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ABSTRACT. We have developed generalized quasilinear method for Caputo fractional differential

equations of order q when 0 < q < 1, using coupled lower and upper solutions. The sequences we

obtain are solutions of two linear system of fractional differential equations. In addition, we develop

a method which combines generalized quasilinearization and generalized monotone method. In this

method, the sequences are solutions of scalar equations. The method yields superlinear convergence.

As an application, this mixed method yields better results than generalized monotone method in

the numerical computation of coupled lower and upper solutions to any desired interval.
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1. INTRODUCTION

Nonlinear problems (nonlinear dynamic systems) occur naturally as mathemati-

cal models in many branches of science, engineering, finance, economics, etc. So far,

in literature, most models are differential equations with integer derivative. However,

the qualitative and quantitative study of fractional differential and integral equations

has gained importance recently due to its applications. See [1, 3, 5, 6, 7, 8] for details.

Generalized quasilinearisation method can be applied to differential equations when

the forcing function is the sum of convex and concave functions. See [4] for details

for generalized quasilinearisation method. Generalized quasilinearisation method for

Caputo fractional differential equations using natural lower and upper solutions are

developed in [5]. In this work, we extend the generalized quasilinearisation method

for Caputo fractional differential equations using coupled lower and upper solutions.

However this method requires the computation of solutions of two linear system of

fractional differential equations. In order to simplify the computation we develop

a method which requires the computation of two scalar fractional differential equa-

tions. We note that this method yields generalized monotone method as a special
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case. In this new method we assume the nonlinear function is the sum of a convex

function and a decreasing function. However, the rate of convergence of the sequences

are superlinear and not quadratic as in generalized quasilinearization method. This

method has an advantage over the generalized monotone method, which yields linear

convergence. Numerical computations using the new method would be more efficient

than the generalized monotone method (see [9] for numerical results via generalized

monotone method).

2. PRELIMINARY AND AUXILIARY RESULTS

In this section, we recall some known results, and develop a few results which are

needed for our main results. Initially, we recall some definitions.

Definition 2.1. Caputo fractional derivative of order q is given by equation

cDqu(t) =
1

Γ(1 − q)

∫ t

0

(t − s)−qu′(s)ds,

where 0 < q < 1.

Also, consider nonlinear Caputo fractional differential equation with initial con-

dition of the form

(2.1) cDqu(t) = f(t, u(t)), u(0) = u0,

where f ∈ C[J × R, R] and J = [0, T ].

The integral representation of (2.1) is given by equation

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s))ds,

where Γ(q) is the Gamma function.

The equivalence of (2.1) and (2.2) is established in [3].

In order to compute the solution of linear fractional differential equation with

constant coefficients we need Mittag Leffler function.

Definition 2.2. Mittag Leffler function is given by

Eα,β(λ(t − t0)
α) =

∞
∑

k=0

(λ(t − t0)
α)k

Γ(αk + β)
,

where α, β > 0. Also, for t0 = 0, α = q and β = 1, we get

Eq,1(λtq) =

∞
∑

k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

Also, consider linear Caputo fractional differential equation,

(2.3) cDqu(t) = λu(t) + f(t), u(0) = u0, on J
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where J = [0, T ], λ is a constant and f(t) ∈ C[J, R].

The solution of (2.3) exists and is unique. The explicit solution of (2.3) is given

by

(2.4) u(t) = u0Eq,1(λtq) +

∫ t

0

(t − s)q−1Eq,q(λtq)f(s)ds.

See [5] for details.

In particular, if λ = 0, the solution u(t) is given by

(2.5) u(t) = u0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s)ds,

where Γ(q) is the Gamma function.

Note that if cDqu(t) ≤ λu(t)+f(t), u(0) = u0, on J in (2.3), then the conclusions

in (2.4) and (2.5) will hold good with ≤ in place of equality. This inequalities will be

useful in computing the rate of convergence in our main results.

Also we recall known results related to scalar Caputo nonlinear fractional differ-

ential equations of the following form:

(2.6) cDqu(t) = f(t, u) + g(t, u), u(0) = u0 on J = [0, T ],

where 0 < q < 1. Here f, g ∈ C(J × R, R), f(t, u) is non-decreasing in u on J and

g(t, u) is non-increasing in u on J .

