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the plane. We establish their connections with the theory of stochastic inclusions. We show that

every solution to set-valued stochastic equation possesses a continuous selection belonging to the
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reachable sets of solutions to stochastic integral inclusions as well as their viability properties.
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1. Introduction

The study of stochastic differential inclusions and set-valued stochastic differen-

tial (or integral) equations is inspired by the theory of stochastic controlled dynamic

systems (see [22], [23], [39] and references therein). Similarly as in the case of de-

terministic differential inclusions, stochastic inclusions appear as generalizations of a

family of stochastic equations

(1.1) dxt = f(t, xt, ut)dt+ g(t, xt, ut)dBt

dependent on a control parameter u belonging to the some set of controls U . Indeed,

taking set-valued mappings F (t, x) = {f(t, x(t))}u∈U and G(t, x) = {g(t, x(t))}u∈U
the equation (1.1) can be understood as a stochastic inclusion

dxt ∈ F (t, xt)dt+G(t, xt)dBt

or

(1.2) xt − xs ∈
∫ t

s
F (τ, xτ )dτ +

∫ t

s
G(τ, xτ )dBτ .
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Then solutions of (1.1) are those of (1.2). Thus any control problem (1.1) can be

transformed, by means of multivalued maps into problem (1.2).

Another different generalizations of stochastic systems can be developed in the

spirit of set-valued stochastic equations that are understood as a set-valued relations

of the type:

(1.3) Xt = X0 +
∫ t

0
F (τ,Xτ)dτ +

∫ t

0
G(τ,Xτ )dBτ .

In a single-valued case both stochastic inclusions and stochastic set-valued equations

reduce to single-valued stochastic equations. But in general, these two approaches are

distinct. Indeed, every solution of (1.2) is always a single-valued stochastic process

while solutions of (1.3) are set-valued mappings.

Although there exist a wide literature on stochastic inclusions and their applica-

tions (see e.g. [1], [2], [3], [4], [5], [15], [19], [20], [21], [22], [23], [26], [28], [33], [34], [35],

[36], [37], [38], [39], [41], [42], [43], [44], and references therein), and intensive studies

on set-valued stochastic equations ([29], [30], [31], [32], [40], [47], [50]), it seems that

these two theories exist and are developed separately.

On the other hand in the deterministic case set-valued differential equations ex-

hibit a useful tool for investigations of the dynamic of solutions to both differential

inclusions and fuzzy differential equations (see e.g. [46], [27] and references therein).

More precisely, in a deterministic case one can show that under appropriate assump-

tions solutions to set-valued differential equations admit continuous selections belong-

ing to the set of solutions of associated differential inclusions.

The motivation of this paper is to establish similar connections between the well

developed theory of stochastic inclusions and investigations focused on set-valued sto-

chastic integral equations. In this paper we continue our study on set-valued stochastic

equations in the plane initiated in [25] and earlier in considerations given in [45]. We

consider stochastic inclusions and set-valued stochastic equations driven by a Brown-

ian sheet (two-parameter Wiener process). We show that every solution to set-valued

stochastic equation possesses a continuous selection belonging to the set of solutions

of associated stochastic inclusion. We also present some comments on reachable sets

of solutions to stochastic integral inclusions as well as their viability properties with

connections to solutions of set-valued stochastic equations. Such stochastic inclusions

and set-valued stochastic equations can be trated as a generalizations of stochastic

differential equations in the plane which have a wide range of financial applications.

set-valued stochastic equations can be treated as a generalizations of stochastic differ-

ential equations in the plane which have a wide range of financial applications. rates

(see e.g. [12], [16], [17]).

The paper is organized as follows. In Section 2 we recall some basic notions and

facts from the theory of stochastic and set-valued analysis, as well as the main results



STOCHASTIC EQUATIONS AND STOCHASTIC INCLUSIONS 593

on set-valued stochastic integral equations driven by a Brownian sheet needed in the

sequel. It will be done on the basis of our main reference [25]. In Section 3 we present

main interrelations between solutions to set-valued stochastic integral equations and

solutions to stochastic inclusions. Finally in Section 4 we present some concluding

remarks on our results.

2. Preliminaries

Let I × J = [0, S] × [0, T ] denote the parameter set together with the partial

ordering:

(s, t) � (s′, t′) if and only if s ¬ s′ and t ¬ t′.

We will also write

(s, t) ≺ (s′, t′) if and only if s < s′ and t < t′.

Throughout the paper we shall deal with a complete filtered probability space (Ω,F,

{Fs,t}(s,t)∈I×J , P ), where {Fs,t}(s,t)∈I×J is a family of sub-σ-fields of F such that Fs,t ⊂

Fs′,t′, if (s, t) � (s
′, t′). We will assume that {Fs,t}(s,t)∈I×J satisfies the following addi-

tional conditions:

(i) F0,0 contains all P -null sets,

(ii) Fs,t =
⋂
(s,t)≺(u,v) Fu,v for every (s, t) ∈ [0, S)× [0, T ),

(iii) for every (s, t) ∈ I×J , the σ-algebras Fs,T and FS,t are conditionally independent

relative to Fs,t.

A stochastic process (or random field) x : I × J × Ω → R
d is said to be

{Fs,t}-adapted, if xs,t : Ω → R
d is an Fs,t-measurable random vector for every fixed

(s, t) ∈ I × J . Let {Bs,t}(s,t)∈I×J be a two-parameter real valued {Fs,t}-Wiener pro-

cess (Brownian sheet). It is a two-parameter, continuous Gaussian process such that

EBs,t = 0 and E(Bs,tBs′,t′) = min{s, s′} · min{t, t′} for every s, s′ ∈ I and t, t′ ∈ J

(c.f. [8]). Let N denote the σ-algebra of nonanticipating sets in I × J × Ω, i.e.,

N := {A ∈ B(I × J)⊗ F : As,t ∈ Fs,t for every (s, t) ∈ I × J},

where As,t = {ω ∈ Ω : (s, t, ω) ∈ A}. A stochastic process x : I × J × Ω → R
d is

nonanticipating if it is an N -measurable mapping. It is easy to see that a stochastic

process x is nonanticipating if and only if it is B(I × J) ⊗ F-measurable and {Fs,t}-

adapted. By the ∆s ts′ t′(x) we denote the increment of x over the rectangle [s
′, s]× [t′, t]

i.e.

