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ABSTRACT. In this paper we prove the solvability of a unilateral dynamic problem driven by a

wave equation with nonconstant coefficients in the principal part and containing a nonlinear reaction

term and constraints of obstacle type on the boundary.
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1. INTRODUCTION

In this paper we examine the solvability of a unilateral dynamic problem driven

by a semilinear wave equation with nonconstant coefficients in the principal part and

exhibiting constraints of obstacle type on the boundary. The precise formulation

of our hyperbolic problem is as follows. Let Ω be a bounded domain in R
N with

a C2-boundary Γ = ∂Ω such that for disjoint parts Γ1 and Γ2 of Γ one has Γ =

Γ1 ∪ Γ2 = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 is of class C2. For some T > 0, consider the following

initial-boundary value problem (P ): find u(x, t) such that
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∂2u
∂t2

−
N
∑

i,j=1

∂
∂xi

(aij(x)
∂u
∂xj

) = f(x, t, u) in Q = Ω × (0, T )

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x) in Ω

u = 0 on Γ1 × (0, T )

u(x, t) ≥ Φ(x) on Γ2 × (0, T )
N
∑

i,j=1

aij(x)
∂u
∂xj
νi ≥ 0, (u− Φ)

N
∑

i,j=1

aij(x)
∂u
∂xj
νi = 0 on Γ2 × (0, T ),

where ν = (ν1, . . . , νN) is the unit exterior normal vector on ∂Ω, u0 ∈ H1
0 (Ω), u1 ∈

L2(Ω), Φ ∈ C1(Ω) with Φ ≤ 0 on Γ2.

Problem (P ) is an extension of the problem studied in Kim [4] by allowing that

the coefficients aij depend on x ∈ Ω and the right-hand side f depends on the solution

u. The stated problem models, among other things, a non-homogeneous anisotropic

membrane with a dynamic contact on the boundary and with a solution-dependent
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load. For earlier unilateral contact problems we refer to Lebeau and Schatzman [5]

and Maruo [6] as well as to the monograph [2].

With the data above, we formulate our hypotheses:

(H1) the function f(x, t, s) is measurable with respect to (x, t) ∈ Q, f(·, ·, 0) ∈ L2(Q),

and is Lipschitz continuous in s ∈ R uniformly in (x, t) ∈ Q, that is there exists a

constant L > 0 such that

|f(x, t, s1) − f(x, t, s2)| ≤ L|s1 − s2| for a.a. (x, t) ∈ Q, all s1, s2 ∈ R;

(H2) aij ∈ C1(Ω), aij = aji for all i, j = 1, . . . , N , and

c|ξ|2 ≤
N
∑

i,j=1

aij(x)ξiξj for all (x, t) ∈ Ω, ξ = (ξ1, . . . , ξN) ∈ R
N ,

with a constant c > 0.

In order to build our functional setting, we set

G = {w ∈ H1(Ω) : w = 0 on Γ1, w ≥ Φ on Γ2}

and

H1
Γ1

(Ω) = {w ∈ H1(Ω) : w = 0 on Γ1},

which have to be understood in the sense of traces. A solution of problem (P ) means

any u ∈ L∞(0, T ;H1
Γ1

(Ω)) provided u′ = ∂u
∂t

∈ L∞(0, T ;L2(Ω)) ∩ C([0, T ];H− 1

2 (Ω))

that satisfies

〈u′(T ), w(T ) − u(T )〉 − 〈u1, w(0) − u0〉

−
∫ T

0

〈u′, w′ − u′〉dt+

∫ T

0

∫

Ω

N
∑

i,j=1

aij
∂u

∂xi

∂(w − u)

∂xj

dx dt

≥
∫ T

0

∫

Ω

f(x, t, u)(w − u)dxdt(1.1)

for all w ∈ L∞(0, T ;H1
Γ1

(Ω)) with w′ ∈ L∞(0, T ;L2(Ω)) and w(t) ∈ G for a.a. t ∈
(0, T ), and

(1.2) u(x, 0) = u0(x), u′(x, 0) = u1(x) a.e. in Ω,

(1.3) u(t) ∈ G for a.a. t ∈ (0, T ).

