr>0

[
δr
M2 − 2rLf(r)

]
> 2δE‖x0‖

2 + 2 sups∈R+ E‖f(s, 0)‖2.

Now, we are ready to establish our main results.
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Theorem 3.2. Assume that (H1)–(H3) hold. Then the problem (1.1) has a unique

square-mean asymptotically almost automorphic mild solution.

Proof. We define the operator Λ : AAA (R+; L2(P, H)) → AAA (R+; L2(P, H)) by

(Λx)(t) = R(t)x0 +

∫ t

0

R(t − s)f (s, x(s)) dW (s)

= Λ1(t) + Λ2(t), t ≥ 0,

where Λ1(t) = R(t)x0 and Λ2(t) =
∫ t

0
R(t − s)f (s, x(s)) dW (s).

First we prove that Λ (AAA (R+; L2(P, H))) ⊂ AAA (R+; L2(P, H)). Given x ∈

AAA (R+; L2(P, H)), it is not difficult to prove that Λx is continuous. Since x(t)

is bounded, we can choose a bounded subset K of L2(P, H) such that x(t) ∈ K

for all t ∈ R
+. It follows from (H2) that f(t, x) is uniformly continuous on the

bounded subset K uniformly for t ∈ R
+. Then, Theorem 2.16 yields that f (·, x(·)) ∈

AAA (R+; L2(P, H)). Now, by Lemma 3.1, we have

Λ2(t) :=

∫ t

0

R(t − s)f (s, x(s)) dW (s) ∈ AAA
(
R

+; L2(P, H)
)
.

On the other hand, since R(·) is uniformly exponentially stable, it follows that

lim
t→+∞

E‖Λ1(t)‖
2 = 0.

Thus, Λx ∈ AAA (R+; L2(P, H)).

Now, by (H4), there exists a constant r > 0 such that

(3.2)
δr

M2
− 2rLf(r) > 2δE‖x0‖

2 + 2 sup
s∈R+

E‖f(s, 0)‖2.

Let D = {x ∈ AAA (R+; L2(P, H)) : ‖x‖∞ ≤ r}. Then D is a closed subspace of

AAA (R+; L2(P, H)). We claim that ΛD ⊆ D. In fact, for any given x ∈ D and

t ∈ R
+, we get

E‖(Λx)(t)‖2 ≤ 2M2E‖x0‖
2 + 2E

∥∥∥∥
∫ t

0

R(t − s)f (s, x(s)) dW (s)

∥∥∥∥
2

≤ 2M2E‖x0‖
2 + 2E

(∫ t

0

‖R(t − s)f (s, x(s)) ‖2ds

)

≤ 2M2E‖x0‖
2 + 2M2

∫ t

0

e−2δ(t−s)E‖f (s, x(s)) ‖2ds

≤ 2M2E‖x0‖
2 + 4M2

[∫ t

0

e−2δ(t−s)Lf(r)rds

+

∫ t

0

e−2δ(t−s)E‖f (s, 0) ‖2ds

]

≤ 2M2E‖x0‖
2 +

2M2

δ

[
Lf(r)r + sup

s∈R+

E‖f(s, 0)‖2

]
,

which from (3.2) implies that ‖Λx‖∞ ≤ r and so that ΛD ⊆ D.
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Next, we prove that Λ(·) is a contraction mapping on D. From (3.2) we know

that δr
M2 − 2rLf (r) > 0, i.e., δr

M2 > 2rLf(r). Therefore, we have

(3.3)
2M2

δ
Lf (r) < 1.

For any x, y ∈ D and t ≥ 0, we see that

E‖(Λx)(t) − (Λy)(t)‖2 ≤ E

∥∥∥∥
∫ t

0

R(t − s)[f (s, x(s)) − f (s, y(s))]dW (s)

∥∥∥∥
2

≤ M2

∫ t

0

e−2δ(t−s)E‖f (s, x(s)) − f (s, y(s)) ‖2ds

≤
M2

2δ
Lf(r) sup

t∈R+

E‖x(t) − y(t)‖2

Hence

‖Λx − Λy‖∞ = sup
t∈R+

(
E‖(Λx)(t) − (Λy)(t)‖2

) 1

2 ≤

√
M2

2δ
Lf(r) ‖x − y‖

∞
.

By (3.3), Λ is a contraction from D into D. So by the Banach contraction principle,

we draw a conclusion that there exists a unique fixed point x(·) for Λ in D. It is

clear that x is a square-mean asymptotically almost automorphic mild solution of

Eq. (1.1). The proof is now complete.

Corollary 3.3. Assume that (H1)–(H2) hold. If Lf (·) ≡ Lf and 2Lf < δ
M2 , then

there exists a unique square-mean asymptotically almost automorphic mild solution

to Eq. (1.1).

Proof. Consider the nonlinear operator Λ given by

(Λx)(t) := R(t)x0 +

∫ t

0

R(t − s)f (s, x(s)) dW (s), t ≥ 0.

Then, from the proof of Theorem 3.2, we can see that Λ maps AAA (R+; L2(P, H))

into itself. Note that

2δE‖x0‖
2 + 2 sup

s∈R+

E‖f(s, 0)‖2 < +∞,

since 2Lf < δ
M2 , there exists a constant r0 > 0 such that for all r ≥ r0, we have

δr

M2
− 2rLf(r) > 2δE‖x0‖

2 + 2 sup
s∈R+

E‖f(s, 0)‖2.