The next result is related to the Reimann-Liouville fractional derivative. For that

purpose we define Cp continuous function.

Definition 2.3. Let p = 1 − q. A function φ(t) ∈ C[(0, T ], R] is a Cp function if

tpφ(t) ∈ C([0, T ], R). The set of Cp functions is denoted Cp(J, R). Further, given a

function φ(t) ∈ Cp(J, R) we call the function tpφ(t) the continuous extension of φ(t).

Lemma 2.4. Let m(t) ∈ Cp[J, R] (where J = [0, T ]) be such that for some t1 ∈ (0, T ],

m(t1) = 0 and m(t) ≤ 0, on J , then Dqm(t1) ≥ 0.

Proof. See [2, 5] for details.

However note that we have not assumed m(t) to be Holder continuous as in [5].

The above lemma is true for Caputo derivative also, using the relation cDqx(t) =

Dq(x(t)−x(0)) between the Caputo derivative and the Reimann-Liouville derivative.

This is the version we will be using to prove our comparison results. The next lemma

states the Caputo derivative version.

Lemma 2.5. Let m(t) ∈ C1[J, R] (where J = [0, T ]) be such that m(t) ≤ 0 on J and

for t1 > 0, if m(t1) = 0, then cDqm(t1) ≥ 0.

We recall the following known definitions which are needed for our main results.
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Definition 2.6. The functions v0, w0 ∈ C1([0, T ], R) are called natural lower and

upper solutions of (2.6) if :

cDqv0(t) ≤ f(t, v0) + g(t, v0), v0(0) ≤ u0,

and
cDqw0(t) ≥ f(t, w0) + g(t, w0), w0(0) ≥ u0.

Definition 2.7. The functions v0, w0 ∈ C1([0, T ], R) are called coupled lower and

upper solutions of type I of (2.6) if :

cDqv0(t) ≤ f(t, v0) + g(t, w0), v0(0) ≤ u0,

and
cDqw0(t) ≥ f(t, w0) + g(t, v0), w0(0) ≥ u0.

Consider the fractional differential equation

(2.7) cDqx = f(t, u), u(0) = u0

where f ∈ C[J × Rn, Rn].

The above equation can be written component wise as

(2.8) cDqui = fi(t, ui, [u]pi, [u]qi), ui(0) = u0i,

such that pi + qi = N − 1.

Definition 2.8 (Mixed quasimonotone property). A function f(t, u) is said to pos-

sess a mixed quasimonotone property if for each i, fi(t, ui, [u]pi, [u]qi) is monotone

nondecreasing in [u]pi components and monotone nonincreasing in [u]qi components.

Definition 2.9. A pair of functions vi, wi ∈ C1[J, Rn], for i = 1, 2, . . . , N , are called

coupled upper and lower solutions of (2.8) if the following inequalities hold good.

(2.9)

cDqvi ≤ fi(t, vi, [v]pi, [w]qi), vi(0) ≤ u0i,

cDqwi ≥ fi(t, wi, [w]pi, [v]qi), wi(0) ≤ u0i,

}

for i = 1, 2, . . . , N .

Definition 2.10. A pair of functions vi, wi ∈ C1[J, Rn], for i = 1, 2, . . . , N , are called

Muller’s type of coupled upper and lower solutions of (2.8) if the following inequalities

hold good.

(2.10)

cDqvi ≤ fi(t, σ), ∀ σ | vi(t) = σi and v(t) ≤ σ ≤ w(t),

cDqwi ≥ fi(t, σ), ∀ σ | wi(t) = σi and v(t) ≤ σ ≤ w(t),

}

for i = 1, 2, . . . , N .

The following theorem provides the existence of a solution to (2.7) via coupled

lower and upper solutions. Also we define Ω = {(t, u) : v ≤ u ≤ w, t ∈ J}.
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Theorem 2.11. Let v, w ∈ C1[J, Rn] be coupled lower and upper solutions of (2.7)

and f ∈ C[Ω, Rn]. If f(t, u) possesses a mixed quasimonotone property, then there

exists a solution u(t) of (2.7) such that v(t) ≤ u(t) ≤ w(t) on J .