The motivation for this concept of solution is given in [4] (see also [3, Chapter 7]).

Our main result is the following existence theorem.

Theorem 1.1. Assume that hypotheses (H1) and (H2) are satisfied. Then there exists

a solution of problem (P ).



HYPERBOLIC PROBLEM 545

Theorem 1.1 extends the main result in Kim [4] in two directions: (a) the coeffi-

cients aij are allowed to depend on x ∈ Ω, which makes the problem anisotropic; (b)

the right-hand side of the equation can depend on the solution u. It is also worth men-

tioning that contrary to the case in Kim [4] we do not assume that Γ1 be of positive

surface measure. This two-fold extension required to overcome serious mathematical

difficulties related to the anisotropic character of the problem and the presence of

an additional nonlinearity. It also broadened the area of applicability covering new

situations with lack of homogeneity.

We will prove Theorem 1.1 by means of the penalty method and approximation.

To this end we first regularize the term f(x, ·, u) by introducing the regularization

fk : Ω × (0, T ) × R → R of f for any integer k ≥ 1 as

fk(x, t, s) = k

∫ +∞

−∞

η(k(t− τ))f(x, τ, s)dτ = k

∫ 1

k

− 1

k

η(k(t− τ))f(x, τ, s)dτ,

where η stands for the standard mollifier (see, e.g., [3, p. 629]). Then, for every integer

k ≥ 1, we formulate the approximate problem (Pk): find uk ∈ L∞(0, T ;H1
Γ1

(Ω)) with

u′k ∈ L∞(0, T ;H1
Γ1

(Ω)) and u′′k = ∂2uk

∂t2
∈ L∞(0, T ;L2(Ω)) which satisfies

(1.4) 〈u′′k(t), v〉 + a(uk(t), v) = 〈fk(·, t, uk(t)), v〉 +

∫

Γ2

(k(uk(t) − Φ)− − 1

k
u′k(t))vdσ

for all v ∈ H1
Γ1

(Ω) and for a.a. t ∈ (0, T ), and

(1.5) uk(x, 0) = u0(x), u′k(x, 0) = u1(x) a.e. in Ω,

where we used the notation

(1.6) a(u, v) =
N
∑

i,j=1

∫

Ω

aij(x)
∂u

∂xi

∂v

∂xj

dx for all u, v ∈ H1
Γ1

(Ω)

and the notation r− with r ∈ R which stands for the negative part of r, that is

r− = max{−r, 0}. It is shown in Theorem 2.1 that a solution uk of (Pk) exists.

In addition, we prove in Theorem 3.1 that the found solution uk of (Pk) satisfies

some basic a priori estimates (see (3.3), (3.4)). Finally, a solution of problem (P ) is

obtained by passing to the limit as k → ∞ in (1.4), (1.5), which is possible in view

of the a priory estimates and a compensated compactness technique that we adapt

from [1] and [4].

2. CONSTRUCTION OF APPROXIMATE SOLUTIONS

This section is devoted to the following result.

Theorem 2.1. Assume that hypotheses (H1) and (H2) are satisfied. Then for every

integer k ≥ 1, the approximate problem (Pk) has a solution.
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Proof. We proceed through a Galerkin’s approximation procedure (see, e.g., [7, p. 922]).

Let {vi}i≥1 be a Galerkin basis of the space H1
Γ1

(Ω) introduced in Section 1, with

vi ∈ C∞(Ω) ∩H1
Γ1

(Ω) for all i ≥ 1. Given n ≥ 1, we seek wn ∈ C2([0, T ];H1
Γ1

(Ω)) in

the form

(2.1) wn(x, t) =

m
∑

i=1

ani(t)vi(x) for all (x, t) ∈ Q

such that

〈w′′
n(t), vj〉 + a(wn(t), vj) = 〈fk(·, t, wn(t)), vj〉(2.2)

