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1. INTRODUCTION

The theory of ordinary differential equations is one of the most important branches

of mathematics since it finds numerous and very essential applications. The classical

theory of those equations i.e., the theory of ordinary differential equations in finfite

dimensional spaces became almost closed around fiftieth years of the past century.

The classical monographs [6, 9] present almost complete state of that theory.

In 1950 theory of ordinary differential equations obtained a new impetus after

famous examples of Dieudonné [8] who showed that in the case of infinite dimension

the classical results of that theory fail to work. Starting from that moment a great

interest has been focused on the theory of ordinary differential equations in Banach

(infinite dimensional) spaces (cf. [7, 10, 13, 14, 15]). There have been developed new

methods and new tools useful in the study of those equations. Thorough state of the

discussed theory up to the year 1977 was presented in the monograph [7].
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The majority of results concerning the theory of differential equations in infinite

dimensional Banach spaces were obtained till the end of the eighties of the past cen-

tury. The most imortant part of those results is devoted to the existence of solutions

of considered differential equations. Those results were mainly obtained with the use

of the technique of the so-called measuers of noncompactness [1, 2].

It is worthwhile mentioning that although the monograph of Deimling [7] indi-

cated some important applications of the theory of differential equations in Banach

spaces, mathematicians have not paid special attention to those applications. To jus-

tify such an opinion it is sufficient to notice that in [7] the author indicated among

possible applications, the infinite systems of differential equations. Such systems ap-

pear both in a natural way in several considerations associated with applications to

real world problems and in the study of numerical schemes of solving some problems

for partial differential equations.

Up to now there here appeared only a few papers concerning infinite systems of

differential equations (cf. [3, 4, 5, 7, 11, 12]). The aim of this paper is to present some

further results concerning mentioned infinite systems of differential equations.

We focus here on the so-called semilinear infinite systems of ordinary differential

equations i.e., on linear systems with perturbations. We will work in the classical

Banach sequence space l∞, since considerations in this space are conducted very

seldom (cf. [5]). It is caused by the fact that l∞ is not separable, thus the tools of

the theory of measures of noncompactness in Banach spaces with bases cannot be

utilized in this setting (cf. [2, 11, 12]).

On the other hand the known results concerning infinite systems of differential

equations in the space l∞ obtained in the paper [5] are not correct. Indeed, on page

110 of the mentioned paper the authors made an error in calculations.

In the present paper we correct and improve the results obtained in [5]. Let us

note that the corrected formulation of the mentioned results forced us to impose a

bit more restrective assumptions which is caused by the method used in our consid-

erations. Obviously, the validity of existence results under more general assumptions

is an open problem.

2. NOTATION, DEFINITIONS AND AUXILIARY FACTS

In this section we collect auxiliary facts and results which will be needed in our

further considerations.

At the beginning we establish some notation. Let R denote the set of real numbers

while the symbol N stands for the set of natural numbers. Put R+ = [0,∞).

Further, assume that E is a real Banach space with the norm ‖ · ‖ and the

zero element θ. If X is a subset of E then X, ConvX denote the closure and the
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convex closure of X, respectivelly. Moreover, by diamX we denote the diameter of

X, provided X is a bounded subset of E. The symbol B(x0, r) will denote the closed

ball centered at x0 and with radius r.

In what follows we will denote by ME the family of all nonempty and bounded

subsets of the space E and by NE its subfamily consisting of all relatively compact

sets. Finally, let us recall that the standard algebraic operations on sets X, Y will be

denoted by X + Y , λX for λ ∈ R.

Now, we recall the basic concept which will be the main tool used in our further

investigations. The definition of that concept is taken from [2].

Definition 2.1. A function µ : ME → R+ is called a measure of noncompactness in

the space E if it satisfies the following conditions:

1o The family ker µ = {X ∈ ME : µ(X) = 0} is nonempty and ker µ ⊂ NE .

2o X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3o µ(X) = µ(ConvX) = µ(X).

4o µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for λ ∈ [0, 1].