Proof. If f(t, u) possesses a mixed quasimonotone property, the existence of coupled

lower and upper solutions of the form (2.9) imply the existence of coupled lower and

upper solutions of the form (2.10). Hence we prove the next theorem which will suffice

the proof of Theorem 2.11.

Theorem 2.12. Let v(t), w(t) ∈ C1[J, Rn] and f ∈ C(Ω, Rn), where v(t) ≤ w(t) on J

and such that v(t) and w(t) are coupled lower and upper solutions of the form (2.10)

for (2.7). Then there exists a solution u ∈ C1[J, Rn] of (2.7) such that v(t) ≤ u(t) ≤

w(t) on J provided v(0) ≤ u0 ≤ w(0).

Proof. Consider the function µ defined by µi(t, u) = max{vi(t), min{ui(t), wi(t)}} for

each i. Note that v(t) ≤ µ(t, u) ≤ w(t) on Ω and f(t, µ(t, u)) defines a continuous

extension of f to J × R
n, which is also bounded since f is bounded on Ω. Therefore

cDqu = f(t, µ(t, u)) has a solution u on J with u(0) = u0. Let us show that v(t) ≤

u(t) ≤ w(t) and hence solution of (2.7).

For ǫ > 0, consider vǫ,i(t) = vi(t)−ǫ(1+ tq

Γ(1+q)
) and wǫ,i(t) = wi(t)+ ǫ(1+ tq

Γ(1+q)
).

We have, vǫ,i(0) = vi(0)− ǫ < vi(0) < ui(0). Also wǫ,i(0) = wi(0) + ǫ > wi(0) > ui(0).

Therefore vǫ,i(0) < ui(0) < wǫ,i(0).

Our aim is to prove that the solution of (2.7) is such that vǫ,i(t) < ui(t) < wǫ,i(t)

on J . If the conclusion is not true, ∃ t1 ∈ J such that vǫ,j(t) < uj(t) < wǫ,j(t) on [0, t1)

and either uj(t1) = vǫ,j(t1) or uj(t1) = wǫ,j(t1). In addition vi(t1) ≤ µi(t1, ui(t1)) ≤

wi(t1). First let us consider the case when uj(t1) = vǫ,j(t1). Then by Lemma 2.4 we

have cDq(vǫ,j − uj)|t=t1 ≥ 0.

Now cDqvǫ,j(t1) < cDqvj(t1) ≤ fj(t1, vj(t1), [µ(t1, u(t1)]pj, [µ(t1, u(t1)]qj) =
cDquj(t1) which is a contradiction. Hence vǫ,j(t) < uj(t). Similarly if uj(t1) = wǫ,j(t1),

we can get a contradiction. Therefore vǫ,j(t) < uj(t) < wǫ,j(t). Now as ǫ −→ 0 we

get, v(t) ≤ u(t) ≤ w(t). This proves µj(t, uj) = uj by definition of µj(t, uj), and hence

the solution of (2.7). This concludes the proof.

We prove equicontinuity for a sequence of bounded functions which is needed for

our main results. The next result is precisely this. The proof is on the same lines as

in [5].

Theorem 2.13. Let vn(t) be a family of continuous functions on [0, T ], for each

n > 0, where cDqvn(t) = f(t, vn(t)), vn(0) = v0 and |f(t, vn(t))| ≤ M for 0 < t < T .

Then the family vn(t) is equicontinuous on [0, T ].
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Proof. For 0 ≤ t1 ≤ t2, consider

|vn(t1) − vn(t2)| = |
1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, vn(s))ds

−
1

Γ(q)

∫ t2

0

(t2 − s)q−1f(s, vn(s))ds|

= |
1

Γ(q)

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]f(s, vn(s))ds

−
1

Γ(q)

∫ t2

t1

(t2 − s)q−1f(s, vn(s))ds|

≤
M

Γ(q)

∫ t1

0

|[(t1 − s)q−1 − (t2 − s)q−1]|ds +
M

Γ(q)

∫ t2

t1

|(t2 − s)q−1|ds

=
M

Γ(q)

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]ds +
M

Γ(q)

∫ t2

t1

|(t2 − s)q−1|ds

=
M

Γ(q + 1)
[tq1 − t

q
2 + 2(t2 − t1)

q]

≤
M

Γ(q + 1)
[2(t2 − t1)

q],

provided |t2 − t1| < δ = [ ǫΓ(q+1)
2M

]1/q. This completes the proof.

