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ABSTRACT. The paper focuses on the existence of multiple solutions of variational- hemivaria-

tional inequalities depending on parameters and involving the p-Laplacian operator on a bounded

domain Ω ⊂ R
N . The parameters relevant for the solvability are precisely estimated. In the previous

works such results have been obtained by assuming that N < p. Here we treat the case N > p,

which is the main novelty of our work. The paper contains results regarding positive solutions as

well.
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1. INTRODUCTION

The theory of hemivariational and variational-hemivariational inequalities deals

with various problems in the form of inequalities containing nonlinear discontinuities

and constraints. A multitude of techniques have been developed to study this type

of problems, among which we mention variational methods connected to nonsmooth

critical point theory (see, e.g., [12], [13]). In this respect, nonsmooth versions of the

variational principle of Ricceri [15] have been utilized to show the existence of multiple

solutions for hemivariational and variational-hemivariational inequalities formulated

as boundary value problems and depending on parameters. These results enable us

to find estimates for the range of parameters where the corresponding problems have

multiple solutions. We refer to [1], [2], [3], [7], [8], [11], [14] for recent results in this

direction. All these results establish the existence of multiple solutions of variational-

hemivariational inequalities depending on parameters and involving the p-Laplacian
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operator on a bounded domain Ω ⊂ R
N under the key assumption N < p. The goal

of the present paper is to obtain such a result when N > p.

We describe the problem that we study here. Let Ω ⊂ R
N be a bounded domain

with N ≥ 2 and a C1-boundary ∂Ω and let 1 < p < N . We denote by W
1,p
0 (Ω) the

usual Sobolev space consisting of the elements of W 1,p(Ω) with zero traces on ∂Ω.

Given a closed, convex set K ⊂ W
1,p
0 (Ω), consider the following inequality problem

with constraints in K and depending on a real parameter λ > 0: Find u ∈ K such

that
∫

Ω

|∇u(x)|p−2∇u(x) · (∇v(x) −∇u(x))dx

+ λ

∫

Ω

α(x)F ◦(u(x); v(x) − u(x))dx ≥ 0 for all v ∈ K.

(1.1)

Problems like (1.1) are called variational-hemivariational inequalities. In (1.1) it is

supposed that α ∈ L1(Ω) satisfies ess infx∈Ω α(x) > 0 and F ◦ stands for Clarke’s

generalized directional derivative of a locally Lipschitz function F : R → R for which

we assume the subcritical growth condition

|ξ| ≤ b1 + b2|t|s−1 for all t ∈ R, ξ ∈ ∂F (t),(1.2)

with constants b1, b2 ≥ 0 and 1 < s < p∗ := Np

N−p
. The notation ∂F in (1.2) means

the generalized gradient of F . We note that under assumption (1.2), the integrals in

(1.1) are well defined.

Our main result, which is stated as Theorem 3.1, provides a precise interval for

the parameter λ such that the corresponding problem (1.1) for such a λ admits at

least three distinct weak solutions. The main novelty of this result is the fact that it

holds in the case N > p. We point out that a natural choice for the set of constraints

K in (1.1) is the cone of nonnegative elements of W
1,p
0 (Ω), that is

(1.3) K = {u ∈ W
1,p
0 (Ω) : u ≥ 0 for a.a. x ∈ Ω}.

With the same data α and F as above, we also consider the (unconstrained)

problem depending on a real parameter λ > 0: Find u ∈ W
1,p
0 (Ω) such that

∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx

+ λ

∫

Ω

α(x)F ◦(u(x); v(x))dx ≥ 0 for all v ∈ W
1,p
0 (Ω).

(1.4)

Problems as the one stated in (1.4) are called hemivariational inequalities. There

is a fundamental difference between the problems (1.1) and (1.4), which consists

in the fact that (1.1) is verified through the set of constraints K whose elements

act as test functions, whereas in (1.4) we act with any element of W
1,p
0 (Ω). We

want to explore the connection between the two problems related to the nonnegative

solutions. Namely, take in (1.1) as set of constraints K the set introduced in (1.3), so
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a solution of (1.1) is a nonnegative function. The question that we address is under

what conditions this nonnegative function is also a (nonnegative) solution of (1.4).