+

∫

Γ2

(k(wn(t) − Φ)− − 1

k
w′

n(t))vjdt for all t ∈ [0, T ], j = 1, . . . , n,

(2.3) wn(0) = proj u0, w′
n(0) = proj u1,

where proj u0 and proj u1 denote the orthogonal projections on span{v1, . . . , vn} of

u0 and u1 in H1
Γ1

(Ω) and L2(Ω), respectively, and the symmetric bilinear map a(·, ·)
is introduced in (1.6). A standard existence and uniqueness theorem for initial value

problems of ordinary differential equations yield unique functions ani ∈ C2([0, T ]),

i = 1, . . . , n, such that wn in (2.1) satisfies (2.2), (2.3). Here we essentially utilize

the Lipschitz condition in assumption (H1). Multiplying equation (2.2) by a′nj(t) and

summing up over 1 ≤ j ≤ n lead to

1

2

d

dt
‖w′

n(t)‖2
L2(Ω) +

1

2

d

dt
a(wn(t), wn(t)) +

k

2

d

dt
‖(wn(t) − Φ)−‖2

L2(Γ2)

= 〈fk(·, t, wn(t)), w
′
n(t)〉 −

1

k
‖w′

n(t)‖2
L2(Γ2) for all t ∈ [0, T ].

By integration over [0, t] with any t ∈ [0, T ] and Young’s inequality, we derive that

1

2
‖w′

n(t)‖2
L2(Ω) +

1

2
a(wn(t), wn(t)) +

k

2
‖(wn(t) − Φ)−‖2

L2(Γ2)

+
1

k

∫ t

0

‖w′
n(s)‖2

L2(Γ2)ds(2.4)

≤ 1

2

∫ t

0

‖f(·, s, wn(s))‖2
L2(Ω)ds+

1

2

∫ t

0

‖w′
n(s)‖2

L2(Ω)ds+ C

with a constant C > 0 depending on ‖u0‖H1(Ω) and ‖u1‖L2(Ω) as can be seen from

(2.3) and the properties of convolution.

Hypothesis (H1) implies that

(2.5) |f(x, t, s)| ≤ |f(x, t, 0)| + L|s| for a.a. (x, t) ∈ Q, all s ∈ R.

On the basis of (2.5) and assumption (H2), through Gronwall’s inequality we infer

from (2.4) the estimates

(2.6) ‖wn(t)‖H1(Ω) ≤M for all t ∈ [0, T ],
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(2.7) ‖w′
n(t)‖L2(Ω) ≤ M for all t ∈ [0, T ],

(2.8) ‖(wn(t) − Φ)−‖L2(Γ2) ≤M for all t ∈ [0, T ],

(2.9)

∫ T

0

‖w′
n(t)‖2

L2(Γ2)ds ≤M,

with a constant M > 0 that depends on k but not on n. We emphasize that the

estimate (2.6) in the norm of H1(Ω) is the consequence of (2.4) combined with (2.7),

taking into account that

wn(t) = wn(0) +

∫ t

0

w′
n(s)ds.

Furthermore, from (2.2) in conjunction with (2.3), (2.4), we note that

(2.10) ‖w′′
n(0)‖L2(Ω) ≤M for all t ∈ [0, T ],

with a constant M > 0 independent on n.

From (H1) we see that the partial derivative (fk)
′
t(x, t, s) with respect to t of the

function fk(x, t, s) fulfills the Lipschitz condition

(2.11) |(fk)
′
t(x, t, s1) − (fk)

′
t(x, t, s2)| ≤ L|s1 − s2|

for a.a. (x, t) ∈ Q, all s1, s2 ∈ R. It is also worth noting that the partial derivative

(fk)
′
s(x, t, s) with respect to s of f(x, t, s) exists for a.a. s ∈ R, a.a. (x, t) ∈ Q, thanks

to the Lipschitz continuity in (H1).