Theorem 2.14. Let v, w ∈ C[J, R] and f(t, u), g(t, u) ∈ C[J × R, R]. Suppose that

(2.11) cDqv ≤ f(t, u) + g(t, w) and cDqw ≥ f(t, w) + g(t, v),

where f(t, u1)−f(t, u2) ≤ L(u1−u2) and g(t, u1)−g(t, u2) ≥ −L(u1−u2) for u1 ≥ u2.

Then v(0) ≤ w(0) implies v(t) ≤ w(t).

Proof. Initially we prove when one of the inequalities in (2.11) is strict. Then we

show v(t) < w(t) on J . Let v(0) < w(0). If the conclusion is not true ∃ t1 > 0, such

that v(t1) = w(t1) and v(t) < w(t) on [0, t1). Setting m(t) = v(t) − w(t) and using

Lemma(2.4) we get, cDqw(t1) ≥
c Dqw(t1). From the hypothesis we have f(t, v(t1)) +

g(t, w(t1)) > cDqv(t1) ≥
cDqw(t1) ≥ f(t, w(t1)+g(t, v(t1)) = f(t, v(t1))+g(t, w(t1)),

which is a contradiction.

In order to prove the result for non-strict inequalities we define vǫ and wǫ as

follows: vǫ = v − ǫEq,1(3Ltq) and wǫ = w + ǫEq,1(3Ltq), where ǫ > 0.

We can see vǫ(0) ≤ wǫ(0). Consider cDqvǫ ≤c Dqv − 3LǫEq,1(3Ltq) = f(t, v) +

g(t, w) − 3LǫEq,1(3Ltq) = f(t, v) − f(t, vǫ) + g(t, w) − g(t, wǫ) + f(t, vǫ) + g(t, wǫ) −

3LǫEq,1(3Ltq) ≤ L(v − vǫ) + L(wǫ − w) − 3LǫEq,1(3Ltq) ≤ f(t, vǫ) + g(t, wǫ) −

LǫEq,1(3Ltq) < f(t, vǫ) + g(t, wǫ). Similarly we can show that cDqwǫ > f(t, wǫ) +

g(t, vǫ). Using the strict inequality result, we have vǫ(t) < wǫ(t) on J . As ǫ −→ 0 we

get v(t) ≤ w(t) on J .
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3. MAIN RESULTS

In this section we develop two results relative to Caputo fractional differential

equation of the form

(3.1) cDqu(t) = f(t, u) + g(t, u), u(0) = u0,

where f(t, u), g(t, u) ∈ C[J × R, R]. In the first result we consider f(t, u) is convex

in u and g(t, u) is concave in u for each t ∈ J . We develop monotone sequences

which are solutions of two linear system of Caputo fractional differential equations

which converge uniformly and monotonically to the unique solution of the nonlinear

Caputo fractional differential equation. Further the rate of convergence is quadratic.

In the second result we assume f(t, u) is convex in u and g(t, u) is non increasing in

u for each t ∈ J . In this case also we develop monotone sequences which converge

uniformly and monotonically to coupled minimal maximal solutions. The elements of

these sequences are solutions of scalar linear Caputo fractional differential equations.

Further if gu(t, u) exists the sequences converge to the unique solution. Here the

rate of convergence is superlinear. We note that when g(t, u) = 0 we have quadratic

convergence and when f(t, u) = 0 we have linear convergence.

The first result we provide is related to the generalized quasilinearization method

of (3.1) using coupled lower and upper solutions of type I.

Theorem 3.1. Assume that

(i) α0, β0 ∈ C1[J, R] with α0 ≤ β0 on J ,

(ii) f, g ∈ C[Ω, R], fu, gu, fuu, guu exist, are continuous and satisfy fuu(t, u) ≥ 0,

guu(t, u) ≤ 0 for (t, u) ∈ Ω,

(iii) gu(t, u) ≤ 0 on Ω. Then there exit monotone sequences {αn(t)}, {βn(t)} which

converge uniformly to the unique solution of (3.1) and the convergence is qua-

dratic.