The converse assertion is clearly true, but generally not the raised one because the

test functions in (1.4) are in the whole space W
1,p
0 (Ω). Our results on this topic are

given in Theorems 4.1 and 4.2, where we show that, under a verifiable condition on

the generalized gradient ∂F , the question above has a positive answer meaning that

the nonnegative solutions of (1.1) (with K in (1.3)) become solutions of (1.4).

The rest of the paper is organized as follows. Section 2 introduces the necessary

mathematical background to be used later in the paper. Section 3 presents our main

result on the multiple solutions of problem (1.1). Section 4 examines the connection

between the nonnegative solutions of problems (1.1) and (1.4).

2. PRELIMINARIES

Let us start by recalling some basic notions in non-smooth analysis that are

required in the sequel. For a real Banach space (X, ‖ · ‖), we denote by X∗ its dual

space and by 〈·, ·〉 the duality pairing between X and X∗. A function f : X → R is

said to be locally Lipschitz if for every x ∈ X there exist a neighborhood Ux of x and

a constant Lx ≥ 0 such that

|f(y)− f(z)| ≤ Lx‖y − z‖ for all y, z ∈ Ux.

For a locally Lipschitz function f : X → R on a Banach space X, the generalized

directional derivative of f at the point x ∈ X along the direction y ∈ X is defined by

f ◦(x; y) := lim sup
z→x,t→0+

f(z + ty) − f(z)

t

(see [6, Chapter 2]). If f1, f2 : X → R are locally Lipschitz functions, then we have

(f1 + f2)
◦(x, y) ≤ f ◦

1 (x, y) + f ◦
2 (x, y) for all x, y ∈ X.(2.1)

The generalized gradient of a locally Lipschitz function f : X → R at x ∈ X is the

set

∂f(x) := {x∗ ∈ X∗ : 〈x∗, y〉 ≤ f ◦(x; y) for all y ∈ X} .

An element x ∈ X is said to be a critical point of a locally function f : X → R if

there holds

f ◦(x; y) ≥ 0 for all y ∈ X

or, equivalently, 0 ∈ ∂f(x) (see [5]). More generally, for a function I : X →]−∞, +∞]

expressed as I = f + j with f : X → R locally Lipschitz and j : X →] − ∞, +∞]

convex, lower semicontinuous function, 6≡ +∞, an element u ∈ X is called a critical

point of I if

f ◦(u; v − u) + j(v) − j(u) ≥ 0 for all v ∈ X

is satisfied (see [12, Chapter 3] and [13]).
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Our approach in studying problem (1.1) relies on an abstract three critical points

theorem that we now describe. On a reflexive Banach space X, there are given

a sequentially weakly lower semicontinuous and coercive function Φ : X → R, a

sequentially weakly upper semicontinuous function Υ : X → R and a convex, lower

semicontinuous function j : X →] − ∞, +∞] whose effective domain D(j) = {x ∈
X : j(x) < +∞} fulfills

D(j) ∩ Φ−1(] −∞, r[) 6= ∅ for all r > inf
X

Φ.

Set

Ψ := Υ − j

and, for a real parameter λ > 0,

Jλ := Φ − λΨ = (Φ − λΥ) + λj,

ϕ1(r) = inf
y∈Φ−1(]−∞,r[)

(

supx∈Φ−1(]−∞,r[) Ψ(x)
)

− Ψ(y)

r − Φ(y)
for all r > inf

X
Φ,

ϕ2(r) = sup
y∈Φ−1(]r,+∞[)

Ψ(y) −
(

supx∈Φ−1(]−∞,r]) Ψ(x)
)

Φ(y) − r
for all r < sup

X

Φ.

