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ABSTRACT. In this paper some existence results for critical points of extremum in conical annular

regions are established by Ekeland’s variational principle. An application to two-point boundary

value problems is included to illustrate the theory.
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1. INTRODUCTION AND PRELIMINARIES

The well-known Ekeland’s variational principle [3], [4] is one of the fundamental

results of nonlinear analysis.

Theorem 1.1 (Ekeland). Let (M, d) be a complete metric space and F : M → R

lower semicontinuous and bounded from below. For every ε > 0 and x0 ∈ M such

that F (x0) ≤ inf F (M) + ε, and every δ > 0, there exists x ∈ M such that

(i) F (x) ≤ F (x0);

(ii) d (x0, x) ≤ δ;

(iii) F (x) < F (y) + ε
δ
d (y, x) for all y 6= x.

An immediate consequence of Ekeland’s variational principle is concerning with

the existence of a critical point of minimum for a C1-functional on a Banach space.

Corollary 1.1. Let X be a Banach space with norm |·|, and F : X → R a C1-

functional, bounded from below. There exists a sequence (xn) such that

F (xn) → inf F (X) , F ′ (xn) → 0.

If in addition F satisfies the Palais-Smale condition (i.e. any sequence as above has

a convergent subsequence), then there exists x ∈ X with

F (x) = inf F (X) , F ′ (x) = 0.

For its proof it is sufficient to apply Theorem 1.1 with δ = 1 and ε = 1
n
, to obtain

a sequence (xn) satisfying the following conditions:

F (xn) ≤ inf F (X) +
1

n
, F (xn) < F (y) +

1

n
|y − xn| for all y 6= xn.
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The first inequality gives us F (xn) → inf F (X), while the second inequality, for

y = xn − tz, t > 0, |z| = 1, yields

−t 〈F ′ (xn) , z〉 + o (t) +
t

n
> 0.

Here and throughout the paper, by 〈·, ·〉 we understand the duality between a space

X and its dual X ′, i.e. 〈x∗, x〉 = x∗ (x) for x∗ ∈ X ′ and x ∈ X. Dividing by t and

letting t tend to zero, we obtain 〈F ′ (xn) , z〉 ≤ 1
n
, whence |F ′ (xn)|X′ ≤ 1

n
, that is

F ′ (xn) → 0. We stress on the fact that, in this case, when the domain of F is the

whole space, the choice y = xn− tz is possible for every z ∈ X with |z| = 1 and t > 0.

As we are going to see, such a choice is not possible for every z, and every t in a right

vicinity of 0, in case that the domain of F is a proper subset D of X and xn is not

interior to D.

In this paper, similar results to Corollary 1.1, in a subset of X, are presented as

consequences of Ekeland’s principle. Thus, by a simple and direct proof, we obtain

variants and extensions of some results of Schechter [14], [15], and a compression criti-

cal point theorem established in [11], in a conical annular domain. Finally, we present

an application to two-point boundary value problems, as a variational alternative to

the fixed point approach (see e.g. [1], [5], [6], [8], [10], [12]).

2. CRITICAL POINT LOCALIZATION THEOREMS

Let X be a Hilbert space with scalar product and norm (·, ·), |·|X , and let Y, Z

be two linear normed spaces with norms |·|Y and |·|Z , respectively. We shall assume

that X ⊂ Y and X ⊂ Z with continuous embeddings. Let cY , cZ be the embedding

constants, i.e. |x|Y ≤ cY |x|X and |x|Z ≤ cZ |x|X for every x ∈ X. Clearly the dual

spaces are in relations Y ′ ⊂ X ′ and Z ′ ⊂ X ′ with continuous embeddings too. Denote

by P, Q the duality mappings of Y and Z and assume that they are single-valued, i.e.

P : Y → Y ′, Q : Z → Z ′,

|Px|Y ′ = |x|Y , 〈Px, x〉 = |x|2Y for all x ∈ Y ;

|Qx|Z′ = |x|Z , 〈Qx, x〉 = |x|2Z for all x ∈ Z.

We shall assume in addition that P and Q are continuous. Let L be the continuous

linear operator from X to X ′ (the canonical isomorphism of X onto X ′), given by

(x, y) = 〈Lx, y〉 for all x, y ∈ X

and let J be its inverse. Then J : X ′ → X is a continuous linear operator and

(Jx∗, x) = 〈x∗, x〉 for all x∗ ∈ X ′, x ∈ X.