5o If Xn ∈ ME , Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, . . . and if lim
n→∞

µ(Xn) = 0 then

the set X∞ =
∞
⋂

n=1

Xn 6= ∅.

The family ker µ described in axiom 1o is said to be the kernel of the measure of

noncompactness µ.

Sometimes we distinguish measures of noncompactness satisfying some extra con-

ditions [2]. For example, a measure of noncompactness µ is called sublinear if it

satisfies the following two conditions:

6o µ(X + Y ) ≤ µ(X) + µ(Y ).

7o µ(cX) = cµ(X) for c ∈ R.

For further facts connected with measures of noncompactness we refer to [2].

Now, let us consider the space l∞ consisting of all real and bounded sequences

x = (xi), equipped with the standard supremum norm

‖x‖ = ‖(xi)‖ = sup{|xi| : i = 1, 2, . . .}.

Obviously, l∞ is nonseparable Banach space.

We recall certain measure of noncompactness in the space l∞ [2]. To this end

take a set X ∈ Ml∞. For a fixed natural number n let us donote

Xn = {xn : x = (xi) ∈ X}.

Observe that Xn represents the intersection of the set X at n-th coordinate.
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Further, let us put

(2.1) µ(X) = lim sup
n→∞

diamXn,

where the symbol diamXn stands for the diameter of the set Xn i.e., diamXn =

sup{|xn − yn| : x, y ∈ X}.

It can be shown [2] that the function µ defined by (2.1) is a sublinear measure

of noncompactness in the space l∞ (in the sense of Definition 2.1). The kernel ker µ

of this measure contains all bounded and nonempty subsets X of l∞ such that the

thickness of the bundle formed by sequences of the set X tends to zero at infinity.

This observation plays an important role in characterization of solutions of some

operator equations.

In what follows let I = [0, T ] be a given interval. For the transparency we will

write IT to denote the interval [0, T ]. Next, consider the function f(t, x) = f :

IT × B(x0, r) → E, where E is a fixed real Banach space and B(x0, r) is a ball in E.

Let us take into account the ordinary differential equation

(2.2) x′ = f(t, x)

with the initial condition

(2.3) x(0) = x0.

Our considerations in the next section will be based on the following existence result

concerning the initial value problem (2.2)–(2.3) [3].

Theorem 2.2. Assume that f = f(t, x) is a function defined on the set IT × E

with values in E such that ‖f(t, x)‖ ≤ A‖x‖ + B for t ∈ IT and x ∈ E, where A

and B are nonnegative constants. Further, let f be uniformly continuous on the set

IT × B(x0, r), where AT < 1 and r = (BT + AT‖x0‖)/(1 − AT ). Assume that µ is

a sublinear measure of noncompactness in a Banach space E with {x0} ∈ ker µ and

such that for each nonempty set X ⊂ B(x0, r) and for almost all t ∈ I the following

inequality holds

µ(f(t, X)) ≤ p(t)µ(X),

where p = p(t) is an integrable function on IT . Then problem (2.2)–(2.3) has a

solution x = x(t) defined on the interval IT and such that x(t) ∈ ker µ for any t ∈ IT .

Remark 2.3. Under assumptions of Theorem 2.2 it can be show (cf. [2]) that if

y = y(t) is an arbitrary solution of problem (2.2)–(2.3) such that y(t) ∈ B(x0, r) for

t ∈ IT , then y(t) ∈ ker µ for t ∈ IT .
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3. EXISTENCE THEOREMS FOR A SEMILINEAR INFINITE

SYSTEM OF DIFFERENTIAL EQUATIONS

In this section we present main results of the paper. Namely, we will consider

the following semilinear infite system of differential equations

(3.1) x′

i =
∞
∑

j=1

aij(t)xj + gj(t, x1, x2, . . . )

with the initial conditions

(3.2) xi = (0) = x0

i

for i = 1, 2, . . . and t ∈ IT = [0, T ].

The above written problem (3.1)–(3.2) will be considered in the Banach space l∞

under the below listed assumptions.

(i) x0 = (x0
i ) ∈ l∞.

(ii) The mapping g = (g1, g2, . . . ) transformsthe set IT × l∞ into l∞ and is uniformly

continuous.