In the following, using the same proof as in Theorem 3.2, we know that there exists

a unique mild solution x ∈ AAA (R+; L2(P, H)) to Eq. (1.1).
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4. APPLICATIONS

In this section, we apply our previous existence results to study the existence

of square-mean asymptotically almost automorphic mild solutions for the stochastic

partial integro-differential equation

θ′′(t) + β(0)θ′(t) = α(0)∆θ(t) −

∫ t

0

β ′(t − s)θ′(s)ds

+

∫ t

0

α′(t − s)∆θ(s)ds + a1(t)a2(θ(t))W (t),(4.1)

where α(·), β(·) are real valued functions of class C2 on [0, +∞) with α(0) > 0,

β(0) > 0, and W (t) is a two-sided standard one-dimensional Brownian motion defined

on the filtered probability space (Ω, F , P, Ft).

As was observed in [23, 26], the deterministic system of the type (4.1) arise in the

study of heat conduction in materials with fading memory. In [24], the authors estab-

lished the existence of almost periodic and asymptotically almost periodic solutions

for the partial integro-differential equation

Cθ′′(t) + β(0)θ′(t) = α(0)∆θ(t) −

∫ t

0

β ′(t − s)θ′(s)ds

+

∫ t

0

α′(t − s)∆θ(s)ds + a1(t)a2(θ(t)),

where α(·), β(·) are R-valued functions of class C2 on [0, +∞) with α(0) > 0, β(0) > 0.

Recently, in [19], the authors studied the existence of asymptotically almost automor-

phic mild solutions to the partial integro-differential equation of the form

θ′′(t) + β(0)θ′(t) = α(0)∆θ(t) −

∫ t

0

β ′(t − s)θ′(s)ds

+

∫ t

0

α′(t − s)∆θ(s)ds + a(t)b(θ(t)),

where Ω is a bounded open connected subset of R
3 with C∞ boundary and α, β ∈

C2([0, +∞), R) with α(0) and β(0) positive. Now, we go back to investigate the

existence of square-mean asymptotically almost automorphic mild solutions to (4.1).

Throughout the rest of this section, we take X = H1
0 (Ω) × L2(Ω) where Ω ⊂ R

3

is a bounded open connected subset with smooth boundary of class C∞. We consider

the linear operator A : D(A) = (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) → X is defined by

A

(
x

y

)
=

(
y

α(0)∆ − β(0)y

)

where ∆ is the Laplacian on Ω with boundary conditions θ|∂Ω = 0. It follows from

[15] that A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 on X and that

there are constants M, ̟ > 0 such that ‖T (t)‖ ≤ Me−̟t for all t ≥ 0.
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We suppose that B(t) = F (t)A where F : X → X is defined by

F (t) = [Fij(t)] =

(
0 0

−β ′(t) + β(0)α′(t)
α(0)

α′(t)
α(0)

)

and assume that α′(·), α′′(·), β ′(·), β ′′(·) are bounded and uniformly continuous, and

for all t ≥ 0

max {‖F21(t)‖, ‖F22(t)‖} ≤
̟e−̟t

2M
,

max {‖F ′
21(t)‖, ‖F

′
22(t)‖} ≤

̟2e−̟t

4M
2 .

Then, Eq. (4.1) takes the following abstract form

(4.2) dx(t) =

[
Ax(t) +

∫ t

0

B(t − s)x(s)ds

]
dt + f (t, x(t)) dW (t), t ≥ 0,

where

x(t) =

(
θ(t)

η(t)

)
and f(t, x) =

(
0

a1(t)a2(θ)

)
for x =

(
θ

η

)
∈ X.

Moreover, it follows from [23] that the abstract integro-differential system has an

associated uniformly exponentially stable resolvent of operator {R(t)}t≥0 on X with

‖R(t)‖ ≤ Me−
̟t

2 for t ≥ 0.

Let a1(t) ∈ AAA(R+; R) and a2 : L2 (P, H1
0(Ω)) → L2 (P, L2(Ω)) satisfies

(4.3) E‖a2(θ1) − a2(θ2)‖
2 ≤

̟

6M
2
supt∈R+ ‖a1(t)‖2

E‖θ1 − θ2‖
2

for all θ1, θ2 ∈ L2 (P, H1
0 (Ω)). We claim that for each θ0 ∈ L2 (P, H1

0(Ω)) and η0 ∈

L2 (P, L2(Ω)), Eq. (4.2) with the initial value condition

(4.4) x(0) =

(
θ0

η0

)

satisfy all the conditions of Corollary 3.1. Clearly, (H1) holds. Since a1(t) ∈ AAA(R+; R),

f ∈ AAA (R+ × L2(P, X); L2(P, X)). Take

x =

(
θ1

η1

)
, y =

(
θ2

η2

)
∈ L2(P, X).

By (4.3), we have

E‖f(t, x) − f(t, y)‖2 = E‖a1(t)[a2(θ1) − a2(θ2)]‖
2

≤ sup
t∈R+

‖a1(t)‖
2E‖a2(θ1) − a2(θ2)‖

2

≤
̟

6M
2 E‖θ1 − θ2‖

2

≤
̟

6M
2 E‖x − y‖2

for all t ≥ 0. Hence, (H2) holds with Lf ≡ ̟

6M
2 .
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Notice that δ = ̟
2
, M = M . Therefore

2Lf =
̟

3M
2 <

̟

2M
2 =

δ

M2
.

Thus, by Corollary 3.1, Eq. (4.2) with the initial value condition (4.4) has a unique

square-mean asymptotically almost automorphic mild solution.
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