Let K be a wedge of X, i.e. a closed convex subset of X such that K 6= {0} and

λK ⊂ K for every λ ∈ R+. Notice that K can be a cone, i.e. may have the property
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K ∩ (−K) = {0}, and also can be the whole space X. For two positive numbers r, R,

denote

KR = {x ∈ K : |x|Z ≤ R} , Dr = {x ∈ K : |x|Y ≥ r},

Kr,R = {x ∈ K : r ≤ |x|Y and |x|Z ≤ R},

i.e. Kr,R = KR ∩ Dr. Also by ∂KR and ∂Dr we shall understand the sets {x ∈ K :

|x|Z = R}, {x ∈ K : |x|Y = r}. Obviously, since the embeddings X ⊂ Y and X ⊂ Z

are continuous, the sets KR, Dr and Kr,R are closed in X. In this section we are

interested in critical points of extremum for a real functional F ∈ C1 (X), which are

located in KR, Dr, or Kr,R.

We close this introductory section by a basic result (see [2, p. 96]) concerning

single-valued duality mappings: For every x, y ∈ Y ,

(2.1) 〈Px, y〉 = |x|Y lim
t→0+

t−1 (|x|Y − |x − ty|Y ) .

According to this formula, if 〈Px, y〉 < 0, then |x − ty|Y > |x|Y for every sufficiently

small t > 0, while if 〈Px, y〉 > 0, then |x − ty|Y < |x|Y for small enough t > 0. The

same is true for Q.

2.1. Critical points of minimum in a ball.

Theorem 2.1. Let F : X → R be a C1-functional, bounded from below on KR.

Assume that

(2.2) F (x) ≥ inf F (KR) + c for all x ∈ KR with |x|X ≥ R0

and some c, R0 > 0. In addition assume that for some ν > 0,

(2.3) 〈Qx, JF ′ (x)〉 ≥ −ν > −∞ for all x ∈ ∂KR with |x|X ≤ R0,

and

for each x ∈ KR with |x|X ≤ R0 and each µ ∈
[

−νR2
0

R4
, 0

]

,(2.4)

there is η > 0 with ηx − JF ′ (x) + µJQx ∈ K.

Then there exists a sequence (xn), xn ∈ KR, such that F (xn) → inf F (KR), and one

of the following two properties hold:

(i) F ′ (xn) → 0;

(ii) |xn|Z = R, 〈Qxn, JF ′ (xn)〉 ≤ 0 for all n, and

(2.5) JF ′ (xn) − 〈Qxn, JF ′ (xn)〉
|JQxn|2X

JQxn → 0.
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If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that

any sequence as above has a convergent subsequence, and the boundary condition

(2.6) JF ′ (x) + µJQx 6= 0 for all x ∈ ∂KR with |x|X ≤ R0 and µ > 0,

then there exists x ∈ KR with

F (x) = inf F (KR) , F ′ (x) = 0.

Proof. From Theorem 1.1 applied to the complete metric space KR endowed with the

metric induced by |·|X , it follows that there exists a sequence (xn) in KR such that

F (xn) ≤ inf F (KR) + 1
n
, whence F (xn) → inf F (KR), and

(2.7) F (xn) < F (y) +
1

n
|y − xn|X for every y ∈ KR with y 6= xn.

In view of (2.2), we may assume that |xn|X ≤ R0. Three cases are possible: (a) There

is a subsequence with xn = 0 for all n; (b) There is a subsequence with 0 < |xn|Z < R;

(c) The terms of the sequence (xn), except possibly a finite number, belong to ∂KR.

In the first case we have F (0) = inf F (KR). Also F (0) < F (y) + 1
n
|y|X for

every y ∈ KR \ {0} and all n. We claim that F ′ (0) = 0. Indeed, otherwise, from

η0 − JF ′ (0) ∈ K and F ′ (0) 6= 0, if in (2.7) we take y = −tJF ′ (0) for t > 0, we

obtain

−t |JF ′ (0)|2X + o (t) +
t

n
|JF ′ (0)|X ≥ 0,

whence we derive |JF ′ (0)|X = 0, a contradiction.

In the second case, we may suppose that 0 < |xn|Z < R for all n. For a fixed n,

apply (2.7) with y = (1 + t)xn, t 6= 0. Clearly y ∈ KR for |t| small enough. Then

t 〈F ′ (xn) , xn〉 + o (|t|) +
|t|
n

|xn|X ≥ 0.

Dividing by t in each of the cases t > 0, t < 0 and letting t → 0 we obtain

−1

n
|xn|X ≤ 〈F ′ (xn) , xn〉 ≤

1

n
|xn|X .

Hence 〈F ′ (xn) , xn〉 → 0 as n → ∞. Next in (2.7) we take y = xn + t (xn − JF ′ (xn))

with t > 0 small enough. We have

t 〈F ′ (xn) , xn − JF ′ (xn)〉 + o (t) +
t

n
|xn − JF ′ (xn)|X ≥ 0.