(iii) There exists a sequence (bi) convergent to zero and such that |gi(t, x1, x2, . . . )| ≤

bi for all t ∈ IT , x = (xi) ∈ l∞ and for i = 1, 2, . . . .

(iv) For all natural numbers i, j the function aij(t) = aij : IT → R+ is nondecreasing

on the interval IT .

(v) For each i ∈ N the function series
∞
∑

j=1

aij(t) is uniformly convergent on IT .

Taking into account assumptions (iv), (v), for an arbitrarily fixed i ∈ N we can

consider the functions Ai(t), Ai(t) and Ai(t) defined on the interval IT in the following

way:

Ai(t) =
∞
∑

j=1

aij(t),

Ai(t) =
i−1
∑

j=1

aij(t),

Ai(t) =
∞
∑

j=i

aij(t).

Obviously the above formula defines the function Ai(t) for i ≥ 2. We can extend this

definition putting A1(t) = 0 for t ∈ IT .

Moreover, let us observe that the functions Ai(t), Ai(t) and Ai(t) are nonnegative

and nondecreasing on the interval IT .

In what follows we will additionally impose the following assumptions.

(vi) The sequence (Ai(t)) converges uniformly to zero on IT .
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(vii) The sequence (Ai(t)) is equicontinuous and equibounded on the interval IT .

Remark 3.1. Let us observe that in assumption (ii) it is sufficient to require that

the mapping g = (g1, g2, . . . ) is uniformly continuous on the set IT × B(x0, r) for

arbitrarily fixed r > 0. This observation is a consequence of Theorem 2.2 which is

used immediately in the proof of the below presented result.

For our further purposes let us define the following constants.

A = sup{Ai(t) : t ∈ IT , i = 1, 2, . . .},

B = sup{bi : i = 1, 2, . . .}.

Notice that in view of the imposed assumptions we have that A < ∞ and B < ∞.

Now, we formulate our main result.

Theorem 3.2. Let assumptions (i)–(vii) be satisfied and let AT < 1. Then problem

(3.1)–(3.2) has at least one solution x = x(t) = (xi(t)) defined on the interval IT such

that x(t) ∈ l∞ for t ∈ IT .

Proof. For an arbitrarily fixed x = (xi) ∈ l∞ and t ∈ IT let us denote

fi(t, x) =

∞
∑

j=1

aij(t)xj + gi(t, x1, x2, . . . ),

f(t, x) = (f1(t, x), f2(t, x), . . . ) = (fi(t, x)).

Further, let us fix i ∈ N. Then, applying the imposed assumptions, we obtain:

|fi(t, x)| ≤
∞
∑

j=1

aij(x)|xj | + |gi(t, x1, x2, . . . )|

(

∞
∑

j=1

aij(t)

)

sup{|xj | : j = 1, 2, . . .} + bi ≤ Ai(t)‖x‖ + bi.

This yields the following estimate

(3.3) ‖f(t, x)‖ ≤ A‖x‖ + B,

where the symbol ‖ · ‖ stands for the norm in the space l∞. From the above estimate

we deduce that the operator f = f(t, x) transforms the set IT × l∞ into l∞.

Now, let us take the number r = (BT + AT‖x0‖)/(1 − AT ) (cf. Theorem 2.2).

We will consider the operator f on the set IT × B(x0, r).

Next, fix arbitrarily t, s ∈ IT and x, y ∈ B(x0, r). Without loss of generality we

may assume that s < t (cf. assumption (iv)). Then, in virtue of our assumptions, for

a fixed i ∈ N we get:

=

∣

∣

∣

∣

∣

∞
∑

j=1

aij(t)xj + gi(t, x1, x2, . . . ) −
∞
∑

j=1

aij(s)yj − gi(s, y1, y2, . . . )

