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ABSTRACT. An upper bound of the quenching time ¢, for a semilinear parabolic initial-boundary
value problem with a concentrated nonlinear source in an N-dimensional infinite strip is given. A

computational method is devised to compute ¢, under different conditions.
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1. INTRODUCTION

Let a point (x1,2s,...,2y_1,2y) in the N-dimensional Euclidean space RY be
denoted by (z, &) where x stands for 1, L and b be positive numbers such that b < L,
S = (=L, L)xR""' s = (=b,b)xR""1,0S = {(2,%) : v € {—L,L}, and T € RN},
and 9s = {(z, %) : v € {~b,b}, and T € RN} Let v(x, ) denote the unit outward
normal at (z,Z) € Js, and x, (z, %) denote a function which is 1 for |z| > b, and 0
for |z| < b. Since the Dirac delta function is the derivative of the Heaviside function,
it follows that Oxs (z,Z) /Ov yields a Dirac delta function at each point on = = |b|,
and is zero everywhere else (cf. Chan and Tragoonsirisak [1]), and hence we have a
concentrated source on 0s. Recently, Chan and Tragoonsirisak [2], [3] studied the

following problem with a concentrated nonlinear source on Js:

P 0T) ) i § (0.7,

u(z,0) =0on S, u(z,t) =0 on S x (0,77,

(1.1) u — Au =«

where o and T are positive real numbers, S is the closure of S, f is a given function
such that lim, .- f(u) = oo for some positive constant ¢, and f(u) and its derivatives
f(u) and f” (u) are positive for 0 < u < ¢. Let H = 9/0t — 8*/9z*, D = (0, L),

Received June 21, 2013 1056-2176 $15.00 @Dynamic Publishers, Inc.



614 C. Y. CHAN AND P. TRAGOONSIRISAK

D =[0,L], and Q = D x (0, T]. Due to symmetry, the problem (1.1) is equivalent to

the following one-dimensional problem:

(12) Hu=ad(x—0b) f(u) in Q,
' u(z,0) =0 on D, u, (0,t) =u(L,t)=0for 0 <t <T,

where § (x — b) is the Dirac delta function. A solution w is said to quench if there

exists an extended real number ¢, € (0, oo] such that
sup {u(z,t) :x € D} — ¢ ast—t,.

If t, < oo, then w is said to quench in a finite time. If ¢, = oo, then u quenches
in infinite time. Green’s function g (z,t; &, 7) corresponding to the problem (1.2) is

given by

gz, t;6,7)

_ %2 (COS (2n ;L1)m) (COS (2n ;ng) o <_(2n - 1112;2 (t - T))

(cf. Chan and Tragoonsirisak [2]). For ease of reference, let us summarize the main

results of Chan and Tragoonsirisak [2] in the following theorem.

Theorem 1.1. (a) For (z,t;£,7) € (D x (7,T]) x (D x [0,T)), g (x,t;&,7) is con-
tinuous.
(b) Forxz,£ € D and 0 <7 <t <T, g(z,t;& 1) is positive.
(c¢) If r(t) € C([0,T)), then f(fg(at,t; b, 7)r(7)dr is continuous for v € D and t €
[0,77.

d) There exists some t, such that for 0 <t <t,, the nonlinear integral equation
q q 9

(1.3) u(z,t) = a/o g(x,t;b,7) f (u(b,7))dr

has a unique continuous nonnegative solution w. This solution u is the unique
solution of the problem (1.2), and is a strictly increasing function of t in D.
For any t € (0,t,), u(x,t) attains its absolute mazimum at (b,t) on the region
D x [0,t]. Ift, is finite, then at t,, u quenches at x = b only.

In this paper, we give a method to compute the quenching time ¢,. In Sec-
tion 2, we show how to find an upper bound for ¢,. In Section 3, a computational
method is devised to find ¢, by making use of the several criteria given by Chan and

Tragoonsirisak [3] for quenching to occur.

2. UPPER BOUND

To find the upper bound of the quenching time t,, let

(2.1) w(t) = /O & (2) u (z, 1) dz,
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where ¢ (x) denotes the eigenfunction corresponding to the fundamental eigenvalue

A1 of the eigenvalue problem:

/! _ : D
(2.2) qf Mg in D,
¢'(0) = ¢ (L) =0,
such that
L
(2.3) / ¢ (z)dx =
0
By a direct computation, we obtain
2
s
(24> )‘1 - mu
T T
(2.5) ¢ (r) = 57 08 (2L>

Our next result gives an upper bound for the quenching time.

Theorem 2.1. If

w
(2.6) a ¢ (b) — )\10210126 <m) > 0,
then
1 ¢ dw
(2.7) t, < )
_ _w f(w)
@) ¢ (b) )\loili)gc (f(w)) 0

Proof. Let us multiply the differential equation in (1.2) by ¢ (z) and integrate over x
from 0 to L. We have

/0 ug (z,t) ¢ (z) doe — /0 Uge (T, 1) ¢ (x) da = /0 ad (x = b) f(u)e (z) dz.
We have
d (* dw

/0 w(et)o@ e =4 [ o =G,

/0 06 (2 — b) f(u) (2) dr = o 6 (b) £ (u (b, 1))

By using integration by parts, it follows from (1.2) and (2.2) that
L L
0

— ¢ (L)u(Lt) — & (0)u (0,1) /¢”

:_,\1/ ¢ (x

= —)\1’LU
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Thus,

2.9 ‘i—twlw_aaa()f(u(b,t)).
From Theorem 1.1(d), (2.1), and (2.3), we obtain

(2.9) / o (x =u(bt).