The following result was recently proved in [3, Theorem 2.1].

Theorem 2.1. Assume that there is r ∈] infX Φ, supX Φ[ such that ϕ1(r) < ϕ2(r)

and the functional Jλ is bounded from below and satisfies the (PS)-condition for each

λ ∈ Λ :=
]

1
ϕ2(r)

, 1
ϕ1(r)

[

. Then, for each λ ∈ Λ, Jλ has at least three distinct critical

points.

Such results originate in Ricerri’s work (see [15] and the references therein). Non-

smooth versions can be found in [1] and [11].

3. MAIN RESULT

The Sobolev embedding theorem ensures the existence of a constant cp∗ > 0 such

that

‖u‖Lp∗(Ω) ≤ cp∗‖u‖W
1,p
0 (Ω) for all u ∈ W

1,p
0 (Ω).(3.1)

The expression of the best such constant is known

cp∗ =
1√
π

1

N
1
p

(

p − 1

N − p

)1− 1
p





Γ
(

1 + N
2

)

Γ(N)

Γ
(

N
p

)

Γ
(

1 + N − N
p

)





1
N

(see Talenti [16]). As s < p∗ in (1.2), we have that

‖u‖Ls(Ω) ≤ cs‖u‖W
1,p
0 (Ω) for all u ∈ W

1,p
0 (Ω),(3.2)
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with a positive constant cs which can be evaluated through Hölder’s inequality and

(3.1) as follows

cs ≤ |Ω|
p∗−s

p∗s
1√
π

1

N
1
p

(

p − 1

N − p

)1− 1
p





Γ
(

1 + N
2

)

Γ(N)

Γ
(

N
p

)

Γ
(

1 + N − N
p

)





1
N

.

Denote

D := sup
x∈Ω

dist(x, ∂Ω),(3.3)

so it is clear that there is x0 ∈ Ω such that the open ball B(x0, D) is contained in Ω.

Using the positive constants b1, b2 in (1.2), c1, cs in (3.2) and D in (3.3), we set

K1 :=
‖α‖L∞(Ω)b1c1p

1
p pp−1(pN − (p − 1)N)

(p − 1)NDp
,

K2 :=
‖α‖L∞(Ω)b2c

s
sp

s
p pp−1(pN − (p − 1)N)

s(p − 1)NDp
,

(3.4)

κ :=
Dp

1
p

pπ
N
2p







Γ
(

1 + N
2

)

DN −
(

(p−1)D
p

)N







1
p

.(3.5)

In view of the above remarks, the numbers K1, K2, κ in (3.4), (3.5) can be effectively

estimated.

Now we state our main result.

Theorem 3.1. Assume that α ∈ L∞(Ω) fulfills ess infx∈Ω α(x) > 0, F : R → R is a

locally Lipschitz function, with F (0) = 0, satisfying the subcritical growth condition

(1.2) and K is a nonempty, closed, convex subset of W
1,p
0 (Ω). In addition, we suppose:

(H1) K1
1

a
p−1
1

+ K2a
s−p
1 < ess inf

x∈Ω
α(x)

[−F (a2)]

a
p
2

for positive constants a1, a2 with a2 >

κa1 (see (3.5)), and Ki, i = 1, 2, given in (3.4);

(H2) lim sup
|ξ|→+∞

−F (ξ)

|ξ|p ≤ 0;

(H3) −F (t) ≥ 0 for all t ∈ [0, a2];

(H4) ua2 ∈ K, where

ua2(x) =



















0 if x ∈ Ω \ B(x0, D),

pa2

D
(D − |x − x0|) if x ∈ B(x0, D) \ B

(

x0,
(p−1)D

p

)

,

a2 if x ∈ B
(

x0,
(p−1)D

p

)
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for all x ∈ Ω. Then, for every λ ∈ Λ with

Λ :=

]

pp−1(pN − (p − 1)N)

(p − 1)NDp

1

ess infx∈Ω α(x)

a
p
2

[−F (a2)]
,

pp−1(pN − (p − 1)N)

(p − 1)NDp

1

K1
1

a
p−1
1

+ K2a
s−p
1



 ,

(3.6)

problem (1.1) possesses at least three distinct weak solutions.