Divide by t and let t go to zero to obtain

〈F ′ (xn) , xn − JF ′ (xn)〉 +
1

n
|xn − JF ′ (xn)|X ≥ 0.

It follows that

|JF ′ (xn)|2X ≤ 〈F ′ (xn) , xn〉 +
1

n
|xn − JF ′ (xn)|X ,

whence |JF ′ (xn)|X → 0 as n → ∞. Thus, F ′ (xn) → 0 in X ′ and so, property (i)

holds in case (b).
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Assume now case (c), i.e. |xn|Z = R for all n. Two subcases are now possible:

(1) 〈Qxn, JF ′ (xn)〉 > 0 for a subsequence. Then we apply (2.7) to y = xn−tJF ′ (xn).

Clearly y = t (ηnxn − JF ′ (xn)) + (1 − tηn)xn ∈ K. Also, according to (2.1), from

〈Qxn, JF ′ (xn)〉 > 0, we have that |y|Z ≤ R for t > 0 small enough. Hence y ∈ KR.

Now (2.7) gives us

〈F ′ (xn) , JF ′ (xn)〉 = |JF ′ (xn)|2X ≤ 1

n
|JF ′ (xn)|X ,

whence JF ′ (xn) → 0, equivalently F ′ (xn) → 0. Thus (i) holds.

(2) Assume 〈Qxn, JF ′ (xn)〉 ≤ 0 for all n except possibly a finite number of

indices. Then in (2.7) we take y = xn − t (εxn + zn), where ε > 0, zn = JF ′ (xn) −
µnJQxn, µn = 〈Qxn,JF ′(xn)〉

|JQxn|
2
X

and t > 0. Notice that

〈Qxn, zn〉 = 0 and 〈Qxn, εxn + zn〉 = εR2 > 0,

which in view of (2.1), guarantees

|y|Z ≤ |xn|Z = R

if t > 0 is small enough. Also from

R2 = |xn|2Z = 〈Qxn, xn〉 = (JQxn, xn) ≤ |JQxn|X |xn|X ≤ R0 |JQxn|X ,

we have |JQxn|X ≥ R2

R0
, and so

(2.8) −νR2
0

R4
≤ µn ≤ 0.

Then, from (2.4), there is ηn > 0 with ηnxn −JF ′ (xn)+µnJQxn ∈ K. Consequently

y = t [ηnxn − JF ′ (xn) + µnJQxn] + (1 − tε − tηn)xn ∈ K

since 1 − tε − tηn is positive for small t > 0. Applying (2.7) we obtain

−t 〈F ′ (xn) , εxn + zn〉 + o (t) +
t

n
|εxn + zn|X ≥ 0,

whence

−〈F ′ (xn) , εxn + zn〉 +
1

n
|εxn + zn|X ≥ 0,

and letting ε → 0,

−〈F ′ (xn) , zn〉 +
1

n
|zn|X ≥ 0,

or equivalently

− (JF ′ (xn) , zn) +
1

n
|zn|X ≥ 0.

Since 〈Qxn, zn〉 = 0, this is equivalent to the inequality

− |zn|2X +
1

n
|zn|X ≥ 0.

Thus |zn|X ≤ 1
n

and so zn → 0 as desired.
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For the last part of the theorem, assume via the Palais-Smale condition, that

xn → x. In case (i) we immediately obtain F ′ (x) = 0. In case (ii), (2.8) guarantees,

at least for a subsequence, that µn → −µ ≤ 0, and so JF ′ (x) + µJQx = 0, where

x ∈ ∂KR and µ ≥ 0. The case µ > 0 being excluded by the boundary condition (2.6),

it remains that JF ′ (x) = 0, that is F ′ (x) = 0.

Remark 2.1. (a) Condition (2.2) is trivial if X = Z (in this case, take R0 any

number greater than R to see that there are no elements x ∈ KR with |x|X ≥ R0).

(b) In particular, condition (2.4) holds if x − JF ′ (x) ∈ K for every x ∈ K and

JQ is the identity map.

(c) Condition (2.4) trivially holds when K = X; the case X = Z = K was

considered in [13].

2.2. Critical points of minimum outside the ball. We now look for critical

points of extremum in the set Dr, where r > 0 is a given number.

Theorem 2.2. Let F : X → R be a C1-functional, bounded from below on Dr.

Assume that

(2.9) F (x) ≥ inf F (Dr) + c for all x ∈ Dr with |x|X ≥ R0

and some c, R0 > 0. In addition assume that for some ν > 0,

(2.10) 〈Px, JF ′ (x)〉 ≤ ν < ∞ for all x ∈ ∂Dr with |x|X ≤ R0,

and

for each x ∈ Dr with |x|X ≤ R0 and each µ ∈ [0,
νR2

0

r4
],(2.11)

there is η > 0 with ηx − JF ′ (x) + µJPx ∈ K.

