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ABSTRACT. In this paper the existence of one positive weak solution for Dirichlet problems with

a critical growth of the nonlinearity is established. To this end, it is previously proved that the

associated energy functional satisfies a suitable type of Palais Smale condition in order to apply a

very recent local minimum theorem.
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1. INTRODUCTION

Consider the following Dirichlet problem

(Df
λ)

{

−∆u = λf(u) in Ω,

u|∂Ω = 0,

where Ω is a non-empty bounded open subset of the Euclidean space (RN , | · |), N ≥ 3,

with boundary of class C1, λ is a positive parameter and f : R → R is a continuous

function with a critical growth, that is,

f(t) = |t|2∗−2t + g(t)

for all t ∈ R, being g a nonnegative continuous function satisfying

(h) there exist a > 0 and q ∈ ]1, 2N/(N − 2)[ such that

g(t) ≤ a|t|q−1

for every t ∈ R,

and 2∗ = 2N
N−2

.

The aim of this paper is to prove that the energy functional associated to Problem

(Df
λ) satisfies a suitable type of Palais Smale condition previously introduced in [1,

Section 2]. As a consequence, applying a local minimum theorem established in [1],

the following existence result is here pointed out.
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Theorem 1.1. Put G(ξ) =
∫ ξ

0
g(t)dt for every ξ ∈ R and assume that

lim sup
t→0+

G(t)

t2
= +∞.

Then, there is λ∗ > 0 such that, for each λ ∈]0, λ∗[, the problem
{

−∆u = λ
(

|u|2∗−2u + g(u)
)

in Ω,

u|∂Ω = 0,

admits at least one positive weak solution.

To be precise, in this paper we give a detailed proof of a suitable type of Palais

Smale condition for the energy functional associated to problem (Df
λ) (see Lemma 3.1)

and, as a consequence, the existence theorem for the problem (Df
λ) (that is, Theorem

1.1) is presented, exclusively in the critical case (see Remark 3.4).

The paper is arranged as follows. In Section 2, the local minimum theorem is

recalled (Theorem 2.1) as well as the definition of this type of Palais Smale condition

is pointed out. Section 3 is devoted to our main results. This type of Palais Smale

condition for the energy functional associated to elliptic Dirichlet problem (Lemma

3.1) is proved. Moreover, a proof of Theorem 1.1 is given. Finally, in the same section,

an example of application, for which a classical result of Brezis and Nirenberg ([3,

Theorem 2.1]) cannot be applied, is pointed out (see Example 3.2 and Remark 3.3).

Clearly, these types of results are mutually independent because of different position

of the parameter, beyond the fact that in the Brezis-Nirenberg Theorem the solution

is a mountain pass point, while, on the contrary, in our result it is a local minimum.

2. PRELIMINARIES

Let (X, ‖·‖) be a real Banach space, let Φ, Ψ : X → R be two continuously

Gâteaux differentiable functionals and put

I = Φ − Ψ.

Fixed r1, r2 ∈ [−∞, +∞], with r1 < r2 we say that the functional I verifies the Palais-

Smale condition cut off lower at r1 and upper at r2 (in short [r1](PS)[r2]-condition) if

any sequence {un} such that

(α) {I(un)} is bounded,

(β) limn→+∞ ‖I ′(un)‖X∗ = 0,

(γ) r1 < Φ(un) < r2 ∀n ∈ N,

has a convergent subsequence.

When we fix r2 = −∞, that is, Φ(un) < r2 ∀n ∈ N, we denote this type of Palais

Smale condition with (PS)[r2]. When, in addition, r2 = +∞, it is the classical Palais

Smale condition.
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Now, put

(2.1) β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u) − Ψ(v)

r2 − Φ(v)

and

(2.2) ρ2(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v) − supu∈Φ−1(]−∞,r1]) Ψ(u)

Φ(v) − r1

for all r1, r2 ∈ R, with r1 < r2.

Our main tool to prove Theorem 1.1 is the local minimum theorem established

in [1], which is recalled below.

Theorem 2.1 (See [1, Theorem 5.1]). Let X be a real Banach space and let Φ, Ψ :

X → R be two continuously Gâteaux differentiable functions. Assume that there are

r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ2(r1, r2),

where β and ρ2 are given by (2.1) and (2.2), and for each λ ∈
]

1
ρ2(r1,r2)

, 1
β(r1,r2)

[

the

function Iλ = Φ − λΨ satisfies [r1](PS)[r2]-condition.

