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ABSTRACT. Here is a very particular by-product of the main result of this paper: for each

h ∈ L∞(]0, 1[) \ {0}, with h ≥ 0, and for each γ ∈]1, 2[, the only positive solution of the problem
{

−u′′ = h(t)uγ−1 in ]0, 1[

u(0) = u(1) = 0
,

satisfies the inequality

∫ 1

0

|u′(t)|2dt ≤

∫ 1

0

h(t)dt

(

2(ess sup]0,1[h)
γ

2

γπγ

)
2

2−γ

.
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1. RESULTS

Let Ω ⊂ R
n be a bounded domain with smooth boundary and let p > 1. On the

Sobolev space W 1,p
0 (Ω), we consider the norm

‖u‖ =

(
∫

Ω

|∇u(x)|pdx

)
1

p

.

If n ≥ p, we denote by A the class of all continuous functions f : R → R such that

sup
ξ∈R

|f(ξ)|

1 + |ξ|γ
< +∞,

where 0 < γ < pn−n+p
n−p

if p < n and 0 < γ < +∞ if p = n. While, when n < p,

A stands for the class of all continuous functions f : R → R. Given f ∈ A and

h ∈ L∞(Ω), consider the following Dirichlet problem
{

−div(|∇u|p−2∇u) = h(x)f(u) in Ω

u = 0 on ∂Ω.
(Phf)

Let us recall that a weak solution of (Phf) is any u ∈W
1,p
0 (Ω) such that

∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)dx−

∫

Ω

h(x)f(u(x))v(x)dx = 0

Received January 8, 2013 1056-2176 $15.00 c©Dynamic Publishers, Inc.



318 B. RICCERI

for all v ∈W
1,p
0 (Ω).

The functionals T, Jhf : W 1,p
0 (Ω) → R defined by

T (u) =
1

p
‖u‖p

Jhf(u) =

∫

Ω

h(x)F (u(x))dx,

where

F (ξ) =

∫ ξ

0

f(t)dt,

are C1 with derivatives given by

T ′(u)(v) =

∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)dx

J ′
hf(u)(v) =

∫

Ω

h(x)f(u(x))v(x)dx

for all u, v ∈W
1,p
0 (Ω). Consequently, the weak solutions of problem (Phf) are exactly

the critical points in W 1,p
0 (Ω) of T − Jhf which is called the energy functional of the

problem. Moreover, J ′
hf is compact, while T ′ is a homeomorphism between W

1,p
0 (Ω)

and its dual.

Let us now recall a consequence of the variational principle established in [5] (see

also [1], [3], [4] and [7]):

THEOREM A. Let X be a reflexive real Banach space and let Φ,Ψ : X → R be

two sequentially weakly lower semicontinuous functionals, with Ψ also coercive and

Φ(0) = Ψ(0) = 0.

Then, for each σ > infX Ψ and each λ satisfying

λ > −
infΨ−1(]−∞,σ]) Φ

σ

the restriction of λΨ + Φ to Ψ−1(] −∞, σ[) has a global minimum.

If we want to apply Theorem A to get the existence of a weak solution for problem

(Phf), we need to know that, for some σ > 0, we have

sup
‖u‖p≤σ

Jhf(u) <
σ

p
.

Such an estimate can be obtained under quite natural assumptions if p > n, due

to the embedding of W 1,p
0 (Ω) in C0(Ω). Actually, in the almost totality of the very

numerous papers dealing with applications of Theorem A and its consequences to

problems of the type we are dealing with, we find the assumption p > n (see the

references in [7]).

The aim of the current paper is to highlight a class of nonlinearities f for which

Theorem A can be applied without the assumption p > n.