In view of the regularity of fk, differentiation of (2.2) with respect to t can be

done, which implies for all j = 1, . . . , n that

〈w′′′
n (t), vj〉 + a(w′

n(t), vj) = 〈(fk)
′
t(·, t, wn(t)), vj〉 + 〈(fk)

′
s(·, t, wn(t))w

′
n(t), vj〉

+ k

∫

Γ2

d

dt
(wn(t) − Φ)−vjdσ − 1

k

∫

Γ2

w′′
n(t)vjdσ for a.a. t ∈ (0, T ).

Multiplying the latter by a′′nj(t), summing up over 1 ≤ j ≤ n and using Young’s

inequality enable us to find the estimate

1

2

d

dt
‖w′′

n(t)‖2
L2(Ω) +

1

2

d

dt
a(w′

n(t), w′
n(t))

≤ 1

2
(‖(fk)

′
t(·, t, wn(t))‖2

L2(Ω) + ‖(fk)
′
s(·, t, wn(t))w

′
n(t)‖2

L2(Ω))

+ ‖w′′
n(t)‖2

L2(Ω) +
k

2

∫

Γ2

(

d

dt
(wn(t) − Φ)−

)2

dσ − 1

k
‖w′′

n(t)‖2
L2(Γ2).

Now we integrate over [0, t], with 0 ≤ t ≤ T , obtaining that

1

2
‖w′′

n(t)‖2
L2(Ω) +

1

2
a(w′

n(t), w′
m(t))(2.12)

≤ 1

2
‖w′′

n(0)‖2
L2(Ω) +

1

2
a(w′

n(0), w′
m(0))
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+ C1

∫ t

0

(‖wn(τ)‖2
L2(Ω) + ‖w′

n(τ)‖2
L2(Ω) + ‖w′′

n(τ)‖2
L2(Ω))dτ + C2

+
k

2

∫ t

0

∫

Γ2

(

d

dt
(wn(τ) − Φ)−

)2

dσ dτ,

with constants C1, C2 > 0. Here (H1) and (2.11) have been used. Invoking now (H2),

(2.10), (2.3), (2.6), (2.7), (2.9), by means of Gronwall’s inequality it turns out from

(2.12) that there exists a constant M = M(k) > 0 independent of n such that

(2.13) ‖w′
n(t)‖H1(Ω) ≤M for all t ∈ [0, T ],

(2.14) ‖w′′
n(t)‖L2(Ω) ≤ M for all t ∈ [0, T ].

By (2.6), (2.13), (2.14), it follows that along a relabeled subsequence there hold

(2.15) wn → uk weak∗ in L∞(0, T ;H1
Γ1

(Ω)),

(2.16) w′
n → u′k weak∗ in L∞(0, T ;H1

Γ1
(Ω)),

(2.17) w′′
n → u′′k weak∗ in L∞(0, T ;L2(Ω))

as n → ∞, for some uk ∈ L∞(0, T ;H1
Γ1

(Ω)) with u′k ∈ L∞(0, T ;H1
Γ1

(Ω)) and u′′k ∈
L∞(0, T ;L2(Ω)). The convergence in (2.15) and (2.16) implies that

(2.18) (wn − Φ)− → (uk − Φ)− in C([0, T ];L2(∂Ω)) as n→ ∞

(see [4, Lemma 1.4]). Passing to the limit as n → ∞ in (2.2), we infer from (2.17),

(2.15), (2.16) and (2.18) that (1.4) holds true for all vectors v ∈ span{v1, . . . , vn, . . . }.
Since the latter is dense in H1

Γ1
(Ω), the assertion stated in (1.4) is established. From

(2.3), (2.15), (2.16) we readily get uk(·, 0) = u0, while (2.3), (2.16), (2.17) entail

u′k(·, 0) = u1. Hence (1.5) is proven, which completes the proof.

3. A PRIORI ESTIMATES FOR THE APPROXIMATE SOLUTIONS

For δ > 0 small we set

Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}

and

Sδ = ∂Ωδ = {x ∈ Ω : dist(x, ∂Ω) = δ}.
Choose h = (h1, . . . , hN) ∈ C1(Ω)N such that h(x) is the exterior unit normal vector

to Sδ at any x ∈ Sδ provided δ > 0 is sufficiently small. This can be done due to the

regularity assumption that Ω has a C2-boundary. Moreover, we may assume that h

is normalized as follows

(3.1)
N
∑

i,j=1

aijhihj = 1,
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which can be achieved by replacing h with
(

1/
( N
∑

i,j=1

aijhihj

)1/2)

h on the basis of

assumption (H2).