∣

∣

∣

∣

∣
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≤

∣

∣

∣

∣

∣

∞
∑

j=1

aij(t)xj −
∞
∑

j=1

aij(s)yj

∣

∣

∣

∣

∣

+ |gi(t, x1, x2, . . . ) − gi(s, y1, y2, . . . )|

≤

∣

∣

∣

∣

∣

∞
∑

j=1

aij(t)xj −
∞
∑

j=1

aij(s)xj

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

j=1

aij(s)xj −
∞
∑

j=1

aij(s)yj

∣

∣

∣

∣

∣

+ |gi(t, x1, x2, . . . ) − gi(s, y1, y2, . . . )|

=

∣

∣

∣

∣

∣

∞
∑

j=1

[aij(t) − aij(s)]xj

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

j=1

aij(s)(xj − yj)

∣

∣

∣

∣

∣

+ |gj(t, x1, x2, . . . ) − gi(s, y1, y2, . . . )|

≤
∞
∑

j=1

[aij(t) − aij(s)]|xj| +
∞
∑

j=1

aij(s)|xj − yj|

+ |gi(t, x) − gi(s, y)|

≤ ‖x‖

[

∞
∑

j=1

aij(t) −
∞
∑

j=1

aij(s)

]

+ ‖x − y‖
∞
∑

j=1

aij(s)

+ |gi(t, x) − gi(s, y)|

≤ ‖x‖|Ai(t) − Ai(s)| + A‖x − y‖ + ‖g(t, x) − g(s, y)‖

≤ (‖x0‖ + r) sup{|Ai(t) − Ai(s)| : i = 1, 2, . . .} + A‖x − y‖

+ ‖g(t, x) − g(s, y)‖

Hence, keeping in mind assumptions (ii) and (vii) we infer that the operator f(t, x)

is uniformly continuous on the set IT × B(x0, r).

Further, let us take a nonempty subset X of the ball B(x0, r) and fix x, y ∈ X,

t ∈ IT . Then, for an arbitrarily fixed natural number i, i ≥ 2, we obtain:

|fi(t, x) − fi(t, y)| ≤

∣

∣

∣

∣

∣

∞
∑

j=1

aij(t)xj −
∞
∑

j=1

aij(t)yj

∣

∣

∣

∣

∣

+ |gi(t, x1, x2, . . . ) − gi(t, y1, y2, . . . )|

≤

∣

∣

∣

∣

∣

i−1
∑

j=1

aij(t)xj +
∞
∑

j=i

aij(t)xj −
i−1
∑

j=1

aij(t)yj −
∞
∑

j=i

aij(t)yj

∣

∣

∣

∣

∣

+ |gi(t, x1, x2, . . . )| + |gi(t, y1, y2, . . . )|

≤

∣

∣

∣

∣

∣

i−1
∑

j=1

aij(t)(xj − yj)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

j=i

aij(t)(xj − yj)

∣

∣

∣

∣

∣

+ 2bi

≤
i−1
∑

j=1

aij(t)|xj − yj| +
∞
∑

j=i

aij(t)|xj − yj| + 2bi
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≤ ‖x − y‖
i−1
∑

j=1

aij(t) +

(

∞
∑

j=i

aij(t)

)

sup{|xj − yj| : j ≥ i} + 2bi

≤ Ai(t)diamX + Ai(t) sup{diamXj : j ≥ i} + 2bi.

From the above estimate we conclude the following inequality

diamfi(t, X) ≤ Ai(t)diamX

+ Ai(t) sup{diamXj : j ≥ i} + 2bi,

which holds for any i ∈ N. Hence, we obtain

sup{diamfj(t, X) : j ≥ i} ≤ sup{Aj(t) : j ≥ i}diamX

+ [sup{Aj(t) : j ≥ i] sup{diamXj : j ≥ i}

+ 2 sup{bj : j ≥ i}.

The above estimate and assumptions (iii) and (v)–(vii) allows us to deduce the fol-

lowing inequality

(3.4) µ(f(t, X)) ≤ p(t)µ(X),

where the function p(t) is defined on the interval IT in the following way

p(t) = lim sup
i→∞

Ai(t) .

Finally, taking into account (3.3), (3.4) and other facts established in the above

conducted proof, in view of Theorem 2.2 we infer that there exists a solution x(t) =

(xi(t)) of problem (3.1)–(3.2) such that x(t) ∈ l∞ for each t ∈ IT . The proof is

complete.