∆s ts′ t′(x) = xs,t − xs′,t − xs,t′ + xs′,t′

for (s′, t′) � (s, t) and (s′, t′), (s, t) ∈ I × J . Denote by λ the Lebesgue measure on

the σ-algebra B(I×J) of Borel sets in I×J . For the sake of convenience we shall use

the notations: L2N (λ × P ) := L
2(I × J × Ω,N , λ × P ;Rd), L2s,t := L

2(Ω,Fs,t, P ;R
d)

and L2 := L2(Ω,F, P ;Rd).
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Let X be a separable Banach space. By a Kb(X) we denote the family of all

nonempty closed and bounded subsets of X while byKbc (X) we mean those of elements

from Kb(X) that are also convex subsets of X.

The Hausdorff metric HX in K
b(X) is defined by:

HX(A,B) := max{HX(A,B), HX(B,A)},

where HX(A,B) = sup
a∈A
distX(a,B), distX(a,B) := inf

b∈B
‖a− b‖X and ‖ · ‖X is a norm in

X (see e.g. [14]). Let r > 0 and V(A, r) := {x ∈ X : distX(x,A) < r}. Then from the

above definitions it holds:

(2.1) HX(A,B) = inf{r > 0 : A ⊆ V(B, r)}

and

(2.2) HX(A,B) = inf{r > 0 : A ⊆ V(B, r) and B ⊆ V(A, r)}.

Moreover we have:

HX(A+B,C +D) ¬ HX(A,C) +HX(B,D)

and

HX(A +B,C +B) = HX(A,C)

for A, B, C, D ∈ Kbc(X), where A + B denotes the Minkowski sum of A and B. By

Theorem 1.5 and Corollary 1.9 in Chapter I in [14] (Kb(X), HX) is a complete metric

space and Kbc (X) is its closed subspace.

For A ∈ Kb(X) we set |||A||| := HX (A, {0}) = sup
a∈A
‖a‖X. If A,B ∈ Kbc(X) then

A⊖ B denotes the Hukuhara difference (if it exists) between the sets A and B, i.e.,

the set C ∈ Kbc(X) such that A = B + C.

Let F : I × J × Ω → Kbc(R
d) be a given set-valued mapping. It is called a two-

parameter nonanticipating set-valued process if it is N -measurable in the sense of

set-valued analysis (c.f. [14]). It is called L2N (λ × P )-integrally bounded set-valued

stochastic process if

|||F ||| ∈ L2(I × J × Ω,N , λ× P ;R+).

For such a mapping, by Kuratowski and Ryll-Nardzewski Measurable Selection

Theorem (c.f. [14]) the set of its nonanticipating and square integrable selections

S2N (F, λ× P ) := {f ∈ L
2
N (λ× P ) : f ∈ F, λ× P -a.e.}

is nonempty. Then for every f ∈ S2N (F, λ×P ) the Itô stochastic integral
∫ S
0

∫ T
0 fu,vdBu,v

is well defined (see [8]). Moreover, the integral process
(∫ s
0

∫ t
0 fu,vdBu,v

)

(s,t)∈I×J
is a
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continuous square integrable two-parameter martingale with respect to the filtration

{Fs,t}(s,t)∈I×J and it satisfies Itô’s isometry:

(2.3) E

∥∥∥∥
∫ s

s′

∫ t

t′
fu,vdBu,v

∥∥∥∥
2

Rd

= E

∫ s

s′

∫ t

t′
‖fu,v‖

2
Rd
λ(du, dv)

for all (s, t), (s′, t′) ∈ I × J with (s′, t′) � (s, t). In view of Doob’s maximal inequality

for two-parameter martingales we have (c.f. [8]):

(2.4) E

(

sup
(s,t)∈I×J

∥∥∥∥
∫ s

0

∫ t

0
fu,vdBu,v

∥∥∥∥
2

Rd

)

¬ 16E
∫ S

0

∫ T

0
‖fu,v‖

2
Rd
λ(du, dv).

For F,G : I×J×Ω→ Kbc (R
d) being set-valued and L2N (λ×P )-integrally bounded

nonanticipating processes we define the following set-valued stochastic integrals in the

plane.

Definition 2.1 ([25]). By a two-parameter set-valued stochastic Lebesgue integral

of F and by a two-parameter set-valued Itô’s integral of G, we mean the following

sets contained in L2S,T :

∫ S

0

∫ T

0
Fu,vλ(du, dv) :=

{∫ S

0

∫ T

0
fu,vλ(du, dv) : f ∈ S

2
N (F, λ× P )

}

and
∫ S

0

∫ T

0
Gu,vdBu,v :=

{∫ S

0

∫ T

0
gu,vdBu,v : g ∈ S

2
N (G, λ× P )

}

respectively. Similarly, we define:

∫ s

s′

∫ t

t′
Fu,vλ(du, dv) :=

∫ S

0

∫ T

0
1[s′,s]×[t′,t] (u, v)Fu,vλ(du, dv)

and
∫ s

s′

∫ t

t′
Gu,vdBu,v :=

∫ S

0

∫ T

0
1[s′,s]×[t′,t] (u, v)Gu,vdBu,v

for every (s, t), (s′, t′) ∈ I × J with (s′, t′) � (s, t).

In [25] the following properties of set-valued stochastic integrals have been proved.

Theorem 2.2 ([25]). Let F : I × J × Ω → Kbc (R
d) be a set-valued and L2N (λ × P )-

integrally bounded nonanticipating process. Then

a) S2N (F, λ× P ) is a nonempty, closed, bounded, convex, decomposable and weakly

compact subset of L2N (λ× P ).

b) The integrals
∫ s
s′
∫ t
t′ Fu,vλ(du, dv) and

∫ s
s′
∫ t
t′ Fu,vdBu,v are nonempty, closed, bounded,

convex and weakly compact subsets of L2s,t for every (s, t), (s
′, t′) ∈ I × J with

(s′, t′) � (s, t).
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Theorem 2.3 ([25]). Let F,G : I×J×Ω→ Kbc(R
d) be the set-valued, nonanticipating

and L2N (λ× P )-integrally bounded stochastic processes. Then

H2L2

(∫ s

s′

∫ t

t′
Fu,vλ(du, dv),

∫ s

s′

∫ t

t′
Gu,vλ(du, dv)

)
¬

¬ (s− s′)(t− t′)
∫

[s′,s]×[t′,t]×Ω
H2

Rd
(F,G) dλ× dP

and

H2L2

(∫ s

s′

∫ t

t′
Fu,vdBu,v,

∫ s

s′

∫ t

t′
Gu,vdBu,v

)
¬

¬
∫

[s′,s]×[t′,t]×Ω
H2

Rd
(F,G) dλ× dP.

for every (s, t), (s′, t′) ∈ I × J , (s′, t′) � (s, t).

In view of these we have the following result ([25]).

