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ABSTRACT. As researchers and practitioners continuously search for good models to capture price

movements of financial assets, regime-Switching models have received increasing attention. Using a

regime-switching model, we study asset allocation problems with one risk-free asset and one risky

asset. One of the main features of the paper is that the switching process is not observable. Thus

we are in the framework of asset allocation under partial observation. We resort to Wonham filters

to recover necessary information required for optimal control of the problems under consideration.

After converting the partial observable controls to completely observable controls, we characterize

the associated value function in terms of solutions of a partial differential equation, the Hamilton-

Jacobi-Bellman (HJB) equation. Owing to its nonlinearity, it is difficult to obtain the close-form

solution of the HJB equation. Markov chain approximation methods are used to find solutions

numerically.
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1. INTRODUCTION

When an investor invests in various assets, she/he has numerous choices. All these

choices can be categorized into two types: risky investments or risk-free investments.

Risky investments such as stocks, bring the possibility for higher profits but exposes

more risk. Risk-free investments such as T-bond or money market, secure predictable

amount of profit but at a lower return rate. When making investment discussions, the

problem of balancing wealth between risk-free and risky investments such as bonds

and stocks, constantly comes up. The term “asset allocation” refers to the process of

spreading wealth across different types of financial asset classes. The modern financial

market offers unprecedented opportunity of moving money from one class to another.

Between the two types of investment, the price of a risk-free asset is easy to model,

which is often assumed to satisfy an ordinary differential equation for a continuous

compounding bank account. The modeling of the price for a risky asset such as a

stock is considerably more complex and difficult. This paper aims at deriving optimal
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strategies to dividing the proportion of these two different assets. To capture trending

markets, we adopt a regime-switching formulation.

As researchers and practitioners continuously search for better models to capture

price movements of financial assets, regime-switching models have received increasing

attention. Traditionally, a geometric Brownian motion (GBM) formulation has been

widely used in finance to capture the movement of stock prices because of its simple

structure. However, practitioners and researchers noted its short comings. One of its

main drawbacks is the constant return rate and volatility. To capture both longer

term market trends and shorter-term market uncertainty, an effective model is the

regime-switching diffusion, in which both the return rates and the volatility depend

on a Markov switching process. Regime-switching models assume that the market has

finitely many modes. Under different market mode, there are different sets of market

parameters such as the rate of returns, volatility or the risk-free interest rates. The

market movement from one mode to another mode over time is often assumed to

follow a Markov switching process. A simple case is a two-state Markov chain with

one state representing the bull market and the other bear market. Justification of

regime-switching models in marketplaces can be found in [21] and [19]; see also [6] and

[9] among others for empirical studies in connection with regime-switching models.

It is only until very recently, researchers and practitioners have recognized the

importance of regime-switching modeling in asset allocation. To name a few, we men-

tion the work [1] and [5]. When the underlying Markov process is observable. In [22],

a closed-form portfolio selection is developed using a mean-variance technique. For

a hidden Markov model of a special structure, an optimal trading strategy has been

presented in [10]. In [19], nearly-optimal asset allocation strategies were developed

to maximize the expected returns.

In a regime-switching model, the market mode is typically not observable. In

this case, its states need to be estimated using filtering techniques. Related work

can be found in [15], [10], and [14]. In [15], they considered a simple case of two-

state Markov chain with an absorbing state. Wonham filter is used to estimate the

conditional probability of the market mode. A selling rule was studied under this

framework. In [10], an unnormalized filter is used to derive an optimal investment

strategy in an asset allocation problem. In [14], similar asset allocation problem was

considered and classical probabilistic solutions are derived with a logarithmic utility

and a power utility function.

In this paper, we consider a regime-switching asset model that is modulated by

a continuous-time Markov chain. We assume that the modulating force, the under-

lying Markov chain, can only be observed indirectly through stock prices. To deal

with incomplete observation, we adopt the approach of [15] and [14] and use the

Wonham filtering techniques [17]. We consider general setting of the asset allocation
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and characterize the value function in terms of solutions of Hamilton-Jacobi-Bellman

(HJB) equations. We show that the value function is the only viscosity solution to

the associated HJB equations. It is difficult to obtain the close-form solution of the

HJB equation. For computational methods, a finite difference method is often used

to compute the solution. However, in our problem, due to the specific degenerate

feature of the stochastic differential equation, finite difference method is not directly

applicable. Instead of using the finite different methods, we use Kushner’s Markov

chain approximation methods to find numerical solutions of the problem; A Markov

approximation is based on a probabilistic interpretation of the stochastic differential

equations and leads to an approximation to the solution; see [12] and [13] for complete

treatment of the methods.

To summarize, our contributions in this paper include:

1. We use a regime-switching model for optimal asset allocation with partial ob-

servation. We use the Wonham filtering techniques to convert the partially

observable control problem into a completely observable one which allows to

treat the general asset allocation problem with terminal wealth.

2. We derive the associated HJB equation for the converted completely observable

control problem and demonstrate that there is a unique solution.

3. Owing to the lack of close-form solution of the HJB equation in the general case,

we resort to numerical methods and use Markov chain approximation techniques

to obtain the convergence of the numerical algorithm.

4. We study a separable case which allows us separate the time variable and the

state variables so as to achieve the reduction of the overall computation.

The rest of the paper is arranged as follows. Section 2 begins with the problem

formulation. Section 3 recalls the notion of Wonham filters, and derive such filter

for our problem. After converting the partially observed control to that of complete-

observation control, we characterize the value function in Section 4. Section 5 device

numerical approximation based on Markov chain approximation techniques. Section 6

considers a separable case. Section 7 provides a numerical example. Finally, Section 8

concludes the paper.