Remark 3.3. Notice that on the basis of Theorem 2.2 it can be shown [2, 5] that

all solutions x = x(t) = (xi(t)) of problem (3.1)–(3.2) belonging to the ball B(x0, r)

i.e., x(t) ∈ B(x0, r) for t ∈ IT , are such that x(t) ∈ ker µ for t ∈ IT , where µ is the

measure of noncompactness in l∞ defined by formula (2.1).

Keeping in mind the description of the kernel ker µ given in Section 2 we conclude

that all solutions of the infinite system of differential equations (3.1) satisfying the

initial conditions (3.2) and belonging to the ball B(x0, r) for all t ∈ IT , are asymp-

totically coordinable stable according to twe following definition accepted in [5]:

We say that solutions of problem (3.1)–(3.2) are asymptotically coordinable stable

if for any ε > 0 and t ∈ IT there exists i0 ∈ N such that for arbitrary solutions x(t),

y(t) of (3.1)–(3.2) with x, y ∈ B(x0, r) we have that |xi(t) − yi(t)| ≤ ε for i ≥ i0.

In what follows we present the corrected version of the main result obtained in

the paper [5], where the following perturbed semilinear upper diagonal infinite system
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of differential equations was investigated

(3.5) x′

i =
∞
∑

j=i

aij(t)xj + gi(t, x1, x2, . . . )

together with initial conditions (3.2) i.e.,

(3.6) xi(0) = x0

i ,

for i = 1, 2, . . . and t ∈ IT = [0, T ].

Observe that system (3.5) is a particular case of system (3.1). Indeed, if we put

in (3.1) aij(t) = 0 for t ∈ IT and for j = 1, 2, . . . , i − 1 (i ≥ 2), then we obtain the

above written infinite system (3.5). This observation allows us easily formulate an

existence result concerning problem (3.5)–(3.6). To this end it is sufficient to adapt

suitably Theorem 3.2.

First of all notice that for system (3.5) assumption (vi) of Theorem 3.2 is auto-

matically satisfied since Ai ≡ 0 on the interval IT for i = 2, 3, . . . . On the other hand

observe that the remaining assumptions of Theorem 3.2 should be only modified.

Now, we formulate the corrected version of the main result of [5].

Theorem 3.4. Assume that there are satisfied hypotheses (i)–(iii) of Theorem 3.2

and additionally, the following ones:

(iv’) For all pairs of natural numbers (i, j) such that j ≥ i the function aij : IT → R+

is nondecreasing on the interval IT .

(v’) For any i ∈ N the function series
∞
∑

j=i

aij(t) is uniformly convergent on the interval

IT .

(vii’) The sequence (Ai(t)), where Ai(t) =
∞
∑

j=i

aij(t), is equicontinuous and equibounded

on IT .

If AT < 1 then problem (3.5)–(3.6) has at least one solution x = x(t) = (xi(t))

defined on the interval IT such that x(t) ∈ l∞ for any t ∈ IT .

Further on, we illustrate the result contained in Theorem 3.2 by an example.

Example 3.5. Consider the semilinear infinite system of differential equations of

form (3.1), where the functions aij(t) and gi(t, x1, x2, . . . ) are defined in the following

way:

aij(t) =
tj

ij
,

gi(t, x1, x2, . . . ) =
t arctan(xi + xi+1)

i + x2
i + x2

i+1

,

where i, j = 1, 2, . . . and t ∈ IT , and T < 1. Moreover, we assume that the above

indicated infinite system of differential equations is investigated together with initial

conditions (3.2).
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Using the classical tools of mathematical analysis it is easily seen that functions

aij(t) satisfy assumptions (iv) and (v).

Moreover, for an arbitrarily fixed natural number i we have

(3.7) Ai(t) =
1

i

∞
∑

j=1

tj

j
= −

1

i
ln(1 − t)

for t ∈ IT . This implies that the sequence (Ai(t)) appearing in assumption (vi) is

uniformly convergent to zero on the interval IT . Indeed, in view of the inequality

Ai(t) ≤ Ai(t) ≤ −
1

i
ln(1 − T )

we derive our assertion.

