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ABSTRACT. We study the existence of nontrivial solutions of parameter-dependent quasilinear

elliptic Dirichlet problems of the form

−∆pu = λf(u) in Ω, u = 0 on ∂Ω,

in a bounded domain Ω ⊂ R
N with sufficiently smooth boundary, where λ is a real parameter and

∆p denotes the p-Laplacian. Recently the authors obtained multiplicity results by employing an

abstract localization principle of critical points of functionals of the form E = Φ − λΨ on open

sublevels of Φ, i.e., of sets of the form Φ−1(−∞, r), combined with differential inequality techniques

and topological arguments. Unlike in those recent papers by the authors, the approach in this

paper is based on pseudomonotone operator theory and fixed point techniques. The obtained results

are compared with those obtained via the abstract variational principle. Moreover, by applying

truncation techniques and regularity results we are able to deal with elliptic problems that involve

discontinuous nonlinearities without making use of nonsmooth analysis methods.

AMS (MOS) Subject Classification. 35J92, 35B30

1. INTRODUCTION

In this paper, we investigate the existence of a nontrivial solution for the following

quasilinear elliptic problem

(1.1)

{

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

where ∆pu := div(|∇u|p−2∇u) is the p-Laplace operator with 1 < p < +∞, Ω ⊂

R
N (N ≥ 1) is a bounded domain with a sufficiently smooth boundary, λ is a real

parameter and f : R → R is a continuous function. We denote by W
1,p
0 (Ω) the
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Sobolev space of functions with generalized homogeneous boundary values endowed

with the norm

(1.2) ‖u‖ :=

(
∫

Ω

|∇u(x)|p dx

)1/p

.

It is well known that, if 1 ≤ p < +∞,

(1.3) ‖u‖Lq(Ω) ≤ cq‖u‖, ∀u ∈ W
1,p
0 (Ω).

for every q ∈ [1, p∗), where, as usual, p∗ is the critical Sobolev exponent given by

p∗ =

{

+∞ if N ≤ p < ∞,
pN

N−p
if 1 ≤ p < N,

and the embedding W
1,p
0 (Ω) →֒→֒ Lq(Ω) is compact. A function u ∈ W

1,p
0 (Ω) is called

a solution of (1.1) if the following holds true:

(1.4)

∫

Ω

|∇u(x)|p−2∇u(x)∇ϕ(x) dx = λ

∫

Ω

f(u(x))ϕ(x) dx, ∀ϕ ∈ W
1,p
0 (Ω).

A great deal of work has already been done on the existence of solutions of the

problem (1.1), see e.g. [1, 4, 5, 12, 15, 16, 18, 20] and [24]. However, as is well known

the assumptions on the nonlinearity f makes the difference between the individual

papers. In all of the above cited papers an asymptotic behaviour of the nonlinearity

f : R → R is required either at zero or at infinity or at both. In many other cases,

such type of asymptotic conditions are imposed also on the primitive of f , i.e., on the

function F (s) :=
∫ s

0
f(t) dt, see for instance [17], [19], [21] and the references therein.

Unlike in the above mentioned papers, in a very recent paper [8] the authors

established existence and multiplicity results of problem (1.1) without imposing any

asymptotic conditions at zero or at infinity. The approach used in [8] is based on an

abstract localization principle of critical points of functionals of the form E = Φ−λΨ

on open sublevels of Φ, i.e., of sets of the form Φ−1(−∞, r), which reads as follows,

see [2, 4].

Theorem 1.1. Let X be a reflexive Banach space, Φ : X → R and Ψ : X → R two

continuously Gâteaux differentiable functionals such that Φ is coercive and sequentially

weakly lower semicontinuous, while Ψ is sequentially weakly upper semicontinuous.

Let r > infX Φ and put

ϕ(r) := inf
v∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r) Ψ(u) − Ψ(v)

r − Φ(v)
.

Then, for every λ ∈
(

0, 1
ϕ(r)

)

the functional E = Φ − λΨ has a critical point uλ ∈

Φ−1(−∞, r) such that E(uλ) ≤ E(v) for every v ∈ Φ−1(−∞, r).
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The variational functional of (1.1) is of the structure E of Theorem 1.1 with

X = W
1,p
0 (Ω), and

Φ(u) :=
1

p
‖u‖p, Ψ(u) :=

∫

Ω

F (u(x)) dx, E(u) := Φ(u) − λΨ(u).