Proof. Fix λ ∈ Λ. We are going to apply Theorem 2.1 on the space X = W
1,p
0 (Ω).

To this end, for any u ∈ W
1,p
0 (Ω) we define

Φ(u) :=
1

p
‖u‖p

W
1,p
0 (Ω)

, j(u) =

{

0, if u ∈ K,

+∞, otherwise,

Υ(u) =

∫

Ω

α(x)[−F (u(x))]dx.

As in Section 1 we set

Ψ(u) = Υ(u) − j(u), Jλ(u) = Φ(u) − λΨ(u),

which results in

Jλ(u) =
1

p
‖u‖p

W
1,p
0 (Ω)

− λ

∫

Ω

α(x)[−F (u(x))]dx.

Recall the function ϕ1 in Section 2. Since F (0) = 0, it follows that

ϕ1(r) ≤
supΦ(u)<r Υ(u)

r
for all r > 0.(3.7)

From (1.2), (3.2) and (3.4), we derive the estimate

Υ(u) ≤ ‖α‖L∞(Ω)b1‖u‖L1(Ω) + ‖α‖L∞(Ω)
b2

s
‖u‖s

Ls(Ω)

≤ ‖α‖L∞(Ω)b1c1‖u‖W
1,p
0 (Ω) + ‖α‖L∞(Ω)

b2

s
cs
s‖u‖s

W
1,p
0 (Ω)

=
(p − 1)NDpK1

p
1
p pp−1(pN − (p − 1)N)

‖u‖W
1,p
0 (Ω)

+
(p − 1)NDpK2

p
s
p pp−1(pN − (p − 1)N)

‖u‖s

W
1,p
0 (Ω)

for all u ∈ W
1,p
0 (Ω).

(3.8)

Then (3.7) and (3.8) yield

ϕ1(a
p
1) ≤

(p − 1)NDp

pp−1(pN − (p − 1)N)

(

K1
1

a
p−1
1

+ K2a
s−p
1

)

.(3.9)
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By the definition of the function ua2 we obtain

Φ(ua2) =
1

p

∫

B(x0,D)\B(x0,
(p−1)D

p )

(pa2)
p

Dp
dx

=
1

p

(pa2)
p

Dp

π
N
2

Γ
(

1 + N
2

)

)

(

DN −
(

(p − 1)D

p

)N
)

.

(3.10)

From hypothesis (H1) we know that a2 > κa1, so (3.5) implies

Φ(ua2) > a
p
1.(3.11)

On the other hand, thanks to (H3) and (H4) we may write

Ψ(ua2) ≥ −F (a2) ess inf
x∈Ω

α(x)
π

N
2

Γ
(

1 + N
2

)

(p − 1)NDN

pN
.(3.12)

Combining (3.10) and (3.12) leads to

Ψ(ua2)

Φ(ua2)
≥ Dp

pp−1

(p − 1)N

pN − (p − 1)N
ess inf

x∈Ω
α(x)

[−F (a2)]

a
p
2

.(3.13)

Now, on the basis of (H1), we obtain from (3.9) and (3.13) that

ϕ1 (ap
1) <

(p − 1)NDp

pp−1(pN − (p − 1)N)
ess inf

x∈Ω
α(x)

[−F (a2)]

a
p
2

≤ Ψ(ua2)

Φ(ua2)
.(3.14)

Using (3.8), hypothesis (H1) and (3.13) ensures that

supΦ(u)≤a
p
1
Ψ(u)

a
p
1

≤ (p − 1)NDp

pp−1(pN − (p − 1)N)

(

K1
1

a
p−1
1

+ K2a
s−p
1

)

<
(p − 1)NDp

pp−1(pN − (p − 1)N)
ess inf

x∈Ω
α(x)

[−F (a2)]

a
p
2

≤ Ψ(ua2)

Φ(ua2)
.