Theorem 3.1. Assume that hypotheses (H1) and (H2) are satisfied. Then there exist

constants M > 0 and δ0 > 0 such that for every integer k ≥ 1 the approximate

problem (Pk) has a solution uk satisfying

(3.2) uk ∈ L∞(0, T ;H2(Ωδ)) ∩ C([0, T ];H1
Γ1

(Ω)), u′k ∈ C([0, T ];L2(Ω))

and the a priori estimate

1

2

∫ T

0

∫

Sδ

(u′k)
2dσ dt+

∫ T

0

∫

Sδ

(

N
∑

i,j=1

aij
∂uk

∂xi
hj

)2

dx dt(3.3)

− 1

2

∫ T

0

∫

Sδ

(

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dσ dt = E(δ),

with

(3.4) |E(δ)| ≤M for all 0 < δ ≤ δ0 and all k.

Proof. By applying Theorem 2.1 we know that there exists a solution uk of the ap-

proximate problem (Pk). Inserting v = u′k(t) in (1.4), with k ≥ 1 and t ∈ (0, T ),

results in

1

2

d

dt
‖u′k(t)‖2

L2(Ω) +
1

2

d

dt
a(uk(t), uk(t)) +

k

2

d

dt
‖(uk(t) − Φ)−‖2

L2(Γ2)

= 〈fk(·, t, uk(t)), u
′
k(t)〉 −

1

k
‖u′k(t)‖2

L2(Γ2),

which by integration yields

1

2
‖u′k(t)‖2

L2(Ω) +
1

2
a(uk(t), uk(t)) ≤

1

2
‖u1‖2

L2(Ω) +
1

2
a(u0, u0)

+ C

∫ t

0

(‖uk(τ)‖2
L2(Ω) + ‖u′k(τ)‖2

L2(Ω))dτ −
k

2
‖(uk(t) − Φ)−‖2

L2(Γ2)(3.5)

− 1

k

∫ t

0

‖u′k(τ)‖2
L2(Γ2)dτ,

with a constant C > 0. In writing (3.5) we have used (1.5), (H1) and Young’s

inequality. Then Gronwall’s inequality and hypothesis (H2) ensure that there exists

a constant M > 0 independent on k such that

(3.6) ‖uk(t)‖H1(Ω) ≤M for all t ∈ [0, T ],

(3.7) ‖u′k(t)‖L2(Ω) ≤M for all t ∈ [0, T ],

(3.8) ‖(uk(t) − Φ)−‖L2(Γ2) ≤
M√
k

for all t ∈ [0, T ],
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(3.9)

∫ T

0

‖u′k(t)‖2
L2(Γ2)ds ≤Mk.

It is seen from (1.4) that in D
′(Q) there holds

(3.10) u′′k(t) −
N
∑

i,j=1

∂

∂xi

(

aij(x)
∂uk

∂xj

)

= fk(x, t, uk).

Since Theorem 2.1 ensures u′′k ∈ L∞(0, T ;L2(Ω)) and hypothesis (H1) guarantees

that f(·, ·, uk) ∈ L∞(0, T ;L2(Ω)), we deduce from (3.10) the regularity information
N
∑

i,j=1

∂
∂xi

(aij
∂uk

∂xj
) ∈ L∞(0, T ;L2(Ω)). Then the interior estimates applied to (3.10) show

that the regularity property (3.2) is valid for all δ > 0 sufficiently small.