Further observe that in view of equality (3.7) we infer that there is satisfied

assumption (vii). Moreover, we have

(3.8) A = sup{Ai(t) : t ∈ IT , i = 1, 2, . . .} = − ln(1 − T ).

Next, let us notice that the following inequality holds for an arbitrary i ∈ N and

for x = (xi) ∈ l∞:

|gi(t, x1, x2, . . . )| ≤
Tπ/2

i + x2
i + x2

i+1

≤
Tπ

2i
.

This yields immediately that assumption (iii) is satisfied with bi = Tπ/2i for i =

1, 2, . . . . Obviously, assumption (i) is satisfied provided we impose that x0 = (x0
i ) ∈

l∞.

Finally, let us fix arbitrarily a number r > 0 and consider the ball B(x0, r) in

the space l∞. Then, it is easy to verify that the function gi(t, x1, x2, . . . ) is uniformly

continuous on the set IT × B(x0, r). This statement is a simple consequence of the

fact that the mapping g1 = g1(t, x1, x2, . . . ) has the largest modulus of continuity

among the functions gi (i = 1, 2, . . . ) on the set IT × B(x0, r). On the other hand

all functions gi are uniformly continuous on the set IT × B(x0, r) since the function

gi(t, x1, x2, . . . ) depends upon three variables only. Thus, keeping in mind Remark

3.1 we conclude that there is satisfied assumption (ii) of Theorem 3.2.

Now, we deduce that the semilinear infinite system of differential equations con-

sidered here has at least one solution x = x(t) = (xi(t)) defined on the interval

IT = [0, T ], where T < 1 and T satisfies the following inequality (cf. (3.8))

−T ln(1 − T ) < 1 .

Apart from this we have that (xi(t)) ∈ l∞ for each t ∈ IT and solutions of the studied

infinite system are asymptotically coordinable stable (cf. Remark 3.3).
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4. SOME FURTHER EXISTENCE RESULTS

In this section we will consider some special cases of the previously investigated

semilinear infinite system of differential equations (3.1) with initial conditions (3.2).

More precisely, we will consider some particular cases of the perturbation term

g = g(t, x) = (g1(t, x), g2(t, x), . . . ) appearing in infinite system (3.1).

At the beginning let us take into account the following semilinear infinite system

of differential equations

(4.1) x′

i =

∞
∑

j=1

aij(t)xj + gi(t, xi, xi+1, . . . )

with initial conditions

(4.2) xi(0) = x0

i

for i = 1, 2, . . . and for t ∈ IT = [0, T ].

In what follows we will study problem (4.1)–(4.2) under assumptions (i), (iv)–(vii)

of Theorem 3.2. Moreover, assumptions (ii), (iii) will be replaced by the following

ones:

(ii’) The function t → g(t, x) acting from the interval IT into the space l∞ is uniformly

continuous on IT , uniformly with respect to x belonging to an arbitrary ball

B(x0, r) in the space l∞.

(iii’) For each i ∈ N there exists a nonnegative constant ki such that for all x, y ∈ l∞,

x = (xi), y = (yi), the following inequality is satisfied

|gi(t, xi, xi+1, . . . ) − gi(t, yi, yi+1, . . . )| ≤ ki sup{|xj − yj| : j ≥ i}.

(iii”) The sequence (ki) of constants appearing in assumption (iii’) is bounded.

Now, observe that keeping in mind assumptions (ii’), (iii’) and (iii”) we can define

the following finite constants:

G = sup{|gi(t, 0, 0, . . . )| : t ∈ IT , i = 1, 2, . . .},

k = sup{ki : i = 1, 2, . . .}.