Then, for each λ ∈
]

1
ρ2(r1,r2)

, 1
β(r1,r2)

[

there is u0,λ ∈ Φ−1(]r1, r2[) such that

Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′
λ(u0,λ) = 0.

Now, we recall that

‖u‖Lq(Ω) ≤ cq‖u‖ , u ∈ H1
0(Ω) , q ∈ [1, 2∗]

(2.3) c2∗ =
1

√

N(N − 2)π

( N !

2Γ(1 + N/2)

)1/N

,

(2.4) cq ≤
meas(Ω)

2∗−q
2∗q

√

N(N − 2)π

( N !

2Γ(N/2 + 1)

)1/N

and that the embedding H1
0 (Ω) →֒ Lq(Ω) is not compact if q = 2∗.

3. MAIN RESULTS

In this section we present our main results.

Let f , g be as defined in Introduction. Without loss of generality we can assume

g(t) = 0 for all t < 0. Moreover, put h(t) = |t|2∗−2t for all t ∈ R. Clearly, one has

f(t) ≤ (1 + a) + (1 + a)|t|2∗−1 for all t ∈ R. As usual, put X = H1
0 (Ω) endowed

with the norm ‖u‖ =
(∫

Ω
|∇u(x)|2dx

)
1
2 and Φ(u) = ‖u‖2

2
, Ψ(u) =

∫

Ω
F (u(x))dx for all

u ∈ X, where F (ξ) =
∫ ξ

0
f(t)dt for every ξ ∈ R, that is, F (ξ) =

∫ ξ

0
h(t)dt+

∫ ξ

0
g(t)dt =

H(ξ) + G(ξ) = 1
2∗
|ξ|2∗ + G(ξ) for all ξ ∈ R. We observe that one has F (ξ) ≥ 0 for all

ξ ∈ R.
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Now, fix r > 0 and put

λ∗
r =

r
(√

2rc1(1 + a) + (2r)2∗/2

2∗
c2∗
2∗(1 + a)

) , λ̃r =
1

c2∗
2∗(2rN)

2
N−2

,

λr = min
{

λ∗
r , λ̃r

}

,

where c1, c2∗ are given by (2.4) and (2.3), while a is given by (h).

Our main result is the following.

Lemma 3.1. Let Φ and Ψ be the functional defined as above and fix r > 0. Then,

for each λ ∈]0, λr[ the functional Iλ = Φ − λΨ satisfies the (PS)[r]-condition.

Proof. Fix λ as in the conclusion and let {un} ⊆ X be a sequence such that

(α) {Iλ(un)} is bounded,

(β) limn→+∞ ‖I ′
λ(un)‖X∗ = 0,

(γ) Φ(un) < r ∀n ∈ N.

In particular, from Φ(un) < r ∀n ∈ N we obtain that {un} is bounded in X. So,

going to a subsequence if necessary, we can assume un ⇀ u0 in X, un → u0 in Lq(Ω)

if q < 2∗, un → u0 a.e. on Ω and, taking (α) into account, limn→∞ Iλ(un) = c.

Moreover, {un} is bounded in L2∗(Ω).

First step. We prove that u0 is a weak solution of problem (Df
λ).

Since {un} is bounded in L2∗(Ω), it follows that {h(un)} is bounded in L
2∗

2∗−1 (Ω).

Indeed, one has
∫

Ω
|h(un)|

2∗

2∗−1 dx =
∫

Ω
|un|2

∗

dx. Therefore, it follows that h(un) ⇀

h(u0) in L
2∗

2∗−1 (Ω). In fact, since h is continuous and un → u0 a.e. x ∈ Ω, we obtain

h(un) → h(u0) a.e. x ∈ Ω, that, together with boundedness of {h(un)} in L
2∗

2∗−1 (Ω),

ensures the weak convergence of h(un) to h(u0) in L
2∗

2∗−1 (Ω) (see [2, Remark (iii)]).

Moreover, since un → u0 in Lq(Ω), taking into account [5, Theorem A.2], one has

that g(un) → g(u0) in L
q

q−1 (Ω). So, in particular, g(un) ⇀ g(u0) in L
q

q−1 (Ω).