Before stating the main result, we need to introduce some further notation.
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Let 0 ≤ a < b ≤ +∞. For a generic pair of functions ϕ, ψ : R → R, if λ ∈ [a, b],

we denote by M(ϕ, ψ, λ) the set of all global minima of the function λψ − ϕ or the

empty set according to whether λ < +∞ or λ = +∞. We adopt the conventions

sup ∅ = −∞, inf ∅ = +∞. We also put

α(ϕ, ψ, b) = max

{

inf
R

ψ, sup
M(ϕ,ψ,b)

ψ

}

and

β(ϕ, ψ, a) = min

{

sup
R

ψ, inf
M(ϕ,ψ,a)

ψ

}

.

Furthermore, let q ∈
]

0, pn

n−p

]

if n > p or q ∈]0,+∞[ if n ≤ p.

Set

cq = sup
u∈W 1,p

0
(Ω)\{0}

∫

Ω
|u(x)|qdx

(∫

Ω
|∇u(x)|pdx

)
q

p

.

Finally, denote by Fq the family of all lower semicontinuous functions ψ : R → R,

with sup
R
ψ > 0, such that

inf
ξ∈R

ψ(ξ)

|ξ|q + 1
> −∞

and

γψ := sup
ξ∈R\{0}

ψ(ξ)

|ξ|q
< +∞ .

After introducing these notations, we can state our main result:

Theorem 1.1. Let f ∈ A and h ∈ L∞(Ω) \ {0}, with h ≥ 0. Moreover, assume that

there exists ψ ∈ Fq such that, for each λ ∈]a, b[, the function λψ − F is coercive and

has a unique global minimum in R. Finally, suppose that there exists a number r > 0

satisfying

α(F, ψ, b) < r < β(F, ψ, a)

and

(1) sup
ψ−1(r)

F <
r

p

q

p(γψess supΩhcq)
p

q

(∫

Ω
h(x)dx

)
q−p

q

.

Under such hypotheses, the problem
{

−div(|∇u|p−2∇u) = h(x)f(u) in Ω

u = 0 on ∂Ω

has a weak solution which is a local minimum of the energy functional and satisfies

∫

Ω

|∇u(x)|pdx <

(

r
∫

Ω
h(x)dx

γψess supΩhcq

)

p

q

.
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Our proof of Theorem 1.1 is based on a joint application of Theorem A with the

following proposition which is nothing else than a very particular case of Theorem 1

of [6].

PROPOSITION A. Let ϕ, ψ : R → R be two functions such that, for each λ ∈

]a, b[, the function λψ − ϕ is lower semicontinuous, coercive and has a unique global

minimum in R. Assume that

α(ϕ, ψ, b) < β(ϕ, ψ, a).

Then, for each s ∈]α(ϕ, ψ, b), β(ϕ, ψ, a)[, there exists λs ∈]a, b[, such that the unique

global minimum of the function λsψ − ϕ lies in ψ−1(s).

Proof of Theorem 1.1. Set

(2) σ =

(

r
∫

Ω
h(x)dx

γψess supΩhcq

)

p

q

.

Hence

(3) r =
γψess supΩhcqσ

q

p

∫

Ω
h(x)dx

.

By the Sobolev embedding theorem, we have

(4) {u ∈W
1,p
0 (Ω) : ‖u‖p ≤ σ} ⊆

{

u ∈ Lq(Ω) :

∫

Ω

|u(x)|qdx ≤ cqσ
q

p

}

.

In turn, as ψ ∈ Fq, we have

(5)

∫

Ω

h(x)ψ(u(x))dx ≤ ess supΩhγψ

∫

Ω

|u(x)|qdx

for all u ∈ Lq(Ω). Therefore, from (4) and (5), it follows that

(6)

{u ∈W
1,p
0 (Ω) : ‖u‖p ≤ σ} ⊆

{

u ∈ Lq(Ω) :

∫

Ω

h(x)ψ(u(x))dx ≤ ess supΩhγψcqσ
q

p

}

.