Then there exists a sequence (xn), xn ∈ Dr, such that F (xn) → inf F (Dr), and one

of the following two properties holds:

(i) F ′ (xn) → 0;

(ii) |xn|Y = r, 〈Pxn, JF ′ (xn)〉 ≥ 0 for all n, and

(2.12) JF ′ (xn) − 〈Pxn, JF ′ (xn)〉
|JPxn|2X

JPxn → 0.

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing

that any sequence as above has a convergent subsequence, and the following boundary

condition holds

JF ′ (x) + µJPx 6= 0 for all x ∈ ∂Dr with |x|X ≤ R0 and µ < 0,

then there exists x ∈ Dr with

F (x) = inf F (Dr) , F ′ (x) = 0.
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Proof. We apply Theorem 1.1 in Dr. The resulting sequence (xn) clearly satisfies

|xn|X ≤ R0 and is now in one of the cases: (a) There is a subsequence of (xn)

with |xn|Y > r; (b) The terms of the sequence (xn), except possibly a finite num-

ber, belong to ∂Dr. In the first case one proceeds like in case (b) of the proof of

Theorem 2.1. In the second case, we are in one of the following situations: (1)

〈Pxn, JF ′ (xn)〉 < 0 for a subsequence. Then we apply (2.7) to y = xn − tJF ′ (xn).

Clearly y = t (ηnxn − JF ′ (xn)) + (1 − tηn)xn ∈ K. Also, according to (2.1), from

〈Pxn, JF ′ (xn)〉 < 0, we have that |y|Y ≥ r for t > 0 small enough. Hence y ∈ Dr.

Now (2.7) gives us

〈F ′ (xn) , JF ′ (xn)〉 = |JF ′ (xn)|2X ≤ 1

n
|JF ′ (xn)|X ,

whence JF ′ (xn) → 0, that is (i) holds; (2) otherwise, 〈Pxn, JF ′ (xn)〉 ≥ 0 for all

n, except possibly a finite number of indices. Then in (2.7), we take y = xn −
t (−εxn + zn), where t, ε > 0, zn = JF ′ (xn) − µnJPxn and µn = 〈Pxn,JF ′(xn)〉

|JPxn|
2
X

. This

choice of y is correct. Indeed,

y = t (ηnxn − JF ′ (xn) + µnJPxn) + (1 − tηn + tε) xn ∈ K

since 1 − tηn + tε is positive for small t > 0; in addition, since 〈Pxn,−εxn + zn〉 =

−εr2 < 0, again in view of (2.1), we have that |y|Y ≥ r for t > 0 small enough. Then

(2.7) gives

〈F ′ (xn) ,−εxn + zn〉 ≤
1

n
|−εxn + zn|X ,

whence after passing to limit with ε → 0, we deduce that 〈F ′ (xn) , zn〉 ≤ 1
n
|zn|X .

Now observe that

〈F ′ (xn) , zn〉 = 〈F ′ (xn) − µnPxn, zn〉 = (JF ′ (xn) − µnJPxn, zn)

= |zn|2X .

As a result |zn|X ≤ 1
n
, which shows that zn → 0 as desired. The proof of the last part

of the theorem is similar to that of Theorem 2.1.

Remark 2.2. In particular, condition (2.11) holds if x − JF ′ (x) ∈ K for every

x ∈ K and JP (K) ⊂ K.

2.3. Critical points of minimum in annular domains. Combining the ideas of

Theorems 2.1 and 2.2 we obtain critical point theorems in the annular domain

Kr,R := {x ∈ K : r ≤ |x|Y , |x|Z ≤ R} .

We shall assume that there exist elements x in Kr,R with r < |x|Y and |x|Z < R; for

instance, if x0 ∈ K, |x0|Z = 1 and numbers r, R are such that r < |x0|Y R, then µx0 is

such an element, i.e. r < |µx0|Y and |µx0|Z < R, for each µ satisfying r
|x0|Y

< µ < R.
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Theorem 2.3. Let F : X → R be a C1-functional, bounded from below on Kr,R.

Assume that for some c, R0 > 0,

F (x) ≥ inf F (Kr,R) + c for all x ∈ Kr,R satisfying(2.13)

either |x|X ≥ R0, or both |x|Y = r, |x|Z = R.