Based on Theorem 1.1, in ([8, Theorem 2.1]) among others the following result has

been obtained.

Theorem 1.2. Let f : R → R be a continuous function with

(1.5) f(0) 6= 0,

and assume that

(f∗) There exist two positive constants M1 and M2 and q ∈ [1, p∗) such that

|f(s)| ≤ M1 + M2|s|
q−1, ∀s ∈ R.

Put,

(1.6) λ∗ :=



























+∞, 1 ≤ q < p;
1

c
p
pM2

, q = p;

q
p−1
q−1

p(q − 1)

(

q − p

c1M1

)
q−p

q−1
(

p − 1

c
q
qM2

)
p−1
q−1

, p < q < p∗,

Then, for every λ ∈ (0, λ∗), problem (1.1) admits a nontrivial solution uλ ∈ C1
0(Ω).

The variational approach adopted in [8] not only allows for the existence of at

least one nontrivial solution uλ, but also provides a localization of uλ, namely

(1.7) ‖uλ‖ < (pr̄)1/p,

where r̄ = r̄(λ) can a priori be estimated from below in the case 1 ≤ q ≤ p, while in

the case p < q < p∗ we have a uniform bound given by

(1.8) r̄ =
1

p

[

qc1M1(p − 1)

c
q
qM2(q − p)

]p/(q−1)

.

Moreover, the following variational characterization holds: uλ is a local minimum of

the energy functional E related to problem (1.1).

It is worth noticing that this last variational property of uλ plays a crucial role

in [7] and [8] whenever the existence and multiplicity of solutions are investigated in

the case f(0) = 0.

An important novelty in studying problem (1.1), introduced in [3] for p = 2

and [8] for p 6= 2, is that the existence of at least one solution has been established

under the natural subcritical growth condition (f∗) only and without requiring any

asymptotic condition for f neither at zero nor at infinity. In case that N < p, without
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any growth condition on f and only assuming some asymptotic condition at zero, in

[7] the following multiplicity result has been obtained: Assume

(f1) lim
s→0

f(s)

|s|p−2s
= L ∈ (0, +∞);

(fλk

2 ) There exists ρ0 > 0 such that

max
|s|≤ρ0

F (s)

ρ
p
0

<
1

cpλk|Ω|
lim
s→0

F (s)

|s|p
,

where c is the constant of the embedding W
1,p
0 (Ω) →֒ C0(Ω̄), λk, k = 1, 2, are the first

and second eigenvalue of (−∆p, W
1,p
0 (Ω)) and |Ω| stands for the Lebesgue measure of

Ω, then there are two intervals given by

Λk =

(

λk

L
,

ρ
p
0

pcp|Ω|max|s|≤ρ0 F (s)

)

, k = 1, 2;

such that

- for every λ ∈ Λ1 problem (Dλ) admits at least two constant-sign solutions ;

- for every λ ∈ Λ2 problem (Dλ) admits, in addition, a third sign-changing solu-

tion.

The aim of the present note is to prove the existence of at least one nontrivial solution

of (1.1) by applying an alternative, nonvariational method. The approach in this pa-

per is based on pseudomonotone operator theory and Schauder’s fixed point theorem,

see Theorem 2.1. The obtained results are then compared with those obtained via

the abstract variational principle. It turns out that the nonvariational approach used

here improves the result of Theorem 1.2, because, under exactly the same assump-

tions, a relevant bigger range of parameter can be obtained. The price we pay for the

improvement of the parameter range is that we may loose the variational feature of

the solutions.

Finally, by applying truncation techniques and regularity results, in Theorem 3.2

the existence of constant-sign solutions of problem (1.1) is shown when f is discon-

tinuous at the origin without making use of nonsmooth analysis methods.

2. MAIN RESULT

The main result of this section is the following theorem.