Further on, let us notice that assumptions (iii’), (iii”) imply that the function g =

g(t, x) satisfies the Lipschitz condition with the constant k with respect to the variable

x. Indeed, for arbitrarily fixed x = (xi), y = (yi) ∈ l∞ and for any fixed t ∈ IT we

obtain:

‖g(t, x) − g(t, y)‖ = sup{|gi(t, xi, xi+1, . . . ) − gi(t, yi, yi+1, . . . )| : i = 1, 2, . . .}(4.3)

≤ sup{ki sup{|xj − yj| : j ≥ i} i = 1, 2, . . .}

≤ sup{ki‖x − y‖ : i = 1, 2, . . .} ≤ k‖x − y‖.
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Apart from this observe that the function g = g(t, x) is uniformly continuous on the

set IT × B(x0, r), where r > 0 is arbitrarily fixed.

To prove this assertion fix arbitrarily t1, t2 ∈ IT and x1, x2 ∈ B(x0, r). Then, in

view of (4.3) we get:

‖g(t2, x2) − g(t1, x1)‖ ≤ ‖g(t2, x2) − g(t2, x1)‖ + ‖g(t2, x1) − g(t1, x1)‖

≤ k‖x2 − x1‖ + ‖g(t2, x1) − g(t1, x1)‖.

Hence, in view of assumption (ii’) we obtain the desired uniform continuity.

Now, we can formulate an existence result concerning the initial value problem

(4.1)–(4.2).

Theorem 4.1. Suppose that assumptions (i), (ii’), (iii’), (iii”) and (iv)–(vii) are

satisfuied and T (A + k) < 1. Then problem (4.1)–(4.2) has at least one solution

x = x(t) = (xi(t)) defined on the interval IT = [0, T ] and such that x(t) ∈ l∞ for

t ∈ IT .

Proof. We proceed similarly as in the proof of Theorem 3.2. Thus, fix i ∈ N. Then,

for arbitrarily chosen x = (xi) ∈ l∞ and t ∈ IT , in view of assumptions and the facts

established above, we get:

|fi(t, x)| ≤
∞
∑

j=1

aij(t)|xj | + |gi(t, xi, xi+1, . . . )|

≤ Ai(t)‖x‖ + |gi(t, xi, xi+1, . . . ) − gi(t, 0, 0, . . . )| + |gi(t, 0, 0, . . . )|

≤ Ai(t)‖x‖ + ki sup{|xj| : j ≥ i} + G ≤ A‖x‖ + ki‖x‖ + G.

This yields the following estimate

‖f(t, x)‖ ≤ (A + k)‖x‖ + G.

The above estimate implies that the operator f = f(t, x) transforms the set IT × l∞

into l∞.

Further on, let us take the number

r = (GT + (A + k)T‖x0‖)/(1 − (A + k)T ).

Consider the operator f(t, x) on the set IT × B(x0, r). In view of the earlier stated

uniform continuity of the operator g = g(t, x) on the set IT × B(x0, r) and the

reasoning conducted in the proof of Theorem 3.2, we deduce that the operator f(t, x)

is uniformly continuous on the set IT × B(x0, r).

Now, fix a nonempty subset X of the ball B(x0, r) and take arbitrary x, y ∈ X

and t ∈ IT . Then, for arbitrarily fixed i ∈ N we obtain

|fi(t, x) − fi(t, y)| ≤

∣

∣

∣

∣

∣

∞
∑

j=1

aij(t)xj −
∞
∑

j=1

aij(t)yj

∣

∣

∣

∣

∣
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+ |gi(t, xi, xi+1, . . . ) − gi(t, yi, yi+1, . . . )|

≤

∣

∣

∣

∣

∣

i−1
∑

j=1

aij(t)xj +
∞
∑

j=i

aij(t)xj −
i−1
∑

j=1

aij(t)yj −
∞
∑

j=i

aij(t)yj

∣

∣

∣

∣

∣

+ ki sup{|xj − yj| : j ≥ i}

≤

∣

∣

∣

∣

∣

i−1
∑

j=1

aij(t)(xj − yj)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

j=i

aij(t)(xj − yj)

∣

∣

∣

∣

∣

+ ki sup{diamXj : j ≥ i}

≤
i−1
∑

j=1

aij(t)|xj − yj| +
∞
∑

j=i

aij(t)|xi − xj |

+ k sup{diamXj : j ≥ i}

≤ ‖x − y‖
i−1
∑

j=1

aij(t) +

(

∞
∑

j=i

aij(t)

)

sup{|xj − yj| : j ≥ i}

+ k sup{diamXj : j ≥ i}

≤ Ai(t)diamX + Ai(t) sup{diamXj : j ≥ i}

+ k sup{diamXj : j ≥ i}.

