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1. INTRODUCTION

In the last few decades the study of fractional differential equations has become

a major area of research. There is an extensive literature on the subject. Some of the

major contributions are Diethelm [1], Hermann [3], Kilbas et al [4], Lakshmikantham

et al [5], Miller et al [7], Oldham et al [8], and Podlubny [9].

The study of a terminal-value problem for ordinary differential equations using

the method of lower and upper solutions can be found in [5]. In [10] the solution of an

impulsive terminal-value problem for an ordinary differential equation was obtained

constructively using the technique of Generalized Quasilinearization (GQL) and the

secant method. In [1], Diethelm gave an example of a terminal-value problem for

fractional differential equations for which he provided a numerical solution.

The study of terminal-value problems is intriguing, as the information is given

at the end point of the interval and one has to work backwards to find the initial

value at which the solution must start in order to reach the prescribed value at the

end point of the interval. This problem becomes more interesting in the case of a

fractional differential equation where it closely resembles a boundary-value problem,

as suggested by Diethelm [1], in the sense that the initial value is inherently involved in
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the definition of the differential operator and the terminal value provides the condition

at the right end point of the interval.

In this paper, we consider a terminal-value problem for fractional differential

equations. We assume the existence of lower and upper solutions for the given

problem such that the terminal value is in the sector defined by these solutions. Next,

we construct a sequence of initial-value problems and find their solutions using the

GQL method. Then, we successively use a combination of the GQL technique and the

bisection method to obtain the unique solution of the given terminal-value problem of

the Caputo fractional differential equation.

2. BASIC THEORY OF FRACTIONAL DIFFERENTIAL EQUATIONS

In this section we present some definitions and basic results that are needed in

our subsequent work.

Let 0 < q < 1 and p = 1 − q.

Definition 2.1. m ∈ Cp[[t0, T ], R] means that m ∈ C[(t0, T ], R] and (t − t0)
pm(t) ∈

C[[t0, T ], R].

Definition 2.2. For m ∈ Cp[[t0, T ], R], the Riemann-Liouville fractional derivative

of m(t) is defined by

Dqm(t) =
1

Γ(p)

d

dt

t∫

t0

(t − s)p−1m(s)ds.

Next, we state some known results which are taken from [11], where the hypoth-

esis of Hölder continuity in Lemma 2.3.1 in [6] has been weakened to continuity. This

lemma is a basic tool used to prove comparison theorems in the fractional differential

equations context.

Lemma 2.3. Let m ∈ Cp[[t0, T ], R]. Suppose that for any t1 ∈ (t0, T ], we have

m(t1) = 0 and m(t) < 0 for t0 ≤ t < t1, then it follows that Dqm(t1) ≥ 0.

We now state the following theorems which are proved using this lemma.

Theorem 2.4. Let v, w ∈ Cp[[t0, T ], R], f ∈ C[[t0, T ] × R, R]

(2.1) Dqv(t) ≤ f(t, v(t))

and

(2.2) Dqw(t) ≥ f(t, w(t)),

t0 ≤ t ≤ T , with one of the above inequalities being strict. Then v0 < w0, where

v0 = v(t)(t−t0)
1−q|t=t0 and w0 = w(t)(t−t0)

1−q|t=t0 , implies v(t) < w(t), t0 ≤ t ≤ T .
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The next theorem deals with a result involving nonstrict inequalities.

Theorem 2.5. Let v, w ∈ Cp[[t0, T ], R], f ∈ C[[t0, T ]×R, R] and Dqv(t) ≤ f(t, v(t))

and Dqw(t) ≥ f(t, w(t)), t0 ≤ t ≤ T . Assume that f satisfies the Lipschitz condition

f(t, x) − f(t, y) ≤ L(x − y), x ≥ y, L > 0.

Then, v0 ≤ w0 implies v(t) ≤ w(t), t ∈ [t0, T ].

Next, we define the Caputo derivative and state some related results.

Definition 2.6. u ∈ Cq[[t0, T ], R] if and only if the Caputo derivative denoted by
cDqu exists, that is, u satisfies

cDqu(t) =
1

Γ(1 − q)

∫ t

t0

(t − s)−qu′(s)ds.