Theorem 2.1. Let f : R → R be a continuous function satisfying (1.5) and (f∗). Put

(2.1) µ∗ :=



























+∞, 1 ≤ q < p;
1

c
p
pM2

, q = p;

1

q − 1

(

q − p

c1M1

)
q−p

q−1
(

p − 1

c
q
qM2

)
p−1
q−1

, p < q < p∗,
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Then, for every 0 < |λ| < µ∗ problem (1.1) admits a nontrivial solution v ∈ C1
0(Ω).

Proof. Let X := W
1,p
0 (Ω) and X∗ be its dual space, and 〈·, ·〉 the duality pairing. The

norm in X is given in (1.2). Define the operators A : X → X∗ and G : X → X∗ as

follows:

〈Au, ϕ〉 :=

∫

Ω

|∇u(x)|p−2∇u(x)∇ϕ(x) dx, u, ϕ ∈ X,

〈G(u), ϕ〉 :=

∫

Ω

f(u(x))ϕ(x) dx, u, ϕ ∈ X.

Thus, we may rewrite problem (1.1) in the form of the following operator equation:

(2.2) u ∈ X : 〈Au − λG(u), ϕ〉 = 0, ∀ϕ ∈ X.

The operator A is monotone (even strictly monotone), bounded and continuous. To

avoid too much notations, let us denote the Nemytskij operator generated by f : R →

R again denote by f , i.e., f(u)(x) = f(u(x)). Because of q ∈ [1, p∗), the embedding

X →֒ Lq(Ω) is compact. Moreover, if q′ denotes the Hölder conjugate to q, then, due

to the growth condition (f∗), the Nemytskij operator f : Lq(Ω) → Lq′(Ω) is continuous

and bounded. Taking into account that the embedding Lq′(Ω) →֒ X∗ is continuous,

we see that the operator G : X → X∗ is bounded, continuous and compact.

A monotone, bounded and continuous operator is pseudomonotone, and a com-

pact, continuous and bounded operator is pseudomonotone as well, which implies

that

A − λG : X → X∗

is bounded, continuous and pseudomonotone for all λ ∈ R. By the main theorem on

pseudomonotone operators due to Brezis (see, e.g., [25]), the operator equation (2.2)

has a solution, provided that A − λG : X → X∗ is coercive, i.e., provided that the

following holds:

(2.3) lim
‖u‖→+∞

〈Au − λG(u), u〉

‖u‖
= +∞.

Now let us distinguish three cases.

Case (i): 1 ≤ q < p. In this case we have by Young’s inequality, for any ε > 0

|s|q−1 ≤ c(ε) + ε|s|p−1, ∀s ∈ R,

where c(ε) is some constant depending on ε only. Thus, from (f∗), it follows:

(2.4) |f(s)| ≤ C(ε) + ε|s|p−1, ∀s ∈ R.

Using (2.4) and

(2.5) ‖u‖Lp(Ω) ≤ cp‖u‖, ∀u ∈ W
1,p
0 (Ω),
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we get the following estimate:

〈Au − λG(u), u〉 ≥ ‖u‖p − |λ|
(

C(ε)‖u‖L1(Ω) + ε‖u‖p
Lp(Ω)

)

(2.6)

≥
(

1 − |λ|cp
pε
)

‖u‖p − |λ|C(ε)‖u‖L1(Ω),

which yields the coercivity for any λ ∈ R when choosing ε sufficiently small. This

proves assertion (i).

Case (ii): q = p. By using (f∗) we get

〈Au − λG(u), u〉 ≥ ‖u‖p − |λ|
(

M1‖u‖L1(Ω) + M2‖u‖
p
Lp(Ω)

)

(2.7)

≥
(

1 − |λ|cp
pM2

)

‖u‖p − |λ|M1‖u‖L1(Ω),

which shows that A − λG : X → X∗ is coercive provided that

1 − |λ|cp
pM2 > 0 ⇔ |λ| <

1

c
p
pM2

.

This proves assertion (ii).