Corollary 2.4. Let F : I × J × Ω → Kbc(R
d) be a set valued, nonanticipating and

L2N (λ× P )-integrally bounded stochastic processes. Then the correspondences

I × J ∋ (s, t) 7→
∫ s

0

∫ t

0
Fu,vλ(du, dv) ∈ K

b
c(L
2)

and

I × J ∋ (s, t) 7→
∫ s

0

∫ t

0
Fu,vdBu,v ∈ K

b
c(L
2)

are continuous set-valued mappings with respect to the metric HL2.

Using the notions of above defined set-valued stochastic integrals one can consider

a multivalued stochastic integral equation driven by two-parameter Wiener process.

Namely, let F be a separable σ-field with respect to probability P . Hence L2 is a

separable Banach space. Let F , G : I × J × Ω × Kbc(L
2) → Kbc (R

d) be given set-

valued mappings. Let A : I × J → Kbc (L
2) be a continuous mapping. By a set-valued

stochastic integral equation generated by a triple (F,G,A) we mean the following

equation considered in the metric space
(
Kbc (L

2), HL2
)

Xs,t + A0,0 = As,0 + A0,t +
∫ s

0

∫ t

0
F(u, v,Xu,v)λ(du, dv)(2.5)

+
∫ s

0

∫ t

0
G(u, v,Xu,v)dBu,v,

for every (s, t) ∈ I × J .

Thus the equation (2.5) is thought as an abstract relation in the hyperspace

of nonempty, bounded, closed and convex subsets of the space L2. Note also that

for F,G and A being single-valued maps, the multivalued equation (2.5) reduces to

single-valued one considered in [49], [48], [51].

Definition 2.5. By a solution to equation (2.5) we mean an HL2-continuous mapping

X : I × J → Kbc(L
2) such that (2.5) is satisfied.
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Below we formulate main assumptions imposed on set-valued mappings F,G and

A:

(A1) for every U ∈ Kbc(L
2) the mappings

F (·, ·, ·, U), G(·, ·, ·, U) : I × J × Ω→ Kbc(R
d)

are nonanticipating set-valued two-parameter stochastic processes.

(A2) there exists a constant L > 0 such that

max{H2
Rd
(F (s, t, ω, C1), F (s, t, ω, C2)), H

2
Rd
(G(s, t, ω, C1), G(s, t, ω, C2))}

¬ LH2L2(C1, C2),

for every (s, t) ∈ I × J , every C1, C2 ∈ K
b
c(L
2), and P -a.e.

(A3) there exists a constant K > 0 such that

max{H
Rd
(F (s, t, ω, C), {θ}), HRd(G(s, t, ω, C), {θ})} ¬ K(1 +HL2(C, {Θ})),

for every (s, t) ∈ I × J , every C ∈ Kbc (L
2), and P -a.e.

(A4) the mapping A : I×J → Kbc (L
2) is assumed to be continuous with respect to the

Hausdorff metric HL2 and such that the Hukuhara difference (As,0 + A0,t)⊖A0,0

exists for every (s, t) ∈ I×J , and sup(s,t)∈I×J HL2((As,0 + A0,t)⊖A0,0, {Θ}) <∞.

The symbols θ and Θ denote the zero elements in R
d and L2, respectively. We

recall the following results from [25], needed in the sequel.

Theorem 2.6. Let F , G : I × J × Ω ×Kbc(L
2) → Kbc (R

d) and A : I × J → Kbc(L
2)

satisfy conditions (A1)–(A4). Then equation (2.5) has a unique solution.

Theorem 2.7. Under assumptions of Theorem 2.6 the solution X to equation (2.5)

satisfies:

H2L2(X(s, t), {Θ})

¬ [3 sup
(s,t)∈I×J

H2L2(As,0 + A0,t, A0,0) + 6K
2st(st+ 1)] exp{6K2st(st+ 1)},

for every (s, t) ∈ I × J .

3. Stochastic integral inclusions and set-valued

stochastic integral equations

Let us assume that set-valued mappings

F1, G1 : I × J × Ω× L
2 → Kbc (R

d)

satisfy the following conditions:

(B1) F1(·, ·, ·, η), G1(·, ·, ·, η) : I × J × Ω → Kbc(R
d) are nonanticipating set-valued

stochastic processes for every η ∈ L2,
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(B2) there exist L > 0, such that P-a.e. for every (s, t) ∈ I × J and every η1, η2 ∈ L2

it holds:

max
{
H2

Rd
(F1(s, t, ω, η1), F1(s, t, ω, η2)) , H

2
Rd
(G1(s, t, ω, η1), G1(s, t, ω, η2))

}

¬ L ‖η1 − η2‖
2
L2 ,

(B3) there exists a constant K > 0 such that

max{H
Rd
(F1(s, t, ω, η), {θ}), HRd(G1(s, t, ω, η), {θ})} ¬ K(1 + ‖η‖L2)

for every (s, t) ∈ I × J , every η ∈ L2, and P -a.e.

Let ξ : I × J × Ω → R
d be an {Fs,t}−adapted and square integrable stochastic

process. We assume that ξ : I×J → L2 is a continuous mapping such that ξs,t ∈ L2s,t,

for every (s, t) ∈ I × J . By a stochastic differential inclusion generated by (F1, G1,

ξ) in a plane driven by a two-parameter Wiener process B we mean the following

relation:

(3.1)






∆s ts′ t′(x) ∈
∫ s
s′
∫ t
t′ F1(u, v, xu,v) λ(du, dv) +

∫ s
s′
∫ t
t′ G1(u, v, xu,v) dBu,v,

x0,t = ξ0,t

xs,0 = ξs,0

for every (s′, t′), (s, t) ∈ I × J , (s′, t′) � (s, t).

Definition 3.1. By a solution to stochastic integral inclusion (3.1) generated by (F1,

G1, ξ) we mean a continuous stochastic process x : I × J × Ω → R
d, which has the

following representation:

xs,t − ξ0,t − ξs,0 + ξ0,0 =
∫ s

0

∫ t

0
f1(u, v)λ(du, dv) +

∫ s

0

∫ t

0
g1(u, v)dBu,v,

for some f1 ∈ S2N (F1 ◦ x), g1 ∈ S
2
N (G1 ◦ x) where (F1 ◦ x)(s, t, ω) = F1(s, t, ω, xs,t),

(G1 ◦ x)(s, t, ω) = G1(s, t, ω, xs,t) and (s, t) ∈ I × J .

Denote by SI(F1, G1, ξ) the set of all solutions to stochastic inclusion (3.1). Then

every element x ∈ SI(F1, G1, ξ) can be understood as a continuous mapping:

x : I × J → L2,

Moreover it holds xs,t ∈ L2s,t for every (s, t) ∈ I × J .