We note that Fubini’s theorem, integration on t ∈ [0, T ], Green’s formula on Ωδ,

(3.2) and (3.1) imply that

∫ T

0

∫

Ωδ

u′′k

N
∑

i,j=1

aij
∂uk

∂xi

hjdx dt =

∫

Ωδ

u′k(x, T )
N
∑

i,j=1

aij
∂uk

∂xi

(x, T )hjdx(3.11)

−
∫

Ωδ

u1

N
∑

i,j=1

aij
∂u0

∂xi
hjdx

+
1

2

∫ T

0

∫

Ωδ

(

N
∑

i,j=1

∂

∂xi
(aijhj)

)

(u′k)
2dσ dt

− 1

2

∫ T

0

∫

Sδ

(u′k)
2dσ dt.

At this point, a direct computation based on Green’s formula on Ωδ enables us to

write
∫ T

0

∫

Ωδ

(

−
N
∑

i,j=1

∂

∂xi

(

aij
∂uk

∂xi

)

)(

N
∑

i,j=1

aij
∂uk

∂xi
hj

)

dx dt(3.12)

= −
∫ T

0

∫

Sδ

(

N
∑

i,j=1

aij
∂uk

∂xi
hj

)2

dx dt

+

∫ T

0

∫

Ωδ

N
∑

i,n=1

(

N
∑

j=1

aij
∂uk

∂xj

)

∂hn

∂xi

(

N
∑

l=1

aln
∂uk

∂xl

)

dx dt

+

∫ T

0

∫

Ωδ

N
∑

i=1

(

N
∑

j=1

aij
∂uk

∂xj

)(

N
∑

l,n=1

hn
∂

∂xi

(

aln
∂uk

∂xl

)

)

dx dt.

Since aij = aji for all i, j = 1, . . . , N and (3.2) is valid, by applying again Green’s

formula and (3.1) we obtain

∫ T

0

∫

Ωδ

N
∑

i=1

(

N
∑

j=1

aij
∂uk

∂xj

)(

N
∑

l,n=1

hn
∂

∂xi

(

aln
∂uk

∂xl

)

)

dx dt(3.13)
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=
1

2

∫ T

0

∫

Sδ

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

dσ dt

− 1

2

∫ T

0

∫

Ωδ

(

N
∑

i,j=1

∂

∂xi
(aijhj)

)(

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dx dt

−
∫ T

0

∫

Ωδ

N
∑

l=1

(

N
∑

n=1

alnhn

)(

N
∑

i,j=1

∂aij

∂xl

∂uk

∂xi

∂uk

∂xj

)

dx dt

+

∫ T

0

∫

Ωδ

N
∑

i=1

(

N
∑

j=1

aij
∂uk

∂xj

)(

N
∑

l,n=1

hn
∂aln

∂xi

∂uk

∂xl

)

dx dt.

The fact that (3.10) holds true in L∞(0, T ;L2(Ω)) allows us to take therein as test

function
N
∑

i,j=1

aij
∂uk

∂xi
(x, t)hj . Taking into account (3.11), (3.12) and (3.13), the result-

ing relation can be expressed in the form of (3.3). The exact expression of E(δ) can

be retrieved from (3.10), (3.11), (3.12) and (3.13). These formulas, in conjunction

with (H1), (H2), (3.6), (3.7), render that E(δ) is bounded for δ > 0 sufficiently small,

uniformly in k. Consequently, there exist positive constants M and δ0 independent

of k such that (3.4) holds true. The proof is thus complete.

4. PROOF OF THEOREM 1.1

Theorem 3.1 provides the existence of a solution uk of the approximate problem

(Pk) such that (3.3) and the a priori estimate (3.4) are satisfied.

Fix any w ∈ L∞(0, T ;H1
Γ1

(Ω)) with w′ ∈ L∞(0, T ;L2(Ω)) and w(t) ∈ G for a.a.

t ∈ (0, T ) (see Section 1 for the definition of the set G and the concept of solution).

By (1.4) we know that
∫ T

0

〈u′′k(t), w(t) − uk(t)〉dt+
∫ T

0

a(uk(t), w(t) − uk(t))dt(4.1)

=

∫ T

0

〈fk(·, t, uk(t)), w(t) − uk(t)〉dt

+

∫ T

0

∫

Γ2

(k(uk(t) − Φ)− − 1

k
u′k(t))(w(t) − uk(t))dσ dt.