Due to what seen before, that is, un ⇀ u0 in X, h(un) ⇀ h(u0) in L
2∗

2∗−1 (Ω) and

g(un) ⇀ g(u0) in L
q

q−1 (Ω), one has

lim
n→+∞

(
∫

Ω

∇un(x)∇v(x)dx − λ

∫

Ω

h(un(x))v(x)dx − λ

∫

Ω

g(un(x))v(x)dx

)

=

∫

Ω

∇u0(x)∇v(x)dx − λ

∫

Ω

h(u0(x))v(x)dx − λ

∫

Ω

g(u0(x))v(x)dx

for all v ∈ H1
0 (Ω). Therefore, owing to (β) we obtain that 0 =

∫

Ω
∇u0(x)∇v(x)dx −

λ
∫

Ω
h(u0(x))v(x)dx − λ

∫

Ω
g(u0(x))v(x)dx for all v ∈ H1

0 (Ω), that is, u0 is a weak

solution of (Df
λ).

Second step. We prove that

(A) Iλ(u0) > −r.
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In fact, Ψ(u) =
∫

Ω
F (u(x))dx ≤ (1 + a)‖u‖L1(Ω) + 1+a

2∗
‖u‖2∗

L2∗(Ω)
≤ (1 + a)c1‖u‖ +

1+a
2∗

c2∗

2∗‖u‖2∗ . Hence,

Ψ(u) ≤ (1 + a)c1‖u‖ +
1 + a

2∗
c2∗

2∗‖u‖2∗, ∀u ∈ X.

Therefore, for all u ∈ X such that ‖u‖ ≤ (2r)1/2 one has Iλ(u) = Φ(u) − λΨ(u) ≥
‖u‖2

2
− λ

(

(1 + a)c1‖u‖ + 1+a
2∗

c2∗

2∗‖u‖2∗
)

≥ −λ
(

(1 + a)c1(2r)
1/2 + 1+a

2∗
c2∗

2∗(2r)
2∗/2

)

=

−λ r
λ∗

r
> −r. So, taking into account (γ) and that Φ is sequentially weakly lower

semicontinuous, we have ‖u0‖ ≤ lim infn→∞ ‖un‖ ≤
√

2r and, hence, Iλ(u0) > −r.

Third step. Put vn = un − u0. We prove that one has

(B) c = Φ(u0) − λΨ(u0) + lim
n→∞

(

1

2
‖vn‖2 − λ

2∗

∫

Ω

|vn|2
∗

dx

)

.

In fact, one has ‖un‖2 = ‖vn + u0‖2 = ‖vn‖2 + ‖u0‖2 + 2 < vn, u0 >. So, it follows

‖un‖2 = ‖vn‖2 + ‖u0‖2 + o(1).

Moreover, the Brezis-Lieb Lemma (see [2, Theorem 1]) leads to
∫

Ω

|un|2
∗

dx =

∫

Ω

|vn|2
∗

dx +

∫

Ω

|u0|2
∗

dx + o(1).

Finally, since u →
∫

Ω
G(u)dx is locally Lipschitz in Lq(Ω) (see, for instance, [4,

Theorem 7.2.1]) and un → u0 in Lq(Ω), one has
∫

Ω

G(un)dx =

∫

Ω

G(u0)dx + o(1).

Hence, by starting from c = limn→∞(Φ(un)−λΨ(un)), one has c = Φ(un)−λΨ(un)+

o(1) = 1
2
‖un‖2− λ

2∗

∫

Ω
|un|2

∗

dx−λ
∫

Ω
G(un)dx+o(1) = 1

2
‖vn‖2+1

2
‖u0‖2− λ

2∗

∫

Ω
|vn|2

∗

dx−
λ
2∗

∫

Ω
|u0|2∗dx−λ

∫

Ω
G(u0)dx+o(1) = Φ(u0)−λΨ(u0)+ 1

2
‖vn‖2− λ

2∗

∫

Ω
|vn|2∗dx+o(1).

Hence, (B) is proved.

Fourth step. We prove the following

(C) lim
n→∞

(

‖vn‖2 − λ

∫

Ω

|vn|2
∗

dx

)

= 0.

In fact, from (β) we have limn→∞ I ′(un)(un) = 0. So,
∫

Ω
∇un∇undx−λ

∫

Ω
|un|2

∗−1undx−
λ

∫

Ω
g(un)undx = o(1), for which ‖un‖2 − λ

∫

Ω
|un|2∗dx − λ

∫

Ω
g(un)undx = o(1).