Proof. The assumption that fuu(t, u) ≥ 0, guu(t, u) ≤ 0 yield the following inequalities

(3.2) f(t, u) ≥ f(t, v) + fu(t, v)(u − v),

(3.3) g(t, u) ≤ g(t, v) + gu(t, v)(u − v),

for u ≥ v.

From (ii) we have that f and g are Lipschitz. So choose L1, L2 > 0 such that for

any v0(t) ≤ u2 ≤ u1 ≤ w0(t), t ∈ J

|f(t, u1) − f(t, u2)| ≤ L1|u1 − u2|,

|g(t, u1) − g(t, u2)| ≤ L2|u1 − u2|.
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Consider the system of fractional IVP

cDqu ≡ F (t, α0, β0; u, v)(3.4)

≡ f(t, α0) + fu(t, α0)(u − α0) + g(t, β0) + gu(t, α0)(v − β0), u(0) = u0,

cDqv ≡ G(t, α0, β0; v, u)(3.5)

≡ f(t, β0) + fu(t, α0)(v − β0) + g(t, α0) + gu(t, α0)(u − α0), v(0) = u0.

We will show that α0 and β0 are coupled lower and upper solutions of the system

(3.4) and (3.5). Equation (3.4) implies,

(3.6) cDqα0 ≤ f(t, α0) + g(t, β0) ≡ F (t, α0, β0; α0, β0).

Using (3.5), (3.2) and (3.3), we have

cDqβ0 ≥ f(t, β0) + g(t, α0)(3.7)

≥ f(t, α0) + fu(t, α0)(β0 − α0) + g(t, β0) + gu(t, α0)(α0 − β0)

≡ F (t, α0, β0; β0, α0).

Again from (3.4) and using (3.2), (3.3), we obtain

cDqα0 ≤ f(t, α0) + g(t, β0)(3.8)

≤ f(t, β0)) + fu(t, α0)(α0 − β0) + g(t, α0) + gu(t, α0)(β0 − α0)

≡ G(t, α0, β0; α0, β0).

Equation (3.5) implies

(3.9) cDqβ0 ≥ f(t, β0) + g(t, α0) ≡ G(t, α0, β0; β0, α0).

From (3.6) and (3.7) and using Theorem 2.12 there exists α1, such that α0 ≤

α1 ≤ β0. From (3.8) and (3.9) and using Theorem 2.12 there exists β1, such that

α0 ≤ β1 ≤ β0. Now we will show α1 ≤ β1 on J . Using (3.2) and (3.3), with guu ≤ 0,

and β1 ≤ β0 it follows

cDqα1 = F (t, α0, β0; α1, β1)(3.10)

= f(t, α0) + fu(t, α0)(α1 − α0) + g(t, β0) + gu(t, α0)(β1 − β0)

≤ f(t, α1) + g(t, β1) + gu(t, β1)(β0 − β1) + gu(t, α0)(β1 − β0)

≤ f(t, α1) + g(t, β1) + [gu(t, β1) − gu(t, α0)](β0 − β1)

≤ f(t, α1) + g(t, β1).

Using (3.2) and (3.3), with fuu ≥ 0, and β1 ≤ β0, we obtain

cDqβ1 = G(t, α0, β0; β1, α1)(3.11)

= f(t, β0) + fu(t, α0)(β1 − β0) + g(t, α0) + gu(t, α0)(α1 − α0)
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≥ f(t, β1) + fu(t, β1)(β0 − β1) + fu(t, α0)(β1 − β0) + g(t, α1)

≤ f(t, β1) + g(t, α1) + [fu(t, β1) − fu(t, α0)](β0 − β1)

≤ f(t, β1) + g(t, α1).

From (3.10), (3.11) and Theorem 2.14 we have α1 ≤ β1. This proves that α0 ≤ α1 ≤

β1 ≤ β0.

Consider the two system of fractional IVP

(3.12) cDqu = F (t, α1, β1; u, v), u(0) = u0,

(3.13) cDqv = G(t, α1, β1; v, u), v(0) = u0,

where F and G are defined as earlier.

Next we will prove that α1 and β1 are the coupled lower and upper solutions of

(3.12) and (3.13). From equation (3.10) it follows

(3.14) cDqα1 ≤ f(t, α1) + g(t, β1) ≡ F (t, α1, β1; α1, β1).