(3.15)

Let us recall the function ϕ2 introduced in Section 2. Then (3.11) and (3.15) enable

us to get

ϕ2(a
p
1) ≥

Ψ(ua2) − supΦ(u)≤a
p
1
Ψ(u)

Φ(ua2) − a
p
1

>
Ψ(ua2) − a

p
1

Ψ(ua2 )

Φ(ua2 )

Φ(ua2) − a
p
1

=
Ψ(ua2)

Φ(ua2)
.(3.16)

It turns out from (3.14), (3.16) and (3.11) that

ϕ1(a
p
1) < ϕ2(a

p
1) and a

p
1 ∈]0, Φ(ua2)[.

Hence the assumption of Theorem 2.1 holds true for r = a
p
1.

Let us prove the coercivity of Jλ for every λ ∈ Λ with Λ given in (3.6). Fix λ ∈ Λ

and a constant τ > 0 satisfying

τ <
1

λpc
p
p‖α‖L∞(Ω)

.
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By (1.2) and (H2), we have the estimate

−F (t) ≤ τ |t|p + c̃ for all t ∈ R(3.17)

with a constant c̃ ≥ 0. Then (3.17) and (3.2) with s = p imply

Jλ(u) = Φ(u) − λΨ(u) ≥
[

1

p
− λτcp

p‖α‖L∞(Ω)

]

‖u‖p

W 1,p(Ω) − λc̃‖α‖L∞(Ω),

for all u ∈ W
1,p
0 (Ω). This shows that Jλ is coercive, so the Palais-Smale condition for

Jλ follows (see [11, Proposition 2.3]). Therefore all the assumptions of Theorem 2.1

are fulfilled, so Theorem 2.1 with r = a
p
1 applies.

Gathering some estimates obtained in (3.16), (3.15) and (3.9) we infer that

1

ϕ2(a
p
1)

<
Φ(ua2)

Ψ(ua2)
≤ pp−1(pN − (p − 1)N)

(p − 1)NDp

a
p
2

(ess infx∈Ω α(x))[−F (a2)]

<
pp−1(pN − (p − 1)N)

(p − 1)NDp

1

K1
1

a
p−1
1

+ K2a
s−p
1

≤ 1

ϕ1(a
p
1)

.

It follows that the interval Λ obtained in Theorem 2.1 with r = a
p
1 contains the

interval Λ in (3.6). We have thus shown that for any λ belonging to the interval Λ in

(3.6) there exist at least three distinct critical points of Jλ.

Let u be a critical point of Jλ, which reads as

(Φ − λΥ)◦(u; v − u) + λj(v) − λj(u) ≥ 0 for all v ∈ W
1,p
0 (Ω).

This amounts to saying that u ∈ K and

(Φ − λΥ)◦(u; v − u) ≥ 0 for all v ∈ K.(3.18)

Thanks to (2.1), it is seen from (3.18) that

∫

Ω

|∇u(x)|p−2∇u(x) · (∇v(x) −∇u(x))dx + λ(−Υ)◦(u; v − u) ≥ 0 for all v ∈ K.

(3.19)

We note that assumption (1.2) guarantees the applicability of formula (2) in [6, p. 77]

to infer that

(−Υ)◦(u; v − u) ≤
∫

Ω

α(x)F ◦(u(x); v(x) − u(x))dx.(3.20)

Then (3.19) and (3.20) lead to
∫

Ω

|∇u(x)|p−2∇u(x) · (∇v(x) −∇u(x))dx

+ λ

∫

Ω

α(x)F ◦(u(x); v(x) − u(x))dx ≥ 0 for all v ∈ K.

This means exactly that u is a solution of problem (1.1). The proof is thus complete.