From w(t) ∈ G for a.a. t ∈ (0, T ), we note that

(4.2)

∫ T

0

∫

Γ2

(uk(t) − Φ)−(w(t) − uk(t))dσ dt ≥ 0.

Integration by parts in (4.1), in conjunction with (1.5) and (4.2), yields

〈u′k(T ), w(T )− uk(T )〉 − 〈u1, w(0) − u0〉 −
∫ T

0

〈u′k(t), w′(t)〉dt(4.3)

+ ‖u′k‖2
L2(Q) +

∫ T

0

a(uk(t), w(t))dt−
∫ T

0

a(uk(t), uk(t))dt
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≥
∫ T

0

〈fk(·, t, uk(t)), w(t) − uk(t)〉dt

− 1

k

∫ T

0

∫

Γ2

u′k(t)w(t)dσ dt+
1

2k
‖uk(T )‖2

L2(Γ2) −
1

2k
‖u0‖2

L2(Γ2).

Thanks to (3.6) and (3.7) we can consider a relabeled subsequence such that

(4.4) uk → u weak∗ in L∞(0, T ;H1
Γ1

(Ω)),

(4.5) u′k → u′ weak∗ in L∞(0, T ;L2(Ω)),

for some u ∈ L∞(0, T ;H1
Γ1

(Ω)) with u′ ∈ L∞(0, T ;L2(Ω)). We observe that (4.4) and

(4.5) imply the convergence

(4.6) uk → u in C([0, T ];H
1

2 (Ω)) as k → ∞.

Then from (H1) and (4.6) we deduce that

(4.7)

∫ T

0

〈fk(·, t, uk(t)), w(t) − uk(t)〉dt→
∫ T

0

〈f(·, t, u(t)), w(t)− u(t)〉dt.

Furthermore, by (3.10), (4.5), (4.6), (H1) and (H2) it follows that

(4.8) u′′k → u′′ weak∗ in L∞(0, T ;H−1(Ω)).

On account of (4.5) and (4.8) we infer that

(4.9) u′k → u′ in C([0, T ];H− 1

2 (Ω)) as k → ∞,

which combined with (4.6) yields

(4.10) 〈u′k(T ), w(T )− uk(T )〉 → 〈u′k(T ), w(T ) − uk(T )〉 as k → ∞.

We also note that

(4.11)
1

k

∫ T

0

∫

Γ2

u′k(t)w(t)dσ dt→ 0 as k → ∞

because by (3.9) we have

1

k
|
∫ T

0

∫

Γ2

u′k(t)w(t)dσ dt| ≤ 1

k

(
∫ T

0

∫

Γ2

u′k(t)
2dσ dt

)

1

2
(
∫ T

0

∫

Γ2

w(t)2dσ dt

)

1

2

≤ M√
k

(
∫ T

0

∫

Γ2

w(t)2dσ dt

)

1

2

.

We claim that

lim sup
k→∞

∫ T

0

∫

Ω

(

(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dx dt(4.12)

≤
∫ T

0

∫

Ω

(

(u′)2 −
N
∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

)

dx dt.
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Our reasoning to show (4.12) is inspired from the corresponding part in [4] han-

dling a compensated compactness argument and strongly relying on (3.3), (3.4). We

start by applying the divergence-curl property in [1, Corollary 4.3] making in that

statement the following choices: n = N + 1, xN+1 = t,

vk
i =

N
∑

j=1

aij
∂uk

∂xj

, wk
i =

∂uk

∂xi

(i = 1, . . . , N), vk
N+1 = − ∂uk

∂xN+1

, wk
N+1 =

∂uk

∂xN+1

,

with any k ≥ 1. For

vk = (vk
1 , . . . , v

k
N , v

k
N+1) and wk = (wk

1 , . . . , w
k
N , w

k
N+1),

we see from (4.6) and (4.9) that in L2(Q)N+1 there hold

vk → v weakly and wk → w weakly as k → ∞,

where

v =

(

N
∑

j=1

a1j
∂u

∂xj
, . . . ,

N
∑

j=1

aNj
∂u

∂xj
,− ∂u

∂xN+1

)

, w =

(

∂u

∂x1
, . . . ,

∂u

∂xN
,

∂u

∂xN+1

)

.