It follows from (2. 8) (2.9), and f being an increasing function that

—a¢() (u (b,)) = Mw (1)

>a¢(b) f(w(t) — Mw(t
w (1)
w(0) |2 60 =75
sy [eom—nmm (7))
Using (2.6) and f (w (t)) being positive, we have
1 dw
(2.10) N ey 2
@ 6 (b) = sup (%) f(w ()

Integrating (2.10), we obtain

1 wita) g ta
a ¢ (b) — Ay sup ( w(t) ) /w(o) f(wuét)) Z/0 dt =t,.

O<w<e

Since

/(b u(x,0)dr =0, and lim w(t) <e,

t—ty

we have (2.7). m

3. QUENCHING TIME

To compute the quenching time ¢,, we use Mathematica version 9. From The-
orem 1.1(d), it is sufficient to consider (1.3) at = b in order to determine the

quenching time ¢,. We consider

M () = u (b, t)

:zfa/ Z(C Ny 2n—1)7rb) o (_(2n—1iL7r22(t—7')>f(M(T))dT.

We give below the steps to compute t;:
Step 1. We input the function f (u) and c.

Step 2. We input the tolerances ¢ and € to be defined later, and the upper limit @)
(instead of co) in the summation.
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Step 3. We compute A, from (2.4), and ¢ (b) from (2.5).

Step 4. Let tl(") and ¢ denote the (n+ 1)th estimates of the lower and upper
bounds of ¢, respectively, and tg") = (tl(n) + tg")) /2 be the (n 4 1)th approximation

of t,. Initially, we let its lower bound tl(o) be zero, and we compute its upper bound ¢
by using the right-hand side of the inequality (2.7). We remark that (2.7) is satisfied

if t” can be computed.

Step 5. Let h = té“’ /m, where m denotes the number of subdivisions. For k =

1,2,3,..., we use the finite sum,
M® (rh)

a [h& n—1)7b\> n—172x2(rh—7 b1

n=

where » = 1,2,3,...,m in the iterative process with M®(7) = 0, and M*(0) = 0.

To compute M*+V(rh), we use the interpolation to approximate M%) (7).

Step 6. At the kth iteration, if for some 7, M®(rh) > ¢, then tl("H) = tl"), and
D) = tg"). We go to Steps 4 and 5. If max,_¢12..m }M(k) (rh) — M(k_l)(rh)} <0
which is a given tolerance, then the sequence {M (k) (t)} converges; in this case, let
tl(nH) = W ¢ = ¢ and go to Steps 4 and 5. We use the interpolation to
approximate MW" (7) if max,—o 12, m |M® (rh) — M*=Y(rh)| > §, and continue the
iterative process for the (k + 1)th iteration to obtain an upper bound and a lower
bound before going to Steps 4 and 5.
Step 7. If ’t(u") —tl(")‘ < € for a given tolerance ¢, then " = (tl(") +t78")) /2 is
accepted as the final estimate of ¢,.

For illustrations of the above computational scheme, let f(u) = 1/(1 —w). Then,
¢ = 1. By a direct computation, we have sup_,,.. (w/f(w)) = 1/4. From (2.4) and
(2.5),

72 m b
A= 12 and ¢ (b) = — cos (—) .

Since tl(o) = 0, it follows from the right-hand side of the inequality (2.7) that
1 ! 2
0405(5)—%)\1 0 ( ) dad(b)—XM

Using Steps 1 to 7 with e = 1074, § = 107%, Q = 10, and m = 40, and the quenching
criteria given by Chan and Tragoonsirisak [3], we obtain the following tables for ¢,

(to four significant figures).

First, we fix L and b, and would like to study the effect of @ on the quenching
time. Let L = 1, and b = 1/2. From Theorems 3.1 and 2.5 of Chan and Tragoonsirisak
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[3], u quenches in a finite time for

04>L Su (L)
L—bocuce \ f(w))’

that is @« > 1/2. We obtain the following table:

a | | 4,

.8000 | 1.840 | .7245
.9000 | 1.306 | .5532
1.000 | 1.012 | .4427

We note that the quenching time ¢, is a decreasing function of a. Physically, this

means that the larger the source, the smaller the quenching time.

Next, we fix a and L, and study the effect of b on the quenching time. From
Corollaries 3.2 and 3.3 of Chan and Tragoonsirisak [3], if

L> L S ( o )
JR— u _
« 0<wgc f (w)
and b € (0,b*), where

1 w
b'=L—— sup (— ),
O ot (f <w>)

then u quenches in a finite time. Let o = 1, and L = 1. Then for v to quench in a
finite time, the above conditions give L > 1/4, and b* = 3/4. We obtain the following
table:

b | 0| 4,
5000 | 1.012 | 4427
16000 | 1.632 | .6013
7000 | 5.193 | 1.335

We see that when b is closer to L, the quenching time t, is larger. Physically, this

means that the closer the nonlinear concentrated source to the boundary x = L where

u = 0, the larger the quenching time.

Lastly, we fix a and b, and study the effect of L on the quenching time. From
Theorem 3.1(ii) of Chan and Tragoonsirisak [3], if

1 w
L>b+— sup |— ),
O ot <f <w>)

then u quenches in a finite time. Let o« = 1, and b = 1/2. Then for u to quench in a

finite time, the above condition requires L > 3/4. We obtain the following table:

L |t | ¢
1.000 | 1.012 | 4427
1.100 | .8781 | .4093
1.200 | .8195 | .3929
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We observe that when L is further away from b, the quenching time ¢, is smaller.
Physically, this means that the further away the nonlinear concentrated source to the

boundary x = L where u = 0, the smaller the quenching time.
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