BOUNDARY VALUE PROBLEMS WITH NONSMOOTH POTENTIAL 393

It is interesting that the interval Λ determined in Theorem 3.1 does not depend on

the set of constrains K provided assumptions (H1)-(H4) are fulfilled. A meaningful

case of Theorem 3.1 is when the closed convex set K is the cone of nonnegative

functions.

Corollary 3.2. Let the functions α and F be as in Theorem 3.1 and satisfy hypotheses

(H1)–(H3). If λ ∈ Λ for Λ in (3.6), then problem (1.1) with K in (1.3) possesses at

least three distinct nonnegative weak solutions.

Proof. Note that condition (H4) holds true for the set K in (1.3). Since the assump-

tions of Theorem 3.1 are satisfied, we may apply Theorem 3.1 which yields the stated

result.

4. NONNEGATIVE SOLUTIONS

In the setting of Corollary 3.2 we can compare the obtained solutions with the

nonnegative solutions of the hemivariational inequality (1.4). Obviously, every non-

negative solution of (1.4) is a solution of (1.1) with K in (1.3). The next theorem

addresses the converse assertion which occurs by strengthening hypothesis (H3).

Theorem 4.1. Assume that α ∈ L∞(Ω) satisfies ess infx∈Ω α(x) > 0 and F : R →
R is a locally Lipschitz function, with F (0) = 0, for which the subcritical growth

condition (1.2) holds true and in addition

(H3’) there is a constant a2 > 0 such that

ξ ≤ 0 for all ξ ∈ ∂F (t) with t ∈ [0, a2].(4.1)

Then every solution u ≥ 0 of problem (1.1), with K in (1.3) and any λ > 0, that is
∫

Ω

|∇u(x)|p−2∇u(x) · ∇(v(x) − u(x))dx

+ λ

∫

Ω

α(x)F ◦(u(x); v(x) − u(x))dx ≥ 0

(4.2)

for all v ∈ W
1,p
0 (Ω), v ≥ 0, and which satisfies u(x) ∈ [0, a2] for all x ∈ Ω, is a

(nonnegative) solution of problem (1.4).

Proof. Let u be a solution of problem (1.1) with K in (1.3) satisfying u(x) ∈ [0, a2] for

all x ∈ Ω. We have to show that u is a solution of (1.4) if assumption (H3’) is satisfied.

To this end we follow an idea in the proof of Ma [10, Theorem 1.7]. Let ε > 0 and

w ∈ W
1,p
0 (Ω). Setting wε = −min{0, u+ εw}, we have that v = u+ εw+wε ∈ K (see

(1.3)). Then (4.2) and (4.1), in conjunction with the subadditivity of F 0(u; ·) and a

basic property of the generalized gradient ∂F (see [6, p. 10]), yield
∫

Ω

|∇u(x)|p−2∇u(x) · ∇w(x)dx + λ

∫

Ω

α(x)F ◦(u(x); w(x))dx
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≥ −ε−1

∫

Ω

|∇u(x)|p−2∇u(x) · ∇wε(x)dx − ε−1λ

∫

Ω

α(x)F ◦(u(x); wε(x))dx

≥
∫

{u+εw<0}

|∇u(x)|p−2∇u(x) · ∇w(x)dx

− ε−1λ

∫

{u+εw<0}

α(x) max
ξ∈∂F (u(x))

[ξ(−u(x) − εw(x))] dx

=

∫

{u+εw<0}

|∇u(x)|p−2∇u(x) · ∇w(x)dx

+ ε−1λ

∫

{u+εw<0}

α(x) (max ∂F (u(x)) (u(x) + εw(x))dx

≥
∫

{u+εw<0}

|∇u(x)|p−2∇u(x) · ∇w(x)dx.

Since ∇u = 0 on {u = 0} (see, e.g., [9, Lemma 7.7]), letting ε → 0 in the inequality

above leads to the conclusion that u solves problem (1.4).

Next we set forth a further connection between the problems (1.1) and (4.2) which

is related to a priori estimates of the solutions.