Therefore, as seen in the proof of (B) and taking into account that
∫

Ω
g(un)undx =

∫

Ω
g(u0)u0dx + o(1) owing to the fact that g(un) → g(u0) in L

q
q−1 (Ω) (see the first

step) and un → u0 in Lq(Ω), one has ‖vn‖2 + ‖u0‖2 − λ
∫

Ω
|vn|2

∗

dx − λ
∫

Ω
|u0|2

∗

dx −
λ

∫

Ω
g(u0)u0dx = o(1), that is,

‖vn‖2 − λ

∫

Ω

|vn|2
∗

dx = −‖u0‖2 + λ

∫

Ω

|u0|2
∗

dx + λ

∫

Ω

g(u0)u0dx + o(1).
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Since u0 is a weak solution of (Df
λ), one has ‖u0‖2−λ

∫

Ω
|u0|2

∗

dx−λ
∫

Ω
g(u0)u0dx = 0.

Therefore,

‖vn‖2 − λ

∫

Ω

|vn|2
∗

dx = o(1),

that is, (C) is proved.

Conclusion. Finally, we observe that ‖vn‖2 is bounded in R being un bounded in X.

So, there is a subsequence, called again ‖vn‖2, which converges to b ∈ R. Hence,

lim
n→∞

‖vn‖2 = b.

If b = 0 we have proved the lemma. In fact, we have that limn→∞ ‖un −u0‖ = 0, that

is, un strongly converges to u0 in X. So, arguing by contradiction, we assume that

b 6= 0. From (C) we obtain limn→∞ λ
∫

Ω
|vn|2

∗

dx = b. Now, taking into account that

‖vn‖L2∗(Ω) ≤ c2∗‖vn‖, for which
∫

Ω
|vn|2

∗

dx ≤
∫

Ω
|vn|2

∗

dx ≤ c2∗

2∗‖vn‖2∗ , and passing to

the limit, one has b
λ
≤ c2∗

2∗b
2∗/2 and then, since b 6= 0, one has

b ≥
(

1

λ

)
N−2

2
(

1

c2∗

)N

.

Now, taking (A) into account, from (B) we have c = Φ(u0) − λΨ(u0) + 1
2
b − 1

2∗
b >

−r +
(

1
2
− 1

2∗

)

b = −r + 1
N

b, that is

c > −r +
1

N
b.

On the other hand, since F (ξ) ≥ 0 for all ξ ∈ R, one has Φ(un) − λΨ(un) < r for all

n ∈ N. Hence, we have

c ≤ r.

So, −r + 1
N

b < c ≤ r. It follows 1
N

b < 2r, that is,

b < 2rN.

Therefore, one has
(

1
λ

)
N−2

2

(

1
c2∗

)N

≤ b < 2rN . So, it follows 1
λ

< (2rNcN
2∗)

2
N−2 .

Hence, one has

λ >
1

(2rN)
2

N−2

1

c2∗
2∗

= λ̃r,

and this is a contradiction.

Next, by using the previous lemma, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix r > 0 and λ < λr. Our aim is to apply Theorem 2.1. To

this end, first we observe that, owing to Lemma 3.1, the functional Φ−λΨ satisfies the

(PS)[r]−condition. Now, arguing as in the proof of [1, Theorem 8.1] and by choosing

r1 = 0 and r2 = r, it is possible to prove that

β(r1, r2) <
1

λ
< ρ2(r1, r2).

Hence, Theorem 2.1 ensures the conclusion. �
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Finally, the following example of application is pointed out.

Example 3.2. Owing to Theorem 1.1, for each λ < λ1, where

λ1 = min

{

1

23/2c1 + 2(2∗+2)/2

2∗
c2∗
2∗

;
1

c2∗
2∗(2N)

2
N−2

}

,

the problem

(P )

{

−∆u = λ
(

|u|2∗−2u +
√

log(1 + u)
)

in Ω,

u|∂Ω = 0,

admits at least one positive weak solution. In fact, it is enough to pick g(t) =
√

log(1 + t) if t ≥ 0, g(t) = 0 if t ≤ 0 and r = 1.

Remark 3.3. We recall that in the classical and seminal paper of Brezis and Niren-

berg [3], contrary to Theorem 1.1, the nonlinearity f is linear or super-linear at 0,

that is, limt→0+
f(t)

t
< +∞. So, in particular, Theorem 2.1 of [3] cannot be applied

to the problem (P ) in the Example 3.2.

Remark 3.4. We recall that in [1] it was proved a similar result when the nonlinearity

f may be also only subcritical, beyond the same critical case, which is studied at the

same time (see [1, Theorem 8.1]. Since, when f is sub-critical, the (PS)[r]−condition

immediately follows from [1, Proposition 2.1], the proof of the (PS)[r]-condition can

be limited only to the critical case. Moreover, the proof of (PS)[r]−condition in the

critical case deserves to be examined separately and it needs more details for greater

clarity, as done in Lemma 3.1.
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