Case (iii): p < q < p∗. In this case we apply Schauder’s fixed point theorem. First,

since A : X → X∗ is strictly monotone, continuous, bounded and coercive, from the

main theorem on monotone operators it follows that for any b ∈ X∗ there exists a

uniquely defined solution of

(2.8) u ∈ X : Au = b,

which implies that A : X → X∗ is a bijection. Moreover, A−1 : X∗ → X is monotone

as well, demicontinuous and bounded. One can then shows that A−1 : X∗ → X is

even continuous. The latter makes use of the specific property of the p-Laplacian.

Now we can rewrite our problem as a fixed point equation:

(2.9) u ∈ X : u = A−1 ◦ (λG)(u),

where the fixed point operator Tλ = A−1 ◦ (λG) : X → X is compact, continuous and

bounded. Any fixed point of T is a solution of problem (1.1) and vice versa. Thus, it

remains to verify the existence of fixed points. By Schauder’s Theorem the existence

of a fixed point is proved provided Tλ can be shown to be a selfmapping of some

closed, bounded and convex set. Let us show that for some parameter range for λ,

there is a closed ball B(0, R) := {v ∈ X : ‖v‖ ≤ R} such that Tλ : B(0, R) → B(0, R).

Let u = Tλ(v), i.e., u is the unique solution of

(2.10) u ∈ X : Au = λG(v),

which implies by using in (2.10) as special test function ϕ = u the following:

‖u‖p = λ

∫

Ω

f(v)udx ≤ |λ|

∫

Ω

(M1 + M2|v|
q−1)|u|(2.11)

≤ |λ|
(

M1c1‖u‖ + M2c
q
q‖v‖

q−1‖u‖
)

,
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which yields

(2.12) ‖u‖p−1 ≤ |λ|
(

M1c1 + M2c
q
q‖v‖

q−1
)

.

Therefore, from (2.12), the condition for Tλ being a mapping of a ball B(0, R) into

itself is

(2.13) |λ|
(

M1c1 + M2c
q
q‖v‖

q−1
)

≤ Rp−1

which gives the range for λ as

(2.14) |λ| ≤
Rp−1

M1c1 + M2c
q
qRq−1

.

A simple computation shows that µ∗, as introduced in (2.1), is the maximum of the

map ϕ(R) = Rp−1

M1c1+M2cq
qRq−1 , for every R > 0, and, in particular, it is attained at Rmax

given by

(2.15) Rmax =

[

c1M1(p − 1)

c
q
qM2(q − p)

]1/q−1

.

In any case (1.1) admits a solution u that is nontrivial because f(0) 6= 0. More-

over, by [13, Theorem 7.1, pag. 286], u belongs to L∞(Ω) and by the nonlinear

regularity theory, see [10, 14], we conclude that u ∈ C1
0(Ω).

Remark 2.2. From the proof of Theorem 2.1 one can deduce that, in the case (iii)

the nontrivial solution satisfies an a priori estimation of type (2.12). In particular,

‖u‖ ≤

[

c1M1(p − 1)

c
q
qM2(q − p)

]1/q−1

uniformly with respect to λ.

Remark 2.3. Comparing the results of Theorem 2.1 with Theorem 1.2, it turns out

that Theorem 2.1 improves Theorem 1.2, because an easy computation results in

λ∗ = µ∗ if 1 ≤ q ≤ p and

(2.16)
λ∗

µ∗
=

q
p−1
q−1

p

if p < q < p∗. Hence, observing that the function t 7→ t
1

t−1 for every t > 1 is

decreasing, from (2.16) one can obtain that

λ∗ < µ∗.

Finally, we observe that the range of parameters assured in Theorem 2.1 is bigger, as

it involves also negative values of the parameter.
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Remark 2.4. We note that in condition (f∗) the constants M1 and M2 are assumed

to be strictly positive. However, while M1 cannot be equal to zero, because this would

be in contradiction with (1.5), M2 is allowed to vanish. In this case, the function f is

assumed to be bounded and one readily sees that µ∗ does not depend anymore on q,

being always µ∗ = +∞. In particular, following the proof of Theorem 2.1 in the case

p < q < p∗ one obtains:

for every λ 6= 0, (1.1) admits at least one nontrivial solution such that

(2.17) ‖u‖ ≤ R

whenever R > 0 satisfies 0 < |λ| < Rp−1

c1M1
.