The above estimate implies the following inequality

diamfi(t, X) ≤ Ai(t)diamX + Ai(t) sup{diamXj : j ≥ i}(4.4)

+ k sup{diamXj : j ≥ i},

which holds for any i ∈ N.

Now, similarly as in the proof of Theorem 3.2 let us define the function p : IT →

R+ by putting

p(t) = lim sup
i→∞

Ai(t).

Then, from estimate (4.4) we derive the following inequality

µ(f(t, X)) ≤ (p(t) + k)µ(X),

where µ is the measure of noncompactness defined in Section 2 by formula (2.1).

Finally, gathering all above established facts and utilizing Theorem 3.2 we com-

plete the proof.

In what follows we draw our attention to the second special case of the semilinear

infinite system of differential equations (3.1), which has the form

(4.5) x′

i =
∞
∑

j=1

aij(t)xj + gi(t, x1, x2, . . . , xi),
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for i = 1, 2, . . . and for t ∈ IT . Obviously system (4.5) will be considered with initial

conditions (3.2) i.e.,

(4.6) xi(0) = x0

i

(i = 1, 2, . . . ). Similarly as previously we will look for solutions of problem (4.5)–(4.6)

in the space l∞ and we will exploit as the main tool the measure of noncompactness

µ defined by formula (2.1).

Obviusly, we impose here assumptions (i), (iv)–(vii) formulated earlier, while

assumptions (ii), (iii) are replaced by the following ones:

(ii) For each fixed natural number i the function gi : IT ×R
i → R is continuous and

for any natural number j(1 ≤ j ≤ i) there exists a nonnegative constant ki
j such

that for arbitrary x = (xi), y = (yi) ∈ l∞ and for every t ∈ IT the following

inequality is satisfied:

|gi(t, x1, . . . , xj−1, xj, xj+1, . . . , xi) − gi(t, x1, . . . , xj−1, yj, xj+1, . . . , xi)|

≤ ki
j |xj − yj|.

(iii) For each i ∈ N we have that ki =
i
∑

j=1

ki
j < 1. Moreover, k < 1, where k =

sup{ki : i = 1, 2, . . .}.

Then, we are in a position to formulate our next existence result.

Theorem 4.2. Under assumptions (i), (ii), (iii), (iv)–(vii), if additionally T (A +

k) < 1, problem (4.5)–(4.6) has at least one solution x = x(t) = (xi(t)) defined on

the interval IT and such that x(t) ∈ l∞ for each t ∈ IT .

The proof can be conducted similarly as the proof of Theorem 4.1 and is therefore

omitted.
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[3] J. Banaś and M. Lecko, Solvability of infinite systems of differential equations in Banach

sequence spaces, J. Comput. Appl. Math. 137 (2001) 363–375.
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[10] J. Kisyński, Sur les équations différentielles dans les espaces de Banach, Bull. Acad. Polon.

Sci., Sér. Sci. Math. Astronom. Phys. 7 (1959) 381–385.

[11] M. Mursaleen and S.A. Mohiuddine, Applications of measures of noncompactness to the infinite

system of differential equations in lp spaces, Nonlin. Anal. 75 (2012) 2111–2115.

[12] M. Mursaleen and A. Alotaibi, Infinite system of differential equations in some BK spaces,

Abstact Appl. Anal., Volume 2012 (2012), Article ID 863484, 20 pages.

[13] C. Olech, On the existence and uniqueness of solutions of an ordinary differential equation in

the case of Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 8 (1960)

667–675.

[14] B.N. Sadovskii, Differential equations with uniformly continuous right side, Tr. Nauk. Mat.

Voronesh. Gos. Univ. 1 (1970) 128–136.
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