Now, our aim is to introduce a notion of a set-valued stochastic integral equation

generated by stochastic integral inclusion (3.1). First let co(U) denote the closed

convex hull of the set U ⊂ R
d, i.e. it is an intersection of all closed convex subsets of

R
d containing U . Similarly by co(U) we denote the convex hull of the set U . One can

show the following relation (see Lemma 2.1 in [18]):

(3.2) co(U) = clco(U),
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where cl denotes the closure operation. We will also recall the well-known Carathéodory’s

theorem.

Theorem 3.2 ([18]). Let A be a subset of R
d. Then every point x ∈ co(A) is the

convex combination of at most d+ 1 points in A.

Let us consider now the mappings:

F2, G2 : I × J × Ω×K
b
c (L
2)→ Kbc(R

d)

defined as follows:

(3.3) F2(s, t, ω, C) := co

(
⋃

c∈C

F1(s, t, ω, c)

)

,

(3.4) G2(s, t, ω, C) := co

(
⋃

c∈C

G1(s, t, ω, c)

)

for (s, t, ω, C) ∈ I × J × Ω×Kbc(L
2).

By a set-valued stochastic integral equation associated with a stochastic integral

inclusion (3.1) generated by (F1, G1, ξ) we mean the following relation in L
2:

Xs,t + A0,0 = As,0 + A0,t +
∫ s

0

∫ t

0
F2(u, v,Xu,v)λ(du, dv)(3.5)

+
∫ s

0

∫ t

0
G2(u, v,Xu,v)dBu,v,

for every (s, t) ∈ I×J , where A : I×J → Kbc(L
2) is a continuous mapping satisfying

(A4).

Moreover we assume that the following condition on ξ and A is imposed:

(B4) ξ0,t + ξs,0 − ξ0,0 ∈ (As,0 + A0,t)⊖A0,0, for every (s, t) ∈ I × J .

Proposition 1. Assume that F1, G1 : I×J×Ω×L2 → Kbc(R
d) satisfy the conditions

(B1)–(B3). Then F2, G2 : I×J ×Ω×Kbc (L
2)→ Kbc (R

d) defined as in (3.3) and (3.4)

satisfy (A1) and (A3).

Proof. Firstly, we show that F2(·, ·, ·, C) is a nonanticipating set-valued stochastic

process for every C ∈ Kbc(L
2). By Theorem 1.0 in [13] it is enough to show that

for every fixed C ∈ Kbc (L
2) the mapping F2(·, ·, ·, C) possesses a nonanticipating

Castaigne representation. To ensure this, we recall that L2 is separable. Therefore

every set C ∈ Kbc (L
2) is separable too. Then there exist a sequence {xn}n­1 ⊂ C such

that clL2{xn : n ­ 1} = C.

By (B1) the mapping (s, t, ω) → F1(s, t, ω, xn) is nonanticipating for every n ­

1. Hence by Theorem 1.0 in [13] there exist a sequence {vkn}k­1 of nonanticipating
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selections for F1(·, ·, ·, xn) (i.e. Castaigne representation for F1 ◦ xn) such that (F1 ◦

xn)(s, t, ω) = F1(s, t, ω, xn) = clRd{v
k
n(s, t, ω) : k ­ 1}. Then we have:

F1(s, t, ω, C) = F1(s, t, ω, clL2{xn : n ­ 1}) ⊆ clRdF1(s, t, ω, {xn : n ­ 1})

= clRd




⋃

n­1

F1(s, t, ω, xn)



 .

Thus:

clRd




⋃

n­1

F1(s, t, ω, xn)



 = clRd




⋃

n­1

clRd{v
k
n(s, t, ω) : k ­ 1}



 .

Moreover we also have that

clRd(
⋃

n­1

clRd{v
k
n(s, t, ω) : k ­ 1}) = clRd(

⋃

n­1

{vkn(s, t, ω) : k ­ 1}).

Hence it follows that

clRdF1(s, t, ω, C) = clRd{v
k
n(s, t, ω) : k ­ 1}.

Thus using Theorem 1.0 in [13] again we ensure that the mapping (s, t, ω)→ clRdF1(s, t,

ω,C) is nonanticipating.

Now we will show that

(3.6) co(clRdF1(s, t, ω, C)) = co(F1(s, t, ω, C)).

It is obvious that

co(clRdF1(s, t, ω, C)) ⊃ clRdco(F1(s, t, ω, C),

for every (s, t, ω, C) ∈ I × J × Ω×Kbc (L
2).

It remains to show that

co(clRdF1(s, t, ω, C)) ⊂ clRdco(F1(s, t, ω, C),

for every (s, t, ω, C) ∈ I × J × Ω×Kb(L2).

For this, it suffices to prove that co(clRdF1(s, t, ω, C)) ⊂ clRdco(F1(s, t, ω, C)),

because by (3.2) we have:

clRdco(clRdF1(s, t, ω, C)) = co(clRdF1(s, t, ω, C))

and

clRdco(F1(s, t, ω, C) = co(F1(s, t, ω, C).

Let x ∈ co(clRdF1(s, t, ω, C)). Then due to Theorem 3.2 there exist w1, . . . , wd+1 ∈

clRdF1(s, t, ω, C) and λ1, . . . , λd+1 ­ 0,
∑d+1
i=1 λi = 1 such that x =

∑d+1
i=1 λiwi.
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Since w1, . . . , wd+1 ∈ clRdF1(s, t, ω, C), it follows that for every i = 1, . . . , d + 1

there exists {uin}n­1 ⊂ F1(s, t, ω, C) such that u
i
n → wi, for n → ∞. Let us take a

sequence yn := λ1u
1
n + λ2u

2
n + · · ·+ λd+1u

d+1
n . Then we have that

yn = λ1u
1
n + λ2u

2
n + · · ·+ λd+1u

d+1
n → x = λ1w

1
n + λ2w

2
n + · · ·+ λd+1w

d+1
n .

Since for every n ∈ N , yn ∈ co(F1(s, t, ω, C)) it follows that x ∈ clRdco(F1(s, t, ω, C)).

Thus equality (3.6) follows.

Finally by Proposition 2.26, Chapter II in [14] we conclude that a mapping

(s, t, ω)→ co(F1(s, t, ω, C) = F2(s, t, ω, C) is nonanticipating, for every C ∈ Kbc (L
2).

Now we show that if F1 satisfies the condition (B2) then F2 satisfies (A2) with

some positive constant. Let C1, C2 ∈ Kbc (L
2). Then for every η ∈ C1 and every ε > 0

there exist γ ∈ C2 such that

‖η − γ‖L2 ¬ dist(η, C2) + ε ¬ sup
η∈C1

dist(η, C2) + ε

= HL2(C1, C2) + ε ¬ HL2(C1, C2) + ε.