3. DISCONTINUOUS NONLINEARITY

In this section we are going to show the existence of nontrivial solutions of (1.1)

when the nonlinearity f : R → R may be discontinuous. The tools used here to deal

with discontinuous elliptic problems is the main result of the preceding section along

with truncation techniques and regularity results.

Let us first recall some preliminary, technical lemma which will be useful later,

see [8, Lemma 3.1].

Lemma 3.1. Let g, h : R → R be two continuous functions and assume that

lim
t→0+

g(t)

|t|p−2t
= L+ > 0 and lim

t→0−

h(t)

|t|p−2t
= L− > 0.

Then, for every M > 0 there exist two positive constants c, c̄ such that

−g(t) ≤ ctp−1 ∀t ∈ [0, M ],

h(t) ≤ c̄|t|p−1 ∀t ∈ [−M, 0].

Proof. Fix M > 0 and put α := max {max0≤t≤M |g(t)|, max−M≤t≤0 |h(t)|}. If 0 < β <

min{L−, L+} there exists δ > 0 such that

g(t)

|t|p−2t
> β ∀t ∈ (0, δ),(3.1)

h(t)

|t|p−2t
> β ∀t ∈ (−δ, 0).(3.2)

Let us put c = max
{

1, α
δp−1

}

and c̄ = α
δp−1 . Hence, for every t ∈ [0, M ] one has that

• if 0 ≤ t < δ, then, in view of (3.1), g(t) ≥ β|t|p−2t ≥ −|t|p−2t, that is

−g(t) ≤ |t|p−2t ≤ ctp−1.

• If δ ≤ t ≤ M , then

−g(t) ≤ α = δp−1 α

δp−1
≤ cδp−1 ≤ ctp−1.
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Analogously, for every t ∈ [−M, 0] one has that

• if −δ < t ≤ 0, then, in view of (3.2)

h(s) ≤ β|t|p−2t ≤ c̄|t|p−1.

• If −M ≤ t ≤ −δ, then

h(t) ≤ α = δp−1 α

δp−1
≤ c̄δp−1 ≤ c̄|t|p−1,

and the proof is complete.

As a consequence of Theorem 2.1 we can obtain the following result.

Theorem 3.2. Let f : R → R be a function satisfying condition (f∗) and such that f

is continuous in R \ {0}. Moreover, assume that

(f0) zero is a discontinuity point of first kind such that

(3.3) f(0−) · f(0+) 6= 0,

where f(0+) = limt→0+ f(t) and f(0−) = limt→0− f(t). Then, the following conclu-

sions hold:

(j1) If f(0−) < 0 < f(0+), then for every λ ∈ (0, µ∗) problem (1.1) admits at least

two solutions u−, u+ such that u+ ∈ int(C1
0(Ω̄)+) and u− ∈ −int(C1

0(Ω̄)+).

(j2) If min{f(0+), f(0−)} > 0, then for every λ ∈ (0, µ∗) problem (1.1) admits at

least one solution u+ ∈ int(C1
0 (Ω̄)+) and for every λ ∈ (−µ∗, 0) problem (1.1)

admits at least one solution u− ∈ −int(C1
0 (Ω̄)+).

(j3) If f(0+) < 0 < f(0−), then for every λ ∈ (−µ∗, 0) problem (1.1) admits at least

two solutions u−, u+ such that u+ ∈ int(C1
0(Ω̄)+) and u− ∈ −int(C1

0(Ω̄)+).

(j4) If max{f(0+), f(0−)} < 0, then for every λ ∈ (0, µ∗) problem (1.1) admits at

least one solution u− ∈ −int(C1
0(Ω̄)+) and for every λ ∈ (−µ∗, 0) problem (1.1)

admits at least one solution u+ ∈ −int(C1
0 (Ω̄)+).

Proof. We are going to prove cases (j1) and (j2) only, because the other cases can be

treated in a similar way.

Case (j1): f(0−) < 0 < f(0+). Put

g(t) =

{

f(t) if t > 0

f(0+) if t ≤ 0.