We observe that the Caputo and the Riemann-Liouville derivatives are related by the

relation

(2.3) cDqx(t) = Dq[x(t) − x0].

We now proceed to describe the Caputo and Riemann-Liouville initial-value problems

and the corresponding Volterra fractional integral equations.

The initial-value problem of the Caputo fractional differential equation is given

by

(2.4) cDqx = f(t, x), x(t0) = x0,

and the corresponding Volterra fractional integral equation is given by

(2.5) x(t) = x0 +
1

Γ(q)

∫ t

t0

(t − s)q−1f(s, x(s))ds.

The initial-value problem of the Riemann-Liouville fractional differential equation is

given by

(2.6) Dqx = f(t, x), x0 = x(t)(t − to)
1−q|t=t0

and the corresponding Volterra fractional integral equation is given by

(2.7) x(t) = x0(t) +
1

Γ(q)

∫ t

t0

(t − s)q−1f(s, x(s))ds

where x0(t) =
x0(t − t0)

q−1

Γ(q)
.

At this point, note that any two functions v, w ∈ Cp[[t0, T ], R] satisfying the

relations (2.1) and (2.2) are said to be lower and upper solutions, respectively, of the

Riemann-Liouville fractional differential equation (2.6).

We now state an existence result in the Riemann-Liouville fractional differential

equation set up.
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Theorem 2.7. Let v, w ∈ Cp[[t0, T ], R] be lower and upper solutions of initial-value

problem (2.6), such that v(t) ≤ w(t) on [t0, T ]. Then, there exists a solution x(t) of the

initial-value problem (2.6) satisfying v(t) ≤ x(t) ≤ w(t) on [t0, T ] where f ∈ C[Ω, R]

and

Ω = {(t, x) : v(t) ≤ x ≤ w(t), t ∈ [t0, T ]}.

The proof is similar to the proof of Theorem 3.2.1 in [6], except that Lemma 2.3

is used in place of Lemma 2.3.1 in [6].

Next, we introduce the initial-value problem for Caputo fractional differential

equation given by

cDqx = f(t, x) + g(t, x),(2.8)

x(t0) = x0.(2.9)

Then, the corresponding Volterra fractional integral equation is

x(t) = x0 +

∫ t

t0

(t − s)q−1[f(s, x(s)) + g(s, x(s))]ds.

We now state a generalized quasilinearization result from [6].

Theorem 2.8. Assume that

(i) f, g ∈ C[J × R, R], α0, β0 ∈ Cq[J, R],

cDqα0 ≤ f(t, α0) + g(t, α0), α0(t0) ≤ x0,
cDqβ0 ≥ f(t, β0) + g(t, β0), β0(t0) ≥ x0,

α0(t) ≤ β0(t) on J , and α0(t0) ≤ x0 ≤ β0(t0), where J = [t0, T ].

(ii) Suppose fx(t, x) exists, fx(t, x) is increasing in x for each t,

f(t, x) ≥ f(t, y) + fx(t, y)(x − y), x ≥ y,

and

|fx(t, x) − fx(t, y)| ≤ L1|x − y|, L1 > 0.

Further suppose that gx(t, x) exists, gx(t, x) is decreasing in x for each t,

g(t, x) ≥ g(t, y) + gx(t, x)(x − y), x ≥ y,

and

|gx(t, x) − gx(t, y)| ≤ L2|x − y|, L2 > 0.

Then, there exist monotone sequences {αn}, {βn}, such that αn → ρ, βn → r uni-

formly and monotonically and ρ = r = x is the unique solution of IVP (2.8) and (2.9)

on J , and the convergence is quadratic.
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Finally, we observe that the relation between the Caputo and Riemann-Liouville

fractional differential equations established in [1] enables us to apply results developed

for the Riemann-Liouville fractional differential equations to the Caputo fractional

differential equations.

3. MAIN RESULTS

In this section, we present a constructive method to obtain a solution of the

terminal-value problem of Caputo fractional differential equation using a sequence of

solutions of initial-value problems of the Caputo fractional differential equations.