From (3.11), (3.12) and using (3.2) we obtain

cDqβ1 ≥ f(t, β1) + g(t, α1)(3.15)

≥ f(t, α1) + fu(t, α1)(β1 − α1) + g(t, β1) + gu(t, α1)(α1 − β1)

≡ F (t, α1, β1; β1, α1).

and

cDqα1 ≤ f(t, α1) + g(t, β1)(3.16)

≤ f(t, β1) + fu(t, α1)(α1 − β1) + g(t, α1) + gu(t, α1)(β1 − α1)

≡ G(t, α1, β1; α1, β1).

From equation (3.11) it follows

(3.17) cDqβ1 ≥ f(t, β1) + g(t, α1) ≡ F (t, α1, β1; β1, α1).

This proves α1 and β1 are coupled lower and upper solutions of (3.12) and (3.13).

By Theorem 2.12, ∃ unique solutions (α2, β2) of (3.12) and (3.13) such that α1 ≤ α2,

β2 ≤ β1 on J .

Now we have,
cDqα2 = F (t, α1, β1; α2, β2),
cDqβ2 = G(t, α1, β1; β2, α2).

Arguing as before, we can get

cDqα2 ≤ f(t, α2) + g(t, β2),

cDqβ2 ≥ f(t, β2) + g(t, α2),
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which yields, α2(t) ≤ β2(t) on J . Therefore, α0 ≤ α1 ≤ α2 ≤ β2 ≤ β1 ≤ β0 on J . The

process can be continued successively to arrive at

(3.18) α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 on J.

Here, αn(t), βn(t) are unique solutions of the system of fractional IVP

(3.19) cDqαn+1 = F (t, αn, βn; αn+1, βn+1); αn+1(0) = u0,

(3.20) cDqβn+1 = G(t, αn, βn; βn+1, αn+1); βn+1(0) = u0.

It can be shown that {αn(t)} and {βn(t)} are uniformly bounded on J . Using Theo-

rem 2.13 it can be shown that {αn(t)} and {βn(t)} are equicontinuous on J . Hence

by Ascoli-Arzela theorem, there exists subsequences that converges uniformly on J .

Since the sequence is monotone the entire sequences {αn}, {βn} converge uniformly

and monotonically to α, β respectively.

Using (3.19) and (3.20), α and β are coupled lower and upper solutions of (3.1)

on J . Hence α and β will satisfy cDqα = f(t, α) + g(t, β), cDqβ = f(t, β) + g(t, α).

This proves α ≤ β. We will use Lipshitz condition on f and g and Theorem 2.14 to

show that β ≤ α. Hence this proves α ≡ β ≡ u, where u is the unique solution of

(3.1) on J .

Next we prove that the rate of convergence of these sequences is quadratic. For

this purpose we set pn(t) = u(t)−αn(t) with pn(0) = 0 and qn(t) = u(t)−αn(t) with

qn(0) = 0. Then using (3.19), (3.20), the hypothesis (ii) and the mean value theorem,

we obtain the following differential inequality:

cDqpn(t) =c Dqu(t) − cDqαn(t)

= f(t, u) + g(t, u) − [f(t, αn−1) + fu(t, αn−1)(αn − αn−1) + g(t, βn−1)

+ gu(t, αn−1)(βn − βn−1)]

= fu(t, ξ)pn−1 − gu(t, σ)qn−1 − fu(t, αn−1)(−pn + pn−1)

− gu(t, αn−1)(qn − qn−1)

≤ [fu(t, ξ)pn−1 − fu(t, αn−1)pn−1] + fu(t, αn−1)pn + gu(t, αn−1)qn−1

− gu(t, σ)qn−1 − gu(t, αn−1)qn

≤ fuu(t, ξ1)p
2
n−1 + fu(t, αn−1)pn + guu(t, σ1)(αn−1 − βn−1) − gu(t, αn−1)qn

≤ fuu(t, ξ1)p
2
n−1 + guu(t, σ1)(pn−1 + qn−1)qn−1 + fu(t, αn−1)pn − gu(t, αn−1)qn

≤ N1p
2
n−1 − guu(t, σ1)(βn−1 − αn−1)qn−1 + M1pn + M2qn

≤ N1p
2
n−1 − N2(pn−1 + qn−1)qn−1 + M1pn + M2qn

≤ N1p
2
n−1 + N2(q

2
n−1 + pn−1qn−1) + M1pn + M2qn

≤ N1p
2
n−1 + N2q

2
n−1 + N2pn−1qn−1 + M1pn + M2qn
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≤ N1p
2
n−1 + N2q

2
n−1 + N2

p2
n−1 + q2

n−1

2
+ M1pn + M2qn.