Clearly g satisfies all the assumptions of Theorem 2.1. Hence, for every λ ∈ (0, µ∗)

there exists a function u+ ∈ W
1,p
0 (Ω) such that

(3.4)

∫

Ω

|∇u+(x)|p−2∇u+(x)∇ϕ(x) dx = λ

∫

Ω

g(u+(x))ϕ(x) dx, ∀ϕ ∈ W
1,p
0 (Ω).

Moreover, thanks to [13, Theorem 7.1, pag. 286], u+ ∈ L∞(Ω) and applying the

classical regularity theory, see [10, 14], u+ ∈ C1
0 (Ω̄).
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Let u−
+(x) = max{−u+(x), 0}, then u−

+ ∈ W
1,p
0 (Ω), and hence, testing (3.4) with

u−
+, one gets

−‖u−
+‖

p = λf(0+)

∫

Ω

u−
+(x) dx.

Because f(0+) > 0 we can conclude that u−
+ = 0 which implies that u+(x) ≥ 0 a.e. in

Ω, that is u+ must be nonnegative.

We are going to show next that the solution u+ of (3.4) is in fact a solution of

(1.1). To this end we only need to verify that u+ ∈ int(C1
0(Ω̄)+), because then it

holds f(u+(x)) = g(u+(x)) for every x ∈ Ω, which proves u+ is a solution of (1.1).

First, observe that

lim
t→0+

g(t)

tp−1
= +∞.

Since u+ is bounded, by Lemma 3.1 with M = ‖u+‖∞, there exists a positive constant

c such that

−g(t) ≤ c|t|p−1

for every t ∈ [0, ‖u+‖∞]. Hence,

∆pu+(x) = −λg(u+(x)) ≤ λcu+(x)p−1

a.e. in Ω. Thus, we can apply the Vazquez’s maximum principle [22, Theorem 5]

and conclude that u+ ∈ int(C1
0(Ω̄)+). This completes the proof of the existence of a

positive solution.

A negative solution u− can be shown to exist in a similar way by replacing the

function g by the function h as follows:

h(t) =

{

f(t) if t < 0

f(0−) if t ≥ 0,

and observing that

∆p(−u−(x)) = −∆pu−(x) = λh(u−(x)) ≤ λc̄| − u−(x)|p−1

a.e. in Ω, so that the conclusion follows again by Vasquez’s maximum principle.

Case (j2): min{f(0+), f(0−)} > 0. Fix λ ∈ (0, µ∗), then the existence of u+ can

be obtained exactly as in the previous case. Now let λ ∈ (−µ∗, 0) and define the

following function

h(t) =

{

f(t) if t < 0

f(0−) if t ≥ 0.

Theorem 2.1 assures that there exists u− ∈ W
1,p
0 (Ω) such that

(3.5)

∫

Ω

|∇u−(x)|p−2∇u−(x)∇ϕ(x) dx = λ

∫

Ω

h(u−(x))ϕ(x) dx, ∀ϕ ∈ W
1,p
0 (Ω).
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Moreover, arguing as in the previous case, u− ∈ C1
0(Ω̄). Set u+

−(x) = max{0, u−(x)},

then it is well known that u+
− ∈ W

1,p
0 (Ω) and, putting ϕ = u+

− in (3.5), one has

‖u+
−‖

p = λf(0−)

∫

Ω

u+(x) dx.

Because f(0−) > 0 and λ < 0, one concludes that u+
− = 0 which shows that u−(x) ≤ 0

a.e. in Ω, i.e., u− must be nonpositive in Ω. Moreover, since h is a continuous function,

a simple computation shows that there exists a positive constant c

h(t) ≥ −c|t|p−1 ∀t ∈ (−‖u−‖∞, 0).

Indeed, since h(0) > 0, there exists 0 < δ < ‖u−‖∞ such that

h(t) > 0 ∀t ∈ (−δ, 0).

Put m = min
{

−1, mint∈[−‖u−‖∞,0] h(t)
}

and c = − m
δp−1 , if t ∈ (−δ, 0) one has

h(t) > 0 > −c|t|p−1.

Otherwise, if t ∈ (−‖u−‖∞,−δ), one has

h(t) ≥ m =
m

|t|p−2t
|t|p−2t ≥ c|t|p−2t = −c|t|p−1.