In addition assume that conditions (2.3), (2.4), (2.10) and (2.11) hold. Then there

exists a sequence (xn), xn ∈ Kr,R such that F (xn) → inf F (Kr,R), and one of the

following three situations holds:

(i) F ′ (xn) → 0;

(ii) |xn|Y = r, 〈Pxn, JF ′ (xn)〉 ≥ 0 for all n, and

(2.14) JF ′ (xn) − 〈Pxn, JF ′ (xn)〉
|JPxn|2X

JPxn → 0;

(iii) |xn|Z = R, 〈Qxn, JF ′ (xn)〉 ≤ 0 for all n, and

(2.15) JF ′ (xn) − 〈Qxn, JF ′ (xn)〉
|JQxn|2X

JQxn → 0.

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing

that any sequence as above has a convergent subsequence, and the boundary conditions

JF ′ (x) + µJQx 6= 0 for all x ∈ ∂KR with |x|X ≤ R0 and µ > 0;(2.16)

JF ′ (x) + µJPx 6= 0 for all x ∈ ∂Dr with |x|X ≤ R0 and µ < 0,

then there exists x ∈ Kr,R with

F (x) = inf F (Kr,R) , F ′ (x) = 0.

Proof. Obviously, the result is a joint consequence of Theorems 2.1 and 2.2. The

additional hypothesis that F (x) ≥ inf F (Kr,R) + c for all x ∈ Kr,R satisfying both

equalities |x|Y = r, |x|Z = R is needed to guarantee that whenever |xn|Y = r, we have

|xn|Z < R, making possible the choices y = xn−tJF ′ (xn) and y = xn−t (−εxn + zn)

as in the proof of Theorem 2.2, i.e. |y|Z ≤ R for t > 0 small enough. Similarly, if

|xn|Z = R, we will have |xn|Y > r, and thus for y = xn − tJF ′ (xn) and y =

xn − t (εxn + zn) as in the proof of Theorem 2.1, the necessary inequality |y|Y ≥ r

holds for t > 0 small enough.

2.4. Dual results for maxima. The dual result of Theorem 2.1 for maxima is the

following theorem.

Theorem 2.4. Let F : X → R be a C1-functional, bounded from above on KR.

Assume that

(2.17) F (x) ≤ sup F (KR) − c for all x ∈ KR with |x|X ≥ R0
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and some c, R0 > 0. In addition assume that for some ν > 0,

(2.18) 〈Qx, JF ′ (x)〉 ≤ ν < ∞ for all x ∈ ∂KR with |x|X ≤ R0,

and

for each x ∈ KR with |x|X ≤ R0 and each µ ∈
[

−νR2
0

R4
, 0

]

,(2.19)

there is η > 0 with ηx + JF ′ (x) + µJQx ∈ K.

Then there exists a sequence (xn), xn ∈ KR, such that F (xn) → sup F (KR), and and

one of the following two properties holds:

(i)F ′ (xn) → 0;

(ii) |xn|Z = R, 〈Qxn, JF ′ (xn)〉 ≥ 0 for all n, and

(2.20) JF ′ (xn) − 〈Qxn, JF ′ (xn)〉
|JQxn|2X

JQxn → 0.

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that

any sequence as above has a convergent subsequence, and the boundary condition

JF ′ (x) + µJQx 6= 0 for all x ∈ ∂KR with |x|X ≤ R0 and µ < 0,

then there exists x ∈ KR with

F (x) = sup F (KR) , F ′ (x) = 0.

Proof. Apply Theorem 2.1 to the functional −F .

The dual result of Theorem 2.2 for maxima is the following theorem.

Theorem 2.5. Let F : X → R be a C1-functional, bounded from above on Dr.

Assume that

(2.21) F (x) ≤ sup F (Dr) − c for all x ∈ Dr with |x|X ≥ R0

and some c, R0 > 0. In addition assume that for some ν > 0,

(2.22) 〈Px, JF ′ (x)〉 ≥ −ν > −∞ for all x ∈ ∂Dr with |x|X ≤ R0,

and

for each x ∈ Dr with |x|X ≤ R0 and each µ ∈
[

0,
νR2

0

r4

]

,(2.23)

there is η > 0 with ηx + JF ′ (x) + µJPx ∈ K.

Then there exists a sequence (xn), xn ∈ Dr, such that F (xn) → sup F (Dr), and and

one of the following two properties holds:

(i) F ′ (xn) → 0;
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(ii) |xn|Y = r, 〈Pxn, JF ′ (xn)〉 ≤ 0 for all n, and

(2.24) JF ′ (xn) − 〈Pxn, JF ′ (xn)〉
|JPxn|2X

JPxn → 0.