Then by (B2) we get

HRd (F1(s, t, ω, η), F1(s, t, ω, γ)) ¬ L
1/2 ‖η − γ‖L2 ¬ L

1/2HL2(C1, C2) + L
1/2ε.

Let us put r(ε) := L1/2HL2(C1, C2) + L
1/2ε. Then by the last inequality above we

have

F1(s, t, ω, η) ⊂ V(F1(s, t, ω, γ), r(ε)) ⊂ V(F1(s, t, ω, C2), r(ε)),

for every η ∈ C1. Hence

F1(s, t, ω, C1) ⊂ V(F1(s, t, ω, C2), r(ε)).

Thus by (2.1) it follows that

HRd (F1(s, t, ω, C1), F1(s, t, ω, C2)) ¬ r(ε).

Since ε > 0 was arbitrary it follows that

HRd (F1(s, t, ω, C1), F1(s, t, ω, C2)) ¬ r(0).

In a similar way one can prove that

HRd (F1(s, t, ω, C2), F1(s, t, ω, C1)) ¬ r(0).

Hence we have

HRd (F1(s, t, ω, C1), F1(s, t, ω, C2)) ¬ r(0).

Therefore by Remark 1.19 in [14] we conclude that

HRd (F2(s, t, ω, C1), F2(s, t, ω, C2)) ¬ L
1/2HL2(C1, C2).

In a similar way as above one can show that F2 satisfies also condition (A3), provided

F1 attends (B3).
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Before we formulate the main result of this section we establish a slightly more

general version of Carathéodory/Lipschitz Selection Theorem needed in the sequel.

Although its proof goes by using simillar argumentations as in the proof of Theo-

rem 9.5.3 in [6], we shall present it below for the readers convinience. For this aim we

recall first some notions (see [6] for details).

For A ∈ Kbc(R
d) by σ(A, ·) : Rd → R,

σ(A, p) := sup {< a, p >: a ∈ A}

we denote a support function of the set A. Then it is easy to see that for every

p1, p2 ∈ R
d one has

(3.7) |σ(A, p1)− σ(A, p2)| ¬ HRd(A, {θ})‖p1 − p2‖Rd .

Let sd : K
b
c(R

d)→ R
d be a Steiner Point, i.e.

(3.8) sd(A) =






σ(A, 1)/2− σ(A,−1)/2, for d = 1

d
∫
Σd−1 pσ(A, p)µ(dp), for d ­ 2

where Σd−1 denotes the unit sphere in R
d and µ is a measure on Σd−1 proportional

to the Lebesgue measure and µ(Σd−1) = 1. Then by Theorem 9.4.1 in [6], it fol-

lows that sd is a Lipschitz selection map, i.e. sd(A) ∈ A for every A ∈ Kbc(R
d) and

‖sd(A1)− sd(A2)‖Rd ¬ dHRd(A1, A2) for A1, A2 ∈ K
b
c(R

d). Let (Γ,M, ν) be a measure

space and X be a linear normed space. Assume that F : Γ× X→ Kbc (R
d) satisfies:

(i) F (·, x) is M-measurable for every x ∈ X,

(ii) F (γ, ·) is Lipschitz continuous, i.e. HRd(F (γ, x), F (γ, y)) ¬ L ‖x− y‖X, for some

constatnt L > 0 and for every x, y ∈ X,

(iii) HRd(F (γ, x), {θ}) ¬ K(1 + ‖x‖X) for K > 0 and for every x ∈ X.

Then we have the following version of Carathéodory/Lipschitz selection property for

F .

Proposition 2. Let F : Γ×X→ Kbc (R
d) be a set-valued mapping satisfying conditions

(i)–(iii). Then there exist a function f : Γ×X→ R
d such that:

(a) f(γ, x) ∈ F (γ, x) for all (γ, x) ∈ Γ× X,

(b) f(·, x) is M-measurable for each x ∈ X,

(c) ‖f(γ, x)− f(γ, y)‖
Rd
¬ Ld ‖x− y‖

X
, for all γ ∈ Γ and x, y ∈ X,

(d) ‖f(γ, x)‖
Rd
¬ K(1 + ‖x‖

X
) for every γ ∈ Γ and x ∈ X.

Proof. Firstly, let us note that by Proposition 2.32 in [14] a mapping γ → σ(F (γ, x), p)

is M-measurable for every fixed x ∈ X and p ∈ R
d. On the other hand by (3.7) a

function p→ pσ(F (γ, x), p) is continuous and hence integrable on Σd−1 with respect

to the measure µ. Moreover the mapping (γ, p) → pσ(F (γ, x), p) is M ⊗ B(Rd)-

measurable and by the assuption (iii) it is also integrable on Γ⊗Σd−1 with respect to
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the measure ν×µ for every fixed x ∈ X. Hence by the definition of Steiner Point and

by the Fubini Theorem the mapping γ → sd(F (γ, x)) isM-measurable for each x ∈ X,

in the case when d ­ 2. The measurability of the mapping γ → s1(F (γ, x)) follows

directly by the definition of Steiner Point for d = 1 and again by Proposition 2.32

in [14]. Then by properties of Steiner Point and the assmumptions (i)–(iii) imposed

on set-valued mapping F it follows that a function f(γ, x) := sd(F (γ, x)) is a desired

selection of F .

Now we formulate the main result of this section.

Theorem 3.3. Assume that F1 and G1 satisfy (B1)–(B3), and A satisfies (A4).

Moreover, let ξ and A satisfy condition (B4). Then there exists a solution X : I ×

J → Kbc (L
2) to the set-valued stochastic integral equation (3.5) and a solution x :

I × J × Ω→ R
d to the stochastic integral inclusion (3.1) such that:

distL2(xs,t, Xs,t) = 0,

for every (s, t) ∈ I × J .

Proof. By Proposition 1 and Theorem 2.6 there exist a unique solution X to the set-

valued stochastic integral equation (3.5). Now, let as consider the set K(ξ,X) defined

by

K(ξ,X) : =




x ∈ C(I × J, L
2) : xs,t − ξs,0 − ξ0,t + ξ0,0

=
∫ s

0

∫ t

0
f(u, v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v)dBu,v P -p.w.

for every (s, t) ∈ I × J, and some f ∈ S2N (F2 ◦X), g ∈ S
2
N (G2 ◦X)




.

Notice that K(ξ,X) is a nonempty subset of C(I × J, L2). Indeed, by Proposition 1

and by the continuity ofX it follows that the set-valued mappings F2◦X : I×J×Ω→

Kbc(R
d) and G2 ◦X : I×J ×Ω→ Kbc(R

d) are nonanticipating. Moreover by (B3) and

again by Proposition 1 we have:

|||(F2 ◦X)(s, t, ω)|||
2
Rd
= |||F2(s, t, ω,Xs,t)|||

2
Rd
¬ 2K(1 +H2L2(Xs,t, {Θ})).

Consequently, due to Theorem 2.7 we get

sup
(s,t)∈I×J

|||(F2 ◦X)(s, t, ω)|||
2
Rd
<∞.