Now, for each λ ∈]a, b[, denote by ξ̂λ the unique global minimum in R of the function

λψ − F . In view of Proposition A, since r ∈]α(F, ψ, b), β(F, ψ, a)[, there exists λr ∈

]a, b[ such that

ψ(ξ̂λr
) = r.

So, we have

λrr − F (ξ̂λr
) ≤ λrψ(ξ) − F (ξ)

for all ξ ∈ R. From this, it clearly follows that

(7) F (ξ̂λr
) = sup

ψ−1(r)

F.

Likewise, for each u ∈ Lq(Ω), it follows that

(λrr − F (ξ̂λr
))

∫

Ω

h(x)dx ≤

∫

Ω

h(x)(λrψ(u(x)) − F (u(x)))dx.
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Therefore, taking (7) into account, for each u ∈ Lq(Ω) satisfying
∫

Ω

h(x)ψ(u(x))dx ≤ r

∫

Ω

h(x)dx,

we have
∫

Ω

h(x)F (u(x))dx ≤ sup
ψ−1(r)

F

∫

Ω

h(x)dx.

In view of (3) and (6), this implies that

(8) sup
‖u‖p≤σ

∫

Ω

h(x)F (u(x))dx ≤ sup
ψ−1(r)

F

∫

Ω

h(x)dx.

At this point, from (1), (2) and (8), it follows that

sup‖u‖p≤σ

∫

Ω
h(x)F (u(x))dx

σ
<

1

p
.

This allows us to apply Theorem A, with X = W
1,p
0 (Ω), Φ = −Jhf and Ψ = T .

Consequently, the functional T −Jhf has a local minimum in W 1,p
0 (Ω) with norm less

than σ
1

p , and the proof is complete.

We conclude by presenting an application of Theorem 1.1.

Theorem 1.2. Let h ∈ L∞(Ω) \ {0}, with h ≥ 0, and let f : [0,+∞[→ [0,+∞[ be a

continuous function satisfying the following conditions:

(i1) F has no global maximum in [0,+∞[ ;

(i2) the function t→ f(t)
tq−1 is decreasing in ]0,+∞[ and tends to 0 as t→ +∞ ;

(i3) either

lim
t→0+

F (t)

tp
= +∞

or ess infΩh > 0 and

lim inf
t→0+

F (t)

tp
>

1

p ess infΩhcp
;

(i4) there is s > 0 such that

F (s) <
sp

p(ess supΩhcq)
p

q (
∫

Ω
h(x)dx)

q−p

q

.

Then, the problem
{

−div(|∇u|p−2∇u) = h(x)f(u) in Ω

u = 0 on ∂Ω

has a positive weak solution satisfying

(9)

∫

Ω

|∇u(x)|pdx <

(

∫

Ω
h(x)dx

ess supΩhcq

)

p

q

sp.
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Proof. Extend f to the whole R by putting f(t) = f(0) for all t < 0. Clearly, in view

of (i2), we have f ∈ A. Moreover, as hf ≥ 0, each non-zero weak solution of (Phf) is

strictly positive in Ω ([2], [8]). We are going to apply Theorem 1.1 with ψ(t) = |t|q

and a = 0, b = +∞. So, let λ > 0. Of course, from (i2) it follows that

lim
|t|→+∞

(λ|t|q − F (t)) = +∞.

Let us show that the function t→ λ|t|q−F (t) has a unique global minimum. Arguing

by contradiction, assume that this function has two distinct global minima t1, t2. We

can suppose that t1 < t2. Since λ|t|q − F (t) > 0 for all t < 0, it would follow that

t1 ≥ 0. By the Rolle theorem, there would be t3 ∈]t1, t2[ such that

qλt
p−1
3 = f(t3).

As a consequence, we would have

f(t2)

t
q−1
2

=
f(t3)

t
q−1
3

,

contrary to (i1). Clearly, α(F, | · |q,+∞) = 0 and, in view of (i1), β(F, | · |q, 0) = +∞.