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that

any sequence as above has a convergent subsequence, and the boundary condition

JF ′ (x) + µJPx 6= 0 for all x ∈ ∂Dr with |x|X ≤ R0 and µ > 0,

then there exists x ∈ Dr with

F (x) = sup F (Dr) , F ′ (x) = 0.

Obviously, a dual result of Theorem 2.3, in the annulus can also be stated.

Remark 2.3. (a) In case that JF ′ (x) = x − N (x), which happens in most applica-

tions, the boundary conditions (2.16) read as follows

(2.25) N (x) 6= x + µJPx for |x|Y = r, |x|X ≤ R0 and µ < 0;

(2.26) N (x) 6= x + µJQx for |x|Z = R, |x|X ≤ R0 and µ > 0

and can be seen as a compression type property of the operator N , on the annular

domain Kr,R.

(b) For X = Z = K, Theorems 2.1 and 2.4 reduce to some results by Schechter

[14], [15, Theorems 5.3.3, 5.5.5] in a ball of a Hilbert space.

(c) Theorem 2.3 is a version of a theorem first established in [11] by a completely

different technique. Thus, Ekeland’s principle gives us a direct and simple alternative

proof to such type of theorems.

3. APPLICATION

Consider the two-point boundary value

(3.1)

{

−u′′ (t) = f (t, u (t)) , t ∈ I,

u (0) = u (1) = 0,

where I = [0, 1] and f : I × R → R is a Carathéodory function, i.e. f (·, u) is mea-

surable for each u ∈ R and f (t, ·) is continuous for almost every t ∈ I. In addition

it is assumed that for each b > 0 there exists hb ∈ L1 (I) such that |f (t, τ)| ≤ hb (t)

for |τ | ≤ b and almost every t ∈ I; in this case we say that f is a L1-Carathéodory

function.

We shall apply the abstract results from Section 2 to spaces: X = Z = H1
0 (I)

endowed with the scalar product and norm

(u, v) =

∫

I

u′ (t) v′ (t) dt, |u|H1
0 (I) =

(
∫

I

u′ (t)2 dt

)1/2

,
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Y = Lp (I), where p > 1, and to the functional F : H1
0 (I) → R,

F (u) =

∫

I

(

1

2
u′ (t)2 − g (t, u (t))

)

dt,

where g : I ×R → R is defined by

g (t, τ) =

∫ τ

0

f (t, s) ds.

Here L : H1
0 (I) → H−1 (I), Lu = −u′′; J : H−1 (I) → H1

0 (I), Jv = u, where u is the

unique weak solution of the problem
{

−u′′ = v, t ∈ I,

u (0) = u (1) = 0,

that is u ∈ H1
0 (I) and (u, w) = 〈v, w〉 for all w ∈ H1

0 (I). Also, Q = L and P :

Lp (I) → Lq (I), 1
p

+ 1
q

= 1 is defined by

(Pu) (t) = |u|2−p
Lp(I) |u (t)|p−2 u (t) .

We have F ′ (u) = −u′′ − f (·, u) and JF ′ (u) = u − N (u), where

N (u) = Jf (·, u) =

∫

I

G (·, s) f (s, u (s)) ds,

with the Green function G (t, s) = s (1 − t) for 0 ≤ s ≤ t ≤ 1, G (t, s) = t (1 − s) for

0 ≤ t < s ≤ 1. Notice that since the embedding of H1
0 (I) into C (I) is compact, the

operator N is completely continuous from H1
0 (I) to itself guaranteeing the Palais-

Smale condition.

We shall be interested into positive solutions and therefore we assume that

(3.2) f (I ×R+) ⊂ R+.

Then N maps positive functions into positive functions. Moreover, if we fix a subin-

terval [t0, t1] ⊂ (0, 1), then we have G (t, s) ≤ G (s, s) for all t, s ∈ [0, 1] and

G (t, s) ≥ MG (s, s) for every t ∈ I0 := [t0, t1], s ∈ [0, 1], where

M = min {t0, 1 − t1} .

Then, for each h ∈ L1 (I,R+), t ∈ I0 and t′ ∈ I,

(Jh) (t) =

∫

I

G (t, s) h (s) ds ≥ M

∫

I

G (s, s)h (s) ds

≥ M

∫

I

G (t′, s) h (s) ds = M (Jh) (t′) ,

and consequently, (Jh) (t) ≥ M |Jh|Lp(I) (t ∈ I0). Hence if we consider the cone

K =
{

u ∈ H1
0 (I) : u ≥ 0 on I; u (t) ≥ M |u|Lp(I) for t ∈ I0

}

,

then N (K) ⊂ K, equivalently u − JF ′ (u) ∈ K for every u ∈ K. In addition,

JQ is the identity map and since P maps positive functions into positive functions,
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(JP ) (K) ⊂ K. Consequently, according to Remarks 2.1 (b) and 2.2, conditions (2.4)

and (2.11) hold.