So we have

(3.21) cDqpn(t) ≤ (N1 +
1

2
N2)p

2
n−1 +

3

2
N2q

2
n−1 + M1pn + M2qn,

where αn−1 ≤ ξ ≤ u, u ≤ σ ≤ βn−1, αn−1 ≤ ξ1 ≤ u, αn−1 ≤ σ1 ≤ βn−1, and

max|fuu(t, u)| ≤ N1, max|guu(t, u)| ≤ N2, max|fu(t, u)| ≤ M1, max|gu(t, u)| ≤ M2.

Similarly,

cDqqn(t) =c Dqβn(t) −c Dqu(t)

= [f(t, βn−1) + fu(t, αn−1)(βn − βn−1) + g(t, αn−1)

+ gu(t, αn−1)(αn − αn−1)] − f(t, u) − g(t, u)

= fu(t, ξ)qn−1 − gu(t, σ)pn−1 + fu(t, αn−1)(qn − qn−1)

+ gu(t, αn−1)(−pn + pn−1)

≤ [fu(t, ξ) − fu(t, αn−1)]qn−1 + gu(t, σ)pn + gu(t, αn−1)pn−1

+ fu(t, αn−1)qn − gu(t, αn−1)pn

≤ fuu(t, ξ1)(βn−1 − αn−1)qn−1 − guu(t, σ1)p
2
n−1 + fu(t, αn−1)qn − gu(t, αn−1)pn

≤ N1(pn−1 + qn−1)qn−1 + N2p
2
n−1 + M1qn + M2pn

≤ N1pn−1qn−1 + N1q
2
n−1 + N2p

2
n−1 + M1qn + M2pn

≤ N1(
p2

n−1 + q2
n−1

2
) + N1q

2
n−1 + N2p

2
n−1 + M1qn + M2pn.

So, we have

(3.22) cDqqn(t) ≤
3

2
N1q

2
n−1 + (

1

2
N1 + N2)p

2
n−1 + M1qn + M2pn,

where u ≤ ξ ≤ βn−1, αn−1 ≤ σ ≤ u, αn−1 ≤ ξ1 ≤ βn−1, αn−1 ≤ σ1 ≤ u, and

max|fuu(t, u)| ≤ N1, max|guu(t, u)| ≤ N2, max|fu(t, u)| ≤ M1, max|gu(t, u)| ≤ M2.

Adding (3.21) and (3.22), we have

cDq(pn + qn) ≤ (N1 + N2)p
2
n−1 + 3N2q

2
n−1 + (M1 + M2)pn + (M1 + M2)qn

≤ (N1 + N2)p
2
n−1 + 3N2q

2
n−1 + (M1 + M2)(pn + qn).

Using the corresponding inequality estimates of (2.4), we have

pn + qn ≤ 0 +

∫ t

0

(t − s)q−1Eq,q((M1 + M2)(t − s)q)[(N1 + N2)p
2
n−1 + 3N2q

2
n−1]ds

≤ [|(N1 + N2)p
2
n−1| + |3N2q

2
n−1|]

∫ t

0

(t − s)q−1Eq,q((M1 + M2)(t − s)q)ds

≤ [|(N1 + N2)p
2
n−1| + |3N2q

2
n−1|]

Eq,1((M1 + M2)t
q)

(M1 + M2)

≤ K|(N1 + N2)p
2
n−1| + K|3N2q

2
n−1|,
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where K =
Eq,1((M1+M2)tq)

(M1+M2)

≤ M |p2
n−1| + N |q2

n−1|,

where M = K|(N1 + N2)|, N = K|3N2|

≤ L(|p2
n−1| + |q2

n−1|),

where L = max{M, N}

≤ L|pn−1 + qn−1|
2.

Using this we have, maxJ |pn +qn| ≤ L maxJ |pn−1+qn−1|
2, which proves the quadratic

convergence.