Thus the set S2N (F2◦X) is nonempty. In a similar way one can show the nonemptiness

of the set S2N (G2 ◦ X). It shows the nonemptiness of the set K(ξ,X). Next, let us
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note that if x ∈ K(ξ,X), then for every (s, t) ∈ I × J it holds distL2(xs,t, Xs,t) = 0.

Indeed, by the definition of K(ξ,X) and assumption (B4) we have:

xs,t = ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
f(u, v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v)dBu,v

∈ As,0 + A0,t ⊖ A0,0 +
∫ s

0

∫ t

0
F2(u, v,Xu,v)λ(du, dv)

+
∫ s

0

∫ t

0
G2(u, v,Xu,v)dBu,v = Xs,t,

for (s, t, ω) ∈ I × J × Ω.

Next we will show that the set K(ξ,X) is bounded.

Let x ∈ K(ξ,X). Then there exist f ∈ S2N (F2 ◦ X) and g ∈ S
2
N (G2 ◦ X) such

that:

xs,t − ξs,0 − ξ0,t + ξ0,0 =
∫ s

0

∫ t

0
f(u, v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v)dBu,v,

for (s, t) ∈ I × J . Hence by (A4) and two-parameter Itô’s isometry (2.3) we have:

sup
(s,t)∈I×J

E‖xs,t‖
2
Rd
¬ 3 sup

(s,t)∈I×J
E‖ξs,0 + ξ0,t − ξ0,0‖

2
Rd

+ 3 sup
(s,t)∈I×J

E

∥∥∥∥
∫ s

0

∫ t

0
f(u, v)λ(du, dv)

∥∥∥∥
2

Rd

+ 3 sup
(s,t)∈I×J

E

∥∥∥∥
∫ s

0

∫ t

0
g(u, v)dBu,v

∥∥∥∥
2

Rd

¬ 3 sup
(s,t)∈I×J

H2L2((As,0 + A0,t)⊖A0,0, {Θ})

+ 3 sup
(s,t)∈I×J

stE
∫ s

0

∫ t

0
‖f(u, v)‖2

Rd
λ(du, dv)

+ 3 sup
(s,t)∈I×J

E

∥∥∥∥
∫ s

0

∫ t

0
g(u, v)dBu,v

∥∥∥∥
2

Rd

¬ 3 sup
(s,t)∈I×J

H2L2((As,0 + A0,t)⊖A0,0, {Θ})

+ 3STE
∫ S

0

∫ T

0
‖f(u, v)‖2

Rd
λ(du, dv)

+ 3E
∫ S

0

∫ T

0
‖g(u, v)‖2

Rd
λ(du, dv).

On the other hand, again by (A3) and Theorem 2.7 for every (s, t) ∈ I × J we infer:

‖f(s, t, ω)‖2
Rd
¬ |||F2(s, t, ω,Xs,t)|||

2
Rd

¬ [3 sup
(s,t)∈I×J

H2L2(As,0 + A0,t, A0,0)

+ 6K2st(st+ 1)] exp{6K2st(st+ 1)} <∞

and

‖g(s, t, ω)‖2
Rd
¬ |||G2(s, t, ω,Xs,t)|||

2
Rd
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¬ [3 sup
(s,t)∈I×J

H2L2(As,0 + A0,t, A0,0)

+ 6K2st(st+ 1)] exp{6K2st(st+ 1)} <∞.

Therefore

sup
(s,t)∈I×J

E‖xs,t‖
2
Rd
< M

where M is a positive constant which does not depend on x.

In the next step we will show that K(ξ,X) is a closed subset of C(I × J, L2).

Let us take a sequence (xn) ⊂ K(ξ,X) such that xn → x for n → ∞ in the space

C(I×J, L2), where x ∈ C(I×J, L2). For every n ∈ N , xn belongs to the set K(ξ,X).

Therefore:

xns,t = ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
fn(u, v)λ(du, dv) +

∫ s

0

∫ t

0
gn(u, v)dBu,v,

where fn ∈ S2N (F2 ◦ X), g
n ∈ S2N (G2 ◦ X) for every n ∈ N and (s, t) ∈ I × J . By

Theorem 2.2a), due to weak compactness of the sets S2N (F2 ◦ X) and S
2
N (G2 ◦ X)

we infer that there exist subsequences (fnk) and (gnk) and also f ∈ S2N (F2 ◦X) and

g ∈ S2N (G2 ◦X) such that f
nk ⇀ f and gnk ⇀ g weakly in L2N (λ× P ). Therefore we

get:

(3.9) ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
fnk(u, v)λ(du, dv) +

∫ s

0

∫ t

0
gnk(u, v)dBu,v → xs,t

in L2, for k →∞, and (s, t) ∈ I × J .

Let us define the linear operators Is,t : L
2
N (λ×P )→ L

2, and Js,t : L
2
N (λ×P )→ L

2

as follows:

Is,t(f) :=
∫ s

0

∫ t

0
f(u, v)λ(du, dv)

and

Js,t(g) :=
∫ s

0

∫ t

0
g(u, v)dBu,v.

By Itô’s isometry (2.3) and Doob’s maximal inequality (2.4) we infer that Is,t and Js,t

are norm-to-norm continuous. Now by Theorem 3.4.12 in [9] we obtain that they are

also continuous with respect to weak topologies in L2N (λ × P ) and L
2, respectively.

Hence

Is,t(f
nk) :=

∫ s

0

∫ t

0
fnk(u, v)λ(du, dv)⇀ Is,t(f) :=

∫ s

0

∫ t

0
f(u, v)λ(du, dv)

and

Js,t(g
nk) :=

∫ s

0

∫ t

0
gnk(u, v)dBu,v ⇀ Js,t(g) :=

∫ s

0

∫ t

0
g(u, v)dBu,v,

when k →∞. Thus

ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
fnk(u, v)λ(du, dv) +

∫ s

0

∫ t

0
gnk(u, v)dBu,v

⇀ ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
f(u, v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v)dBu,v
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in L2, for every (s, t) ∈ I × J , for k → ∞. This convergence and (3.9) allow us to

claim that:

xs,t = ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
f(u, v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v)dBu,v P -p.w.

Thus x ∈ K(ξ,X) which proves the closedness of K(ξ,X) in C(I × J, L2).

In order to finish the proof, we will show that there exist x̂ ∈ SI(F1, G1, ξ) such

that x̂ ∈ K(ξ,X).