As a consequence, from (i4) it follows that (1) is satisfied with r = sq. Hence,

Theorem 1.1 ensures the existence of a weak solution of problem (Phf) which is a

local minimum of the energy functional and satisfies (9). Finally, let us show that 0 is

not a local mininum of the energy functional, so that the above solution is not zero.

By a classical result, there is a bounded and positive function v ∈W
1,p
0 (Ω) such that

∫

Ω

|v(x)|pdx = cp

∫

Ω

|∇v(x)|pdx.

Now, if ess infΩh = 0, we denote by η a positive number such that the set h−1([η,+∞[)

has a positive measure. While, we set

η = ess infΩh

if ess infΩh > 0. Then, thanks to (i3), there is δ > 0 such that

F (t) >

∫

Ω
|v(x)|pdx

pηcp
∫

h−1([η,+∞[)
|v(x)|pdx

tp

for all t ∈]0, δ[. Hence, for each µ ∈
]

0, δ
supΩ v

[

, we have

∫

Ω

h(x)F (µv(x))dx ≥

∫

h−1([η,+∞[)

h(x)F (µv(x))dx

>

∫

Ω
|v(x)|pdx

pηcp
∫

h−1([η,+∞[)
|v(x)|pdx

∫

h−1([η,+∞[)

h(x)|µv(x)|pdx

≥

∫

Ω
|µv(x)|pdx

pηcp
∫

h−1([η,+∞[)
|µv(x)|pdx

η

∫

h−1([η,+∞[)

|µv(x)|pdx
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=

∫

Ω
|µv(x)|pdx

pcp

=
1

p

∫

Ω

|∇µv(x)|pdx.

This shows that the energy functional takes negative values in each ball of W 1,p
0 (Ω)

centered at 0 and so 0 is not a local minimum for it. The proof is complete.

Notice the following remarkable corollary of Theorem 1.2.

Corollary 1.3. Let q > 1, let h ∈ L∞(Ω) \ {0}, with h ≥ 0, let a1, . . . , ak (k ≥ 3)

be k non-negative numbers and let q1, ..., qk be k numbers lying in ]1, q[. Assume that

either there is some i ∈ {1, . . . , k} for which qi < p and ai > 0, or ess infΩh > 0 and,

if we put

I = {i ∈ {1, . . . , k} : qi = p},

we have I 6= ∅ and
∑

i∈I

ai >
1

ess infΩhcp
.

Finally, let s > 0 be such that

a1

q1
log(1 + sq1) +

a2

q2
arctgsq2 +

k
∑

i=3

ai

qi
sqi <

sp

p(ess supΩhcq)
p

q (
∫

Ω
h(x)dx)

q−p

q

.

Then, the problem

{

−div(|∇u|p−2∇u) = h(x)
(

a1
uq1−1

1+uq1
+ a2

uq2−1

1+u2q2
+
∑k

i=3 aiu
qi−1
)

in Ω

u = 0 on ∂Ω

has a positive weak solution satisfying

∫

Ω

|∇u(x)|pdx <

(

∫

Ω
h(x)dx

ess supΩhcq

)

p

q

sp.

Remark 1.4. For instance, taking into account that c2 = π−2 when Ω =]0, 1[, from

Corollary 1.3 it follows that that, for each h ∈ L∞(]0, 1[) \ {0}, with h ≥ 0, and for

each γ ∈]1, 2[, the only positive solution of the problem
{

−u′′ = h(t)uγ−1 in ]0, 1[

u(0) = u(1) = 0

satisfies the inequality

∫ 1

0

|u′(t)|2dt ≤

∫ 1

0

h(t)dt

(

2(ess sup]0,1[h)
γ

2

γπγ

)
2

2−γ

.



324 B. RICCERI

REFERENCES

[1] S. G. Deng, A local mountain pass theorem and applications to a double perturbed p(x)-

Laplacian equations, Appl. Math. Comput., 211:234–241, 2009.
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