Hence,

∆p(−u−(x)) = −∆pu−(x) = λh(u−(x)) ≤ −λc| − u−(x)|p−1

a.e. in Ω. Finally, again by the Vasquez’s maximum principle, u− ∈ −int(C1
0 (Ω̄)+),

and thus u− is a solution of problem (1.1).

Remark 3.3. In [9] nonsmooth (variational-hemivariational inequalities) elliptic prob-

lems depending on a parameter λ in a nonlinear way have been considered, and the

existence of nontrivial solutions have been proved by methods of nonsmooth analysis.

As an application a discontinuous quasilinear elliptic problem of the form

−∆pu = λχ{u>0} in Ω, u = g on ∂Ω,

has been treated via nonsmooth analysis methods, where χA denotes the characteristic

function of the set A. Another example where classical variational approach is used to

treat discontinuous problems is given in in [6]. Unlike in the above mentioned papers,

here we obtain the existence of nontrivial solutions u ∈ int(C1
0 (Ω̄)+) of problem (1.1)

with f discontinuous at the origin without using the classical results of nonsmooth

analysis.

In the particular case N < p, we are able to show an existence result of (1.1)

whose nonlinearity f : R → R may be discontinuous and is not subject to any growth

condition. In this case we make use of the embedding W
1,p
0 (Ω) →֒ C(Ω), i.e,

(3.6) ‖u‖∞ ≤ c∞‖u‖ ∀ u ∈ W
1,p
0 (Ω).

More precisely, the following theorem can be proved.
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Theorem 3.4. Let f : R → R be a function and assume that there exists d > 0 such

that

(k1) f is continuous in (0, d];

(k2) 0 < f(0+) < +∞.

Then, if N < p, for every λ ∈

(

0,
1

c1c
p−1
∞

dp−1

supt∈(0,d] |f(t)|

)

, where c1 and c∞ are the

constants of the embedding (1.3) and (3.6), respectively, problem (1.1) admits at least

one nontrivial solution u ∈ int(C1
0(Ω̄)+).

Proof. Set

g(t) =











f(0+) if t ≤ 0

f(t) if 0 < t ≤ d

f(d) if t > d.

It is clear that g : R → R is a continuous and bounded function such that g(0) > 0.

In particular,

|g(t)| ≤ sup
t∈(0,d]

|f(t)|

for every t ∈ R.

Hence, arguing as in Remark 2.4 with g in place of f , M1 = supt∈(0,d] |f(t)| and

M2 = 0, fix R = d
c∞

, for every λ ∈
(

0, Rp−1

c1M1

)

=
(

0, 1

c1cp−1
∞

dp−1

supt∈(0,d] |f(t)|

)

there exists a

function u ∈ W
1,p
0 (Ω) such that

(3.7)

∫

Ω

|∇u(x)|p−2∇u(x)∇ϕ(x) dx = λ

∫

Ω

g(u(x))ϕ(x) dx, ∀ϕ ∈ W
1,p
0 (Ω)

and (2.17) holds, namely, in view of (3.6),

‖u‖∞ ≤ c∞‖u‖ ≤ d.

Testing (3.7) with ϕ = u− = max{−u, 0} we infer that u− is a.e. zero in Ω, that is,

because u is continuous, we get 0 ≤ u(x) ≤ d for every x ∈ Ω. Finally, arguing as in

the proof of Theorem 3.2 case (j1), one can prove that u ∈ int(C1
0(Ω̄)+), and thus the

conclusion follows by observing that f(u(x)) = g(u(x)) for every x ∈ Ω.

Remark 3.5. We remark that the assumptions of Theorem 3.4 allow the nonlinearity

to have at zero a first kind of discontinuity from the right and any kind of discontinuity

from the left. Hence, thanks to Theorem 3.4, different situations with respect to

Theorem 3.2 can be considered in case that N < p.

Remark 3.6. Taking into account the estimates of the Sobolev embedding constants

contained in [23], a more concrete estimate for the interval of the parameter λ can be

obtained, where the embedding constants are expressed in terms of the data of (1.1).
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