Because F1 and G1 satisfy (B1)–(B3), then by Proposition 2 there exist mappings

f, g : I × J × Ω× L2 → R
d such that:

(i) f(s, t, ω, η) ∈ F1(s, t, ω, η), g(s, t, ω, η) ∈ G1(s, t, ω, η), for every (s, t, ω, η) ∈

I × J × Ω× L2,

(ii) for every η ∈ L2 the mappings f(·, ·, ·, η), g(·, ·, ·, η) : I × J × Ω → R
d are

nonanticipating,

(iii) there exists L > 0 such that for every (s, t) ∈ I × J , ω ∈ Ω, η1, η2 ∈ L2 it holds

max
{∥∥∥f(s, t, ω, η1)− f(s, t, ω, η2)

∥∥∥
2

Rd
, ‖g(s, t, ω, η1)− g(s, t, ω, η2)‖

2
Rd

}

¬ L ‖η1 − η2‖
2
L2 .

(iv)

max
{∥∥∥f(s, t, ω, η)

∥∥∥
Rd
, ‖g(s, t, ω, η)‖

Rd

}
¬ K(1 + ‖η‖L2)

for every (s, t) ∈ I×J , every η ∈ L2, and P -a.e., with a positive constant K the

same as in (B3).

Then for every x ∈ K(ξ,X) the mappings

I × J × Ω ∋ (s, t, ω)→ f(s, t, ω, xs,t) ∈ R
d,

I × J × Ω ∋ (s, t, ω)→ g(s, t, ω, xs,t) ∈ R
d

are elements of L2N (λ×P ). Moreover f(s, t, ω, xs,t) ∈ F1(s, t, ω, xs,t) and g(s, t, ω, xs,t) ∈

G1(s, t, ω, xs,t).

Let us define the operator V : K(ξ,X)→ K(ξ,X) as follows:

V (x)(s, t) = ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
f(u, v, xu,v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v, xu,v)dBu,v

for every x ∈ K(ξ,X) and (s, t) ∈ I × J . Then V (x) ∈ C(I × J, L2). For every

x ∈ K(ξ,X) we have

f(s, t, ω, xs,t) ∈ F1(s, t, ω, xs,t) ⊂
⋃

η∈Xs,t

F1(s, t, ω, η) ⊂ F2(s, t, ω,Xs,t).

In a similar way we conclude the same relation for g, G1 and G2. Thus we get V (x) ∈

K(ξ,X) for every x ∈ K(ξ,X).
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Hence it is sufficient to show that the mapping V has a fixed point. Obviously,

such a fixed point will be also a solution to stochastic integral inclusion (3.1) generated

by a triple (F1, G1, ξ). We will show that V is a contraction under the metric

ρ(x, y) := sup
(s,t)∈I×J

e−L(ST+1)st
[
E ‖xs,t − ys,t‖

2
Rd

] 1
2

in C(I × J, L2). Indeed, for x, y ∈ K(ξ,X) by properties of f , g and (2.3) we have:

ρ2(V (x), V (y))

¬ 2 sup
(s,t)∈I×J

e−2L(ST+1)st
[

E
∥∥∥∥
∫ s

0

∫ t

0
(f(u, v, xu,v)− f(u, v, yu,v))λ(du, dv)

∥∥∥∥
2

Rd

+ E
∥∥∥∥
∫ s

0

∫ t

0
(g(u, v, xu,v)− g(u, v, yu,v))dBu,v

∥∥∥∥
2

Rd

]

¬ 2 sup
(s,t)∈I×J

e−2L(ST+1)st
[
ST · E

∫ s

0

∫ t

0

∥∥∥f(u, v, xu,v)− f(u, v, yu,v)
∥∥∥
2

Rd
λ(du, dv)

+E
∫ s

0

∫ t

0
‖(g(u, v, xu,v)− g(u, v, yu,v))‖

2
Rd
λ(du, dv)

]

¬ 2L(ST + 1) sup
(s,t)∈I×J

e−2L(ST+1)stE
∫ s

0

∫ t

0
E ‖xu,v − yu,v‖

2
Rd
λ(du, dv)

¬ 2L(ST + 1) sup
(s,t)∈I×J

e−2L(ST+1)st
∫ s

0

∫ t

0
e−2L(ST+1)uve2L(ST+1)uvE ‖xu,v − yu,v‖

2
Rd
λ(du, dv)

¬ 2L(ST + 1) sup
(s,t)∈I×J

e−2L(ST+1)st
∫ s

0

∫ t

0

[

sup
(u,v)∈[0,s]×[0,t]

e−2L(ST+1)uvE ‖xu,v − yu,v‖
2
Rd
×

e2L(ST+1)uv
]
λ(du, dv)

¬ 2L(ST + 1) sup
(s,t)∈I×J

e−2L(ST+1)stρ2(x, y)
∫ s

0

∫ t

0
e2L(ST+1)uvλ(du, dv).

We put:

W := 2L(ST + 1) sup
(s,t)∈I×J

e−2L(ST+1)stρ2(x, y)
∫ s

0

∫ t

0
e2L(ST+1)uvλ(du, dv).

Let us note that
∫ s

0

∫ t

0
e2L(ST+1)uvdu dv ¬

∫ s

0

(∫ t

0
e2L(ST+1)tvdu

)
dv

¬
∫ s

0
t · e2L(ST+1)tvdv =

(
e2L(ST+1)ts − 1

)

2L(ST + 1)
.

Thus the expression W is less or equal than:

ρ2(x, y) sup
(s,t)∈I×J

(1− e−2L(ST+1)st).

Therefore we get:

ρ2(V (x), V (y)) ¬ (1− e−2L(ST+1)ST )ρ2(x, y).
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Then applying Banach’s Contraction Principle we infer that there exists a unique

x̂ ∈ K(ξ,X) such that:

x̂s,t = ξs,0 + ξ0,t − ξ0,0 +
∫ s

0

∫ t

0
f(u, v, x̂u,v)λ(du, dv) +

∫ s

0

∫ t

0
g(u, v, x̂u,v)dBu,v.

Thus the proof is completed.

4. Concluding remarks

Let X be a set-valued solution to equation (3.5) generated by (F2, G2, A) with

F2 and G2 given by (3.3) and (3.4), respectively. Since X : I × J → Kbc (L
2) is

continuous and closed convex valued multifunction it follows by Michael’s Continuous

Selection Theorem (see e.g. [6], [9]) that X admits a continuous selection i.e., there

exist a continuous mapping x : I × J → L2 such that x(s, t) ∈ X(s, t) for every

(s, t) ∈ I×J . By Theorem 3.3 it follows that the set-valued solution to equation (3.5)

possess also a continuous selection belonging to the set of solutions of an associated

stochastic inclusion (3.1). It reflects the situation known in the case of deterministic

one-parameter set-valued differential equations and inclusions (c.f. [46]). Let CS(X)

denote the set of all continuous selections for X. Then we get:

Corollary 4.1. Under assumptions of Theorem 3.3 it holds

CS(X) ∩ SI(F1, G1, ξ) 6= ∅.