Notice that F is bounded from below in Kr,R for every r, R. Indeed, for each

u ∈ Kr,R, since u (t) ≤ |u|H1
0 (I) for every t ∈ I, we have

F (u) =

∫

I

(

1

2
u′ (t)2 − g (t, u (t))

)

dt

≥ −
∫

I

g (t, u (t)) dt ≥ −
∫

I

g (t, R) dt > −∞.

Hence

m := inf F (Kr,R) > −∞.

Let χI0 be the characteristic function of the interval I0, i.e. χI0 (t) = 1 if t ∈ I0,

χI0 (t) = 0 for t ∈ I \ I0, and let

φ (t) =

√
2

π
sin πt

be the positive eigenfunction corresponding to the first eigenvalue λ = π2, with

|φ|H1
0 (I) = 1. Notice that if 0 < r < |φ|Lp(I) R, then µφ ∈ Kr,R for r

|φ|Lp(I)
≤ µ ≤ R.

Theorem 3.1. Assume that f : I×R → R is a L1-Carathéodory function, f (I × R+)

⊂ R+, and that there are two numbers r, R with 0 < r < |φ|Lp(I) R such that

(3.3)

∣

∣

∣

∣

J

(

χI0 inf
τ∈[Mr,∞)

f (·, τ)

)
∣

∣

∣

∣

Lp(I)

≥ r,

(3.4)

∣

∣

∣

∣

∣

sup
τ∈[0,R]

f (·, τ)

∣

∣

∣

∣

∣

L1(I)

≤ R,

(3.5) F (u) ≥ m + c for every u ∈ Kr,R with |u|Lp(I) = r and |u|H1
0 (I) = R.

Then (3.1) has a solution u in Kr,R which minimizes F on Kr,R.

Proof. Clearly (3.5) means (2.13). Also, since N maps bounded sets into bounded

sets, conditions (2.3) and (2.10) hold. Now we show condition (2.26). Assume the

contrary. Then N (u) = (1 + µ)u for some u ∈ Kr,R with |u|H1
0 (I) = R and µ > 0.

Since

0 ≤ u (t) =

∫ t

0

u′ (s) ds ≤
(

∫

I

u′ (s)2 ds

)
1
2

= |u|H1
0 (I) ,

we deduce that

R2 = |u|2H1
0 (I) =

1

1 + µ
(N (u) , u) < (Jf (·, u) , u) = 〈f (·, u) , u〉

=

∫

I

f (t, u (t)) u (t) dt ≤ R

∫

I

sup
τ∈[0,R]

f (t, τ) dt.
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Hence R <
∣

∣supτ∈[0,R] f (·, τ)
∣

∣

L1(I)
, a contradiction to (3.4). Next we check (2.25).

Assume the contrary, i.e. N (u) = u + µJPu for some u ∈ Kr,R with |u|Lp(I) = r and

µ < 0. One has u (t) ≥ Mr in I0, whence f (t, u (t)) ≥ infτ∈[Mr,∞) f (t, τ) for t ∈ I0,

that is

f (t, u (t)) ≥ χI0 (t) inf
τ∈[Mr,∞)

f (t, τ) for all t ∈ I.

Then, on (0, 1) we have

u > u + µJPu = N (u) = Jf (·, u) ≥ J

(

χI0 inf
τ∈[Mr,∞)

f (·, τ)

)

.

Consequently

|u|Lp(I) >

∣

∣

∣

∣

J

(

χI0 inf
τ∈[Mr,∞)

f (·, τ)

)
∣

∣

∣

∣

Lp(I)

,

which is excluded by (3.3).

The next three remarks are concerning with condition (3.5).

Remark 3.1. If g is such that

(3.6) g (t, u) ≤ a (t) up−1 + b (t) for all u ∈ R+, a.e. t ∈ I,

where p > 1, a ∈ Lp (I) and b ∈ L1 (I), then a sufficient condition for (3.5) to hold is

that

(3.7)

∫

I

g (t, Rφ (t)) dt > |a|Lp(I) rp−1 + |b|L1(I) .

Indeed, for each u ∈ K with |u|Lp(I) = r and |u|H1
0 (I) = R we have via Hölder’s

inequality

F (u) ≥ R2

2
−

∫

I

[

a (t)u (t)p−1 + b (t)
]

dt ≥ R2

2
− |a|Lp(I) rp−1 − |b|L1(I) .

On the other hand, since |φ|H1
0 (I) = 1,

F (Rφ) =
R2

2
−

∫

I

g (t, Rφ (t)) dt.