The next theorem is proved under the weaker assumption on g(t, u). However,

the sequences {αn} and {βn} in Theorem 3.1 are solutions of two coupled linear

system of Caputo fractional differential equations. The computation of the solution

of coupled linear system of Caputo fractional differential equations is not easy. In

order to compute the solution of the system, we decouple the coupled system. This

is achieved by dropping the terms gu(t, α0)(v − β0) and gu(t, α0)(u− β0) in (3.4) and

(3.5) respectively. And we obtain a superlinear convergence of the solution.

Theorem 3.2. Assume that

(i) α0, β0 ∈ C1[J, R] with α0 ≤ β0 on J ,

(ii) f, g ∈ C[Ω, R], fu, gu, fuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,

(iii) gu(t, u) ≤ 0 on Ω. Then there exit monotone sequences {αn(t)}, {βn(t)} which

converge uniformly to the unique solution of (3.1) and the convergence is super-

linear.

Proof. The proof follows on the same lines of Theorem 3.1. Here we consider the

decoupled system of fractional IVP of the form

cDqu ≡ F (t, α0, β0; u, v)(3.23)

≡ f(t, α0) + fu(t, α0)(u − α0) + g(t, β0), u(0) = u0,

cDqv ≡ G(t, α0, β0; v, u)(3.24)

≡ f(t, β0) + fu(t, α0)(v − β0) + g(t, α0), v(0) = u0.

Similarly as in Theorem 3.1 we obtain sequences {αn}, {βn} as solutions of the system

of fractional IVP

(3.25) cDqαn+1 = f(t, αn) + fu(t, αn)(αn+1 − αn) + g(t, βn),
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(3.26) cDqβn+1 = f(t, βn) + fu(t, αn)(βn+1 − βn) + g(t, αn).

We can prove α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 on iJ . Further applying

Ascoli-Arzela theorem, we can prove αn+1 −→ α and βn+1 −→ β, uniformly and

monotonically on J . Also we can prove α, β are coupled minimal and maximal

solutions of (3.1) on J such that α ≤ β on J . Thus α and β satisfy the system

cDqα = f(t, α) + g(t, β), α(0) = u0

cDqβ = f(t, β) + g(t, α), β(0) = u0.

Since f and g satisfy one sided Lipschitz condition, using Theorem 2.14 we can prove

α ≥ β. This proves α ≡ β ≡ u, where u is the unique solution of (3.1) on J . In order

to prove superlinear convergence we let pn(t) = u(t)−αn(t) and qn(t) = βn(t)− u(t).

It is easy to see that pn(0) = 0, qn(0) = 0. On the same lines as in the proof of

Theorem 3.1 we can now prove,

(3.27) cDqpn(t) ≤ N1p
2
n−1 + M2qn−1 + M1pn,

(3.28) cDqqn(t) ≤
3

2
N1q

2
n−1 +

1

2
N1p

2
n−1 + M2pn−1 + M1qn.

Adding (3.27) and (3.28), we have

cDq(pn + qn) ≤
3

2
N1(p

2
n−1 + q2

n−1) + M2(pn−1 + qn−1) + M1(pn + qn)

≤
3

2
N1(pn−1 + qn−1)

2 + M2(pn−1 + qn−1) + M1(pn + qn).

Using the corresponding inequality estimates of (2.4), we have pn + qn ≤ L(|(pn−1 +

qn−1)|
2 + |(pn−1 +qn−1)|). Using this we have maxJ |pn +qn| ≤ maxJ(|(pn−1 +qn−1)|

2 +

|(pn−1 + qn−1)|) which proves superlinear convergence.

4. CONCLUSION

In [9] we have developed numerical method to compute coupled lower and up-

per solutions to any desired interval using generalized monotone method and natural

lower and upper solutions. However the rate of convergence using the generalized

monotone method is linear. Now we can use Theorem 3.2 to compute coupled lower

and upper solutions to any desired interval using natural lower and upper solutions.

Tha advantage of Theorem 3.2 is that the rate of convergence of the sequences is

superlinear. Further we can develop Gauss-Seidel method for the sequences in The-

orem 3.2 to obtain a faster convergence compared with the superlinear convergence

we have already obtained.
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