Consider the terminal-value problem of the Caputo fractional differential equa-

tion given by

cDqx = F (t, x),(3.1)

x(T ) = A,(3.2)

where F ∈ C[[t0, T ] × R, R].

Let F (t, x) = f(t, x) + g(t, x), where f, g ∈ C[[t0, T ] × R, R], f(t, x) satisfies a

convexity condition and g(t, x) satisfies a concavity condition as given in Theorem 2.8.

Then problems (3.1) and (3.2) become the terminal-value problem of the Caputo

fractional differential equation given by

cDqx = f(t, x) + g(t, x),(3.3)

x(T ) = A.(3.4)

Our aim is to consider the following initial-value problem of the Caputo fractional

differential equation

cDqx = f(t, x) + g(t, x),(3.5)

x(t0) = x0,(3.6)

and find the initial value x0 and the solution x(t, t0, x0) such that x(T, t0, x0) = A.

For this purpose we assume that lower and upper solutions, α0(t) and β0(t), exist with

α0(t0) = α0 and β0(t0) = β0, and start with x0 = (α0 + β0)/2. Then, using the GQL

method we obtain the unique solution of (3.5) and (3.6). Next, we successively use a

combination of the bisection method and the GQL method to get a better estimate

of the initial value in order to obtain the unique solution x(t, to, x0) of (3.5) and (3.6),

such that x(T, t0, x0) = A.

We apply this approach to prove the following theorem.

Theorem 3.1. Assume that
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i) α, β ∈ Cq[J, R] such that
cDqα ≤ f(t, α) + g(t, α),
cDqβ ≥ f(t, β) + g(t, β),

α(t) ≤ β(t), t ∈ J and α(T, t0, α(t0)) ≤ A ≤ β(T, t0, β(t0)), where J = [t0, T ];

ii) fx(t, x) exists, is increasing in x for each t,

f(t, x) ≥ f(t, y) + fx(t, y)(x − y), x ≥ y, and

|fx(t, x) − fx(t, y)| ≤ L1|x − y|, L1 > 0;

iii) gx(t, x) exists, is decreasing in x for each t,

g(t, x) ≥ g(t, y) + gx(t, x)(x − y), x ≥ y, and

|gx(t, x) − gx(t, y)| ≤ L2|x − y|, L2 > 0.

Then, there exists a unique real number x0 and a unique solution x(t, t0, x0) of the

initial-value problem (3.5) and (3.6) such that x(T, t0, x0) = A, that is, there exists a

unique solution of the terminal-value problem (3.3) and (3.4), and hence of (3.1) and

(3.2).

Proof. Since α(t) ≤ β(t) on J , set

x1 =
α(t0) + β(t0)

2
.

Then we have α(t0) ≤ x1 ≤ β(t0). Now, by assumption (i), we can apply Theorem 2.7,

and claim that there exists a solution for the initial-value problem (3.5) and (3.6)

with x(t0) = α(t0)+β(t0)
2

= x1. Next, observing that conditions (ii) and (iii) satisfy the

hypothesis of the GQL theorem, namely Theorem 2.8, we obtain the unique solution

x1(t, t0, x1) of the initial-value problem (3.5) and (3.6) on J .

Then, we consider the following cases.

(a) if x1(T, t0, x1) = A, we have obtained the desired solution for the terminal-value

problem (3.3) and (3.4), and hence the solution for the terminal-value problem of

the (3.1) and (3.2);

(b) if x1(T, t0, x1) > A, then set α1(t, t0, α1(t0)) = α(t, t0, α(t0)) and β1(t, t0, β1(t0)) =

x1(t, t0, x1);

(c) if x1(T, t0, x1) < A, then set α1(t, t0, α1(t0)) = x1(t, t0, x1) and β1(t, t0, β1(t0)) =

β(t, t0, β(t0)).