Hence

F (u) ≥ F (Rφ) + c ≥ m + c,

where

c =

∫

I

g (t, Rφ (t)) dt − |a|Lp(I) rp−1 − |b|L1(I) > 0.

We note that by (3.6), condition (3.7) implies r < |φ|Lp(I) R, and so Rφ ∈ Kr,R.

Remark 3.2. If f is such that (3.6) holds for p ∈ (1, 3), then condition (3.5) is

satisfied if R is sufficiently large and r < |φ|Lp(I) R. Indeed,

F (u) ≥ 1

2
|u|2H1

0 (I) − |a|Lp(I) |u|
p−1
Lp(I) − |b|L1(I)

≥ 1

2
|u|2H1

0 (I) − |a|Lp(I) |u|
p−1

H1
0 (I)

− |b|L1(I) .
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Since p < 3, for each B ∈ (0, 1), there exists RB ∈ R+ with

(3.8) F (u) ≥ B2

2
|u|2H1

0 (I) for |u|H1
0 (I) ≥ RB.

Let B := r
|φ|Lp(I)R

. Then for |u|H1
0 (I) = R ≥ RB, we obtain

F (u) ≥ r2

2 |φ|2Lp(I)

= F (µφ) + c,

where µ > 0 is such that µ |φ|Lp(I) = r, and c =
∫

I
g (t, µφ (t)) dt > 0. Hence, in

particular, F (u) ≥ F (µφ)+ c ≥ m + c for every u ∈ Kr,R satisfying |u|H1
0 (I) = R and

|u|Lp(I) = r, as claimed.

Remark 3.3. If following [7], [9] we assume that a function α ∈ L1 (I) exists such

that there is δ > 0 with
∫

I

(

u′ (t)2 − α (t) u (t)2) dt ≥ δ |u|2H1
0 (I) for every u ∈ H1

0 (I) ,

and for every ε > 0, there are βε, γε ∈ L1 (I) with

2g (t, u) ≤ (ε + α (t)) u2 + βε (t) u + γε (t)

for (t, u) ∈ I × R+, then condition (3.5) holds if R is sufficiently large and r <

|φ|Lp(I) δR. Indeed, for a fixed ε < δ and each u ∈ H1
0 (I,R+) we have

F (u) ≥ 1

2

∫

I

[

u′ (t)2 − α (t)u (t)2 − εu (t)2 − βε (t) u (t) − γε (t)
]

dt

≥ 1

2
(δ − ε) |u|2H1

0 (I) − |βε|L1(I) |u|H1
0 (I) − |γε|L1(I) .

Thus for each B < δ − ε there exists RB ∈ R+ such that (3.8) holds. Now if we

take B = r
|φ|Lp(I)R

, we have B < δ and we can choose ε any positive number less than

δ − B. The assertion now follows as in the previous remark.

Assuming now a monotonicity property of f with respect to the second variable

and taking into account Theorem 3.1 and Remark 3.1, we can state the following

multiplicity result.

Theorem 3.2. Assume that f : I × R+ → R+ is a Carathéodory function such that

f (t, ·) is nondecreasing on R+ and

g (t, u) ≤ a (t)up−1 + b (t) (u ∈ R+)

for almost every t ∈ I, where p > 1, a ∈ Lp (I), b ∈ L1 (I).

10 Let (ri)1≤i≤k , (Ri)1≤i≤k (k ≤ ∞) be increasing finite or infinite sequences such

that Ri < ri+1 (1 ≤ i ≤ k − 1) ,

(3.9)

∫

I

g (t, Riφ (t)) dt > |a|Lp(I) rp−1
i + |b|L1(I) ,

(3.10) |J (χI0f (·, Mri))|Lp(I) ≥ ri,
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(3.11) |f (·, Ri)|L1(I) ≤ Ri

for all i. Then (3.1) has k (respectively, when k = ∞, an infinite sequence of) distinct

positive solutions ui ∈ Kri,Ri
which minimizes F on Kri,Ri

.

20 Let (ri)i≥1 , (Ri)i≥1 be decreasing infinite sequences such that Ri+1 < ri (1 ≤ i

≤ k−1) and conditions (3.9)–(3.11) hold for all i. Then (3.1) has an infinite sequence

of distinct positive solutions ui ∈ Kri,Ri
which minimizes F on Kri,Ri

.

Remark 3.4. In the autonomous case, when f does not depend on t, conditions

(3.10) and (3.11) read as follows

f (Mri)

Mri
≥ 1

M |J (χI0)|Lp(I)

,
f (Ri)

Ri
≤ 1

showing that the function f (τ) /τ oscillates above and below the values 1

M|J(χI0)|Lp(I)

and 1, respectively.
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