We notice from (3.10) that the sequence of functions

div vk =
N
∑

i=1

∂vk
i

∂xi
+
∂vk

N+1

∂xN+1
=

N
∑

i,j=1

∂

∂xi
(aij

∂uk

∂xj
) − ∂2uk

∂t2

is bounded in L2(Q). Also, as xN+1 = t, it is readily seen that

curl wk =

(

∂wk
i

∂xj
−
∂wk

j

∂xi

)

i,j=1,...,N+1

= 0.

Thus we have checked that all the requirements in [1, Corollary 4.3] are fulfilled.

Applying this result ensures that

(4.13) (u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

→ (u′)2 −
N
∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

as k → ∞

in the sense of distributions. In fact, the regularity properties that we have already

established show that actually the convergence in (4.13) is weak* in L∞(0, T ;L1(Ω)).

We construct a special test function to be used with (4.13). Namely, for 0 < δ ≤
δ0 with δ0 > 0 small (see Theorem 3.1), we take a continuous function with compact

support ψδ : Ω → R as follows

ψδ(x) = ρδ(dist(x, ∂Ω)) for all x ∈ Ω,

where ρδ : [0,+∞) → [0, 1] is continuous, nondecreasing, ρδ = 0 near 0 and ρδ(s) = 1

whenever s ≥ δ. Then the weak* convergence in L∞(0, T ;L1(Ω)) stated in (4.13)
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implies that

∫ T

0

∫

Ω

ψδ

(

(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dx dt(4.14)

→
∫ T

0

∫

Ω

ψδ

(

(u′)2 −
N
∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

)

dx dt as k → ∞.

On the other hand, by virtue of (3.3), (3.4), the definition of the function ψδ and the

coarea formula (see [3, p. 628]), we derive that

|
∫ T

0

∫

Ω

(ψδ − 1)

[

1

2

(

(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

(4.15)

+

(

N
∑

i,j=1

aij
∂uk

∂xi
hj

)2]

dx dt| ≤Mδ

for all k ≥ 1 and δ > 0 sufficiently small, with a constant M > 0 independent of k

and δ.

Let ε > 0. In view of the absolute continuity of the integral, for δ > 0 sufficiently

small we have

|
∫ T

0

∫

Ω

(1 − ψδ)

(

(u′)2 −
N
∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

)

dx dt|(4.16)

≤
∫ T

0

∫

{x∈Ω:dist(x,Γ)<δ}

|
(

(u′)2 −
N
∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

)

|dx dt < ε

because ψδ = 1 on Ωδ. By using (4.16), (4.14), (4.15) with δ > 0 small enough, we

arrive at
∫ T

0

∫

Ω

(

(u′)2 −
N
∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

)

dx dt

> −ε + lim
k→∞

∫ T

0

∫

Ω

ψδ

(

(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dx dt

≥ −ε+ lim sup
k→∞

∫ T

0

∫

Ω

(

(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dx dt

+ lim inf
k→∞

∫ T

0

∫

Ω

(ψδ − 1)



(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

+ 2

(

N
∑

i,j=1

aij
∂uk

∂xi

hj

)2


 dx dt

≥ −2ε+ lim sup
k→∞

∫ T

0

∫

Ω

(

(u′k)
2 −

N
∑

i,j=1

aij
∂uk

∂xi

∂uk

∂xj

)

dx dt.

Since ε > 0 is arbitrary, this establishes (4.12).
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Now we pass to the limit superior in (4.3) as k → ∞. Then, taking into account

(4.10), (4.9), (4.12), (4.7), (4.11), we obtain (1.1) in the limit. Moreover, on the

basis of (4.6), (4.9), (3.8), (1.5), we prove that u(t) ∈ H1
Γ1

(Ω)) and u(t) ∈ G for a.a.

t ∈ (0, T ), which completes the proof.
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