Then, it is clear that α1(t) ≤ β1(t) on J . Further, α1(t) and β1(t) satisfy the inequal-

ities

cDqα1(t) ≤ f(t, α1) + g(t, α1),(3.7)

and cDqβ1(t) ≥ f(t, β1) + g(t, β1).(3.8)

Now set

(3.9) x2 =
α1(t0) + β1(t0)

2
.
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Clearly, α1(t0) ≤ x2 ≤ β1(t0). Then relations (3.7) and (3.8), along with Theorem 2.7

and Theorem 2.8, yield the existence of the unique solution x2(t, t0, x2) of the initial-

value problem (3.5) and (3.6) on J . Next, consider the value x2(T, t0, x2) and proceed

as before.

Continuing this process, we obtain a sequence of real numbers {xn} and a se-

quence of solutions {xn(t, t0, xn)} of the corresponding initial-value problems of Ca-

puto fractional differential equations given by

cDqx = f(t, x) + g(t, x),

x(t0) = xn = αn−1(t0)+βn−1(t0)
2

.

Now, we analyze the sequence of numbers {xn}. Observe that {xn} consists of two se-

quences of numbers {αn(t0)}, which is a nondecreasing sequence, and {βn(t0)}, which

is a nonincreasing sequence. Thus, both sequences are monotone and bounded, and

hence converge to two points x0 and y0, respectively. Next, consider the sequence of

functions {αn(t)} and {βn(t)}. These sequences are nonincreasing and nondecreas-

ing, respectively, and are bounded by α(t) and β(t) on J . It can easily be shown

that these sequences are equicontinuous and uniformly bounded. Further, since these

sequences are monotone, by Arzela-Ascoli Theorem they converge to two functions,

x(t, t0, x0) and y(t, t0, y0), respectively.

Now, we claim that x(t, t0, x0) and y(t, t0, y0) are solutions of the terminal-value

problem. From construction, we have a decreasing sequence of nested intervals

{[αn(t0), βn(t0)]}. By Cantor’s Intersection Theorem they must intersect in a point.

Thus x0 = y0. Since both f and g are Lipschitz, x(t, t0, x0) = y(t, t0, x0) is the unique

solution of
cDqx = f(t, x) + g(t, x),

x(t0) = x0.

If x(T, t0, x0) = A, then x(t, t0, x0) is the solution of the terminal-value problem (3.1)

and (3.2). If x(T, t0, x0) 6= A, then we obtain a contradiction by considering the

sequence of nested intervals, {[αn(T ), βn(T )]}. By Cantor’s Intersection Theorem

these nested intervals must intersect at only one point, which by construction is

x(T, t0, x0) = A, and hence the proof.

Remark 3.2. In a situation where it is desired to reach the target A incrementally

through a series of sub-targets Ai at times ti, i = 1, 2, . . . , n, the terminal-value

problem (3.1) and (3.2) can be reformulated as follows:

Let the time interval [t0, T ] be divided into n subintervals [ti−1, ti], i = 1, 2, . . . , n

with tn = T Consider in each subinterval [ti−1, ti] the terminal-value problem

cDqx = F (t, x),(3.10)

x(ti) = Ai, i = 1, 2, . . . , n.(3.11)
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An application of Theorem 3.1 to terminal-value problem (3.10) and (3.11) yields a

unique value xi−1 and a unique solution x(t, ti−1, xi−1) on [ti−1, ti] such that x(ti, ti−1,

xi−1) = Ai, i = 1, 2, . . . , n. Now, consider the interval [ti, ti+1] and the terminal-

value problem (3.10) with the condition x(ti+1) = Ai+1. Again, application of The-

orem 3.1 yields a unique value xi and a unique solution x(t, ti, xi) on [ti, ti+1], such

that x(ti+1, ti, xi) = Ai+1. If Ai = xi we proceed to the next interval and obtain the

solution on [ti+1, ti+2]. On the other hand, if Ai is not equal to xi we must adjust

the initial value at ti by an amount equal to the difference between the two values

in order to reach the initial value xi required to obtain the terminal value Ai+1 at

time ti+1. These adjustments could be achieved through application of impulses at

the fixed times ti, i = 1, 2, . . . , n. In a way, this problem resembles a terminal-value

impulsive problem where the impulses are dictated by the initial value at each stage.
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