Theorem 4.2. Assume that α ∈ L∞(Ω) satisfies ess infx∈Ω α(x) > 0, F : R → R is

a locally Lipschitz function, with F (0) = 0, for which the subcritical growth condition

(1.2) holds true, and in addition

(H5) there is a constant a3 > 0 such that

max ∂F (t) ≥ 0 for all t ≥ a3.

Then for every solution u ≥ 0 of problem (1.1) with K in (1.3), the following alter-

native hold: either inf u < a3 or u solves problem (1.4).

Proof. Let u be a solution of problem (1.1) with K in (1.3) and some λ > 0 (equiv-

alently, u solves problem 4.2)) such that u ≥ a3. For any ε > 0 and w ∈ W
1,p
0 (Ω),

taking the same test function v = u + εw + wε as in the proof of Theorem 4.2, the

calculation therein gives
∫

Ω

|∇u(x)|p−2∇u(x) · ∇w(x)dx + λ

∫

Ω

α(x)F ◦(u(x); w(x))dx

≥
∫

{u+εw<0}

|∇u(x)|p−2∇u(x) · ∇w(x)dx

+ ε−1λ

∫

{u+εw<0}

α(x) (max ∂F (u(x)) (u(x) + εw(x))dx

≥
∫

{u+εw<0}

|∇u(x)|p−2∇u(x) · ∇w(x)dx

+ λ

∫

{u+εw<0}

α(x) (max ∂F (u(x))) w(x)dx.
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The last inequality is valid due to hypothesis (H5) because u ≥ a3 > 0. Letting

ε → 0 in the inequalities above we derive that u is a solution of problem (1.4), which

completes the proof.

Remark 4.3. It is shown in [4] that, if the growth condition (1.2) holds with s = p,

then (1.4) is equivalent to a differential inclusion problem involving the generalized

gradient ∂F .

Remark 4.4. Hypothesis (H3’) is a condition stronger than (H3) provided F (0) ≤ 0.

Indeed, by Lebourg’s mean value theorem (see [6, Theorem 2.3.7]), for every t ∈ (0, a2]

there is ζ ∈ (0, t) such that F (t) = F (0) + ζt ≤ ζt. Thus (H3’) implies (H3).

We provide an example for which all our hypotheses are satisfied, so all our results

apply.

Example 4.5. Using the notation in Theorem 3.1 let us fix constants a1 > 0, a2 >

κa1, 1 < r1 < r2 < p∗ and

c >max

{

a
p−1
2

(

ess inf
x∈Ω

α(x)

)−1(

K1
1

a
p−1
1

+ K2a
s−p
1

)

+ max{ar1−1
2 , ar2−1

2 }, max{r1a
r1−1
1 , r2a

r2−1
2 }

}

.

(4.3)

Define the function F : R → R by

F (ξ) =

{

0 if ξ ≤ 0

−cξ + max{ξr1, ξr2} if ξ > 0.

Then F is locally Lipschitz with the generalized gradient

∂F (ξ) =







































0 if ξ < 0

[−c, 0] if ξ = 0

−c + r1ξ
r1−1 if 0 < ξ < 1

[−c + r1,−c + r2] if ξ = 1

−c + r2ξ
r2−1 if ξ > 1.

The fact that (H1) is satisfied follows directly from (4.3) and the expression of F .

Furthermore, we derive that

lim sup
ξ→+∞

−F (ξ)

ξp
= lim sup

ξ→+∞

[

c

ξp−1
− max{ξr1−p, ξr2−p}

]

≤ 0,

so (H2) holds true. Hypothesis (H3’) is a straightforward consequence of the expres-

sion of ∂F and (4.3). In view of Remark 4.4, we infer that (H3) is valid. We have
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already noted that (H4) is true for K in (1.3). In order to check (H5), it is sufficient to

take any a3 with r2a
r2−1
3 > c, which in particular ensures through (4.3) that a3 > a2.
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