On the other hand Theorem 3.3 can be helpfull in analysis of reachable sets of

solutions to stochastic inclusion (3.1) generated by (F1, G1, ξ). Indeed, for (s, t) ∈ I×J

let A((s, t), ξ, F1, G1) be such the set, i.e.

A((s, t), ξ, F1, G1) := {xs,t ∈ L
2 : x ∈ SI(F1, G1, ξ)}.

It means that it is the set of all possible values that are attained by trajectories

from SI(F1, G1, ξ) at the point (s, t). Let A : I × J → Kbc(L
2) be a given continuous

mapping. By C(A) we denote the set of all continuous functions ξ : I × J → L2 such

that (B4) is satisfied. Let

A((s, t), C(A), F1, G1) =
⋃

ξ∈C(A)

A((s, t), ξ, F1, G1).

Then we have:

Corollary 4.2. Let assumptions of Theorem 3.3 be satisfied and X : I×J → Kbc(L
2)

be a unique solution to the equation (3.5). Then

A((s, t), C(A), F1, G1)∩Xs,t 6= ∅

for every (s, t) ∈ I × J .
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Let us note that the statement given in Theorem 3.3 can be also interpreted in the

spirit of viability property for solutions to stochastic inclusion (3.1). Here, the viability

property means that for a given family of sets K = {X(s, t) : (s, t) ∈ I×J} ⊂Kbc(L
2)

there exists a solution x̂ ∈ SI(F1, G1, ξ) such that x̂(s, t) ∈ X(s, t) for every (s, t) ∈

I × J . Such a solution x̂ is said to be viable in K. Thus by Theorem 3.3 we have:

Corollary 4.3. Suppose that assumptions of Theorem 3.3 are satisfied. Let the family

K = {X(s, t) : (s, t) ∈ I × J} ⊂Kbc(L
2) satisfy equation (3.5). Then there exist a

solution x̂ ∈ SI(F1, G1, ξ) viable in K.

Finally we apply Theorem 3.3 to stochastic inclusions with expectations in the

coefficients. Let us consider set-valued random functions F,G : I×J×Ω×R
d×R

1 →

Kbc(R
d) satisfying the following conditions:

(C1) F (·, ·, ·, x, u), G(·, ·, ·, x, u) : I × J ×Ω→ Kbc(R
d) are nonanticipating set-valued

processes for every x ∈ R
d, and u ∈ R

1,

(C2) there exist L1 > 0 such that for every (s, t) ∈ I × J , x, y ∈ R
d, and u, v ∈ R

1 it

holds:

max{H2
Rd
(F (s, t, ω, x, u), F (s, t, ω, y, v)),H2

Rd
(G(s, t, ω, x, u), G(s, t, ω, y, v))}

¬ L1(‖x− y‖
2
Rd
+ |u− v|) P-a.e.,

(C3) there exist K1 > 0 such that

max{HRd(F (s, t, ω, x, u), {Θ}), HRd(G(s, t, ω, x, u), {Θ})}

¬ K1(1 +
‖x‖

Rd
+ |u|

2
) P-a.e.

for every (s, t) ∈ I × J , x ∈ R
d and u ∈ R

1.

Let ξ : I × J × Ω → R
d be an Fs,t−adapted and square integrable stochastic

process. As previously, we assume that ξ : I × J → L2 is a continuous function. Let

us consider the following stochastic inclusion:

(4.1)






∆s ts′ t′(x) ∈
∫ s
s′
∫ t
t′ F (u, v, E(xu,v), ‖xu,v‖L2) λ(du, dv)

+
∫ s
s′
∫ t
t′ G(u, v, E(xu,v), ‖xu,v‖L2) dBu,v,

x0,t = ξ0,t

xs,0 = ξs,0

for every (s′, t′), (s, t) ∈ I × J , (s′, t′) � (s, t). It is easy to check that taking:

F1, G1 : I × J × Ω× L
2 → Kbc (R

d)

with

F1(s, t, ω, η) := F (s, t, ω, Eη, ‖η‖L2)

and

G1(s, t, ω, η) := G(s, t, ω, Eη, ‖η‖L2)
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it follows that these set-valued mappings satisfy conditions (B1), (B2) and (B3). Let

C ∈ Kbc(L
2) be given. Let us define:

F2(s, t, ω, C) := co(
⋃

η∈C

F (s, t, ω, Eη, ‖η‖L2)),

and

G2(s, t, ω, C) := co(
⋃

η∈C

G(s, t, ω, Eη, ‖η‖L2)).

Thus by Proposition 1, Theorem 3.3 can be applied for stochastic inclusion (4.1) gener-

ated by (F,G, ξ) and for set-valued stochastic equation (3.5) generated by (F2, G2, A)

with F2, G2 as above and A : I × J → Kbc (L
2) being a continuous mapping satisfying

(A4), and ξ and A satisfying condition (B4). Also Corollaries 4.1, 4.2 and 4.3 are

valid in this case.

It is also worth to note that in a single-valued case stochastic inclusion (4.1)

reduces to the stochastic integral equation with expectations in the coefficients

xs,t − ξs,0 − ξ0,t + ξ0,0 =
∫ s

0

∫ t

0
f(u, v, E(xu,v), ‖xu,v‖L2)λ(du, dv)(4.2)

+
∫ s

0

∫ t

0
g(u, v, E(xu,v), ‖xu,v‖L2)dBu,v.

Stochastic differential equations described by special forms of (4.2) can be found as

models in finance. For example they were used in the theory of term structure of

interest rates (see e.g. [16], [17], [12] and references therein).

Finally, let us note that the same methods we have presented in this paper can by

applied to the study of interrelations between solutions of stochastic inclusions and

solutions of set-valued stochastic equations in one parameter case. Therefore, one-

parameter counterparts of Theorem 3.3 and Corollaries 4.1, 4.2 and 4.3 hold true.

Moreover in this case the one-parameter counterpart of equation (4.2) has the form:




dxt = f(t, E(xt), ‖xt‖L2)dt+ g(t, E(xt), ‖xt‖L2)dBt

x0 = ξ.

Such equations have a wide range of applications. For example in [7] they were used

in wildlife models. In [29] similar equations were applied for modeling of dynamics of

stock prices (see also [24]).
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