2. PROBLEM SETUP

In this paper, we consider a continuous-time market setting with one risk-free

investment and one risky investment. Their prices are denoted by P1(t) and P2(t),

respectively. The risk-free investment P1(t) pays a constant interest rate of r > 0.

The risky investment P2(t) is modeled according to a regime-switching model, namely,
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P1(t) and P2(t) satisfies

(2.1)
dP1(t) = P1(t)rdt,
dP2(t)

P2(t)
= µ(α(t))dt+ σdW (t),

where α(t) ∈ M = {1, 2, . . . , m} is a continuous-time Markov chain that governs the

market mode, and µ(i) is the return rate of the stock when the market mode is i.

Note that this is a model where the rate of return follows the market trend, but the

volatility is assumed to be constant. This is mainly needed to meet the Wonham

filter conditions. Such assumption is acceptable in asset allocation problems because

the dependence on volatility is not as crucial as in derivative pricing.

Let ξ(t) denote the wealth of the investor at time t and u(t) to portion allocated

to risky investment. That is, at each time t, u(t)ξ(t) is put into risky investment

and (1−u(t))ξ(t) is put in risk-free investment. We will assume self-financing, which

means ξ(t) equals to the sum of the values of the above investments and no external

funds are transferred to it or from it. There is no cash inflow or outflow and no short

sell. Therefore, we must have

(2.2)
dξ(t)

ξ(t)
= (1 − u(t))rdt+ u(t)(µ(α(t))dt+ σdW (t)).

Suppose the initial time is s, and the initial wealth is ξ(s) = y. We assume the

investor did not consume any amount of the investment. The investor’s objective

is to dynamically adjust u(t) over time to maximize the expected a utility function

Φ(ξ(T )).

This type of asset allocation with regime switching have been studied extensively

in the literature. Nevertheless, most of the research is concerned with completely

observable models, which is far from reality. In this paper, we aim at the partially

observed cases and develop a method for this type of asset allocation problems.

Note that u(t) is a feedback control. Denote the filtration generated by P2(t) as

Ft. A control u is admissible if u is progressively measurable with respect to {Ft}
and u(t) ∈ [0, 1] for all t ∈ [0, T ]. Denote the set of admissible control by A.

In this paper, the price of the stock is observable but the market mode α(t)

cannot be directly observed. For example, in a two-state Markov chain case, it is

not possible to label the market mode to be either ‘bull’ or ‘bear.’ In view of this,

α(t) is often considered as a “hidden Markov chain.” In this case, one viable way of

solving the problem is to come up with some form of estimation of α(t) based on the

observation P2(t) so as to extract needed information.

Note that P2(t) is a function of α(t). To estimate the state of α(t), we use the

Wonham filter; see [17]. The Wonham filter enables us to compute the conditional

probability of α(t) given the past observation Ft = {P2(r), s < r < t}.
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3. WONHAM FILTER

Let α(t) be a continuous-time Markov chain having finite state space M =

{1, . . . , m}, and generator Q = (qij) ∈ R
m×m. Consider a function y(t) of the Markov

chain that is observable with additive Gaussian noise. Let y(t) be the observation

measurement given by

(3.1) dy(t) = f(α(t))dt+ σdW (t), y(0) = 0,

where σ is a positive constant and W (t) is a standard Brownian motion. Let pi(t)

denote the conditional probability of α(t) = i given the observations up to time t, i.e.,

pi(t) = P (α(t) = i | y(s) : s ≤ t);

for i = 1, . . . , m. Let p(t) = (p1(t), . . . , pm(t)) ∈ R
1×m. The Wonham filter is given

by

(3.2) dp(t) = p(t)Qdt− 1

σ2

(
m∑

i=1

f(i)pi(t)

)
p(t)A(t)dt+

1

σ2
p(t)A(t)dy(t),

p(0) = p0, being the initial probability, where

A(t) = diag(f(1), . . . , f(m)) −
m∑

i=1

f(i)pi(t)I,

and I is the m×m identity matrix.

Define y(t) = log(P2(t)). Then it is easy to see that

dy(t) =

[
µ(α(t)) − σ2

2

]
dt+ σdW (t).

The corresponding Wonham filter for α(t) is given by the following SDE:

(3.3) dp(t) = p(t)Qdt− 1

σ2

(
m∑

i=1

[
µ(i) − σ2

2

]
pi(t)

)
p(t)A(t)dt+

1

σ2
p(t)A(t)dy(t),

where p(0) = p0 is the initial probability, and

A(t) = diag

(
µ(1) − σ2

2
, . . . , µ(m) − σ2

2

)
−

m∑

i=1

[
µ(i) − σ2

2

]
pi(t)I.

= diag(µ(1), . . . , µ(m)) −
m∑

i=1

µ(i)pi(t)I.

Denote α̃(t) =
∑m

i=1

[
µ(i) − σ2

2

]
pi(t). We have

dp(t) = p(t)Qdt− 1

σ2
α̃(t)p(t)A(t)dt+

1

σ2
p(t)A(t)dy(t)

= p(t)Qdt+
p(t)A(t)

σ
dv̂(t),(3.4)
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where

dv̂ =
d log(P2) − α̃dt

σ
, v̂(0) = 0

is the innovation process.

We may rewrite the stock price equation of P2 in terms of the innovation process

as follows:
dP2

P2
=

(
α̃(t) +

σ2

2

)
dt+ σdv̂.

Note that both α̃(t) and dv̂ are observable.

Because

α̃(t) =

m∑

i=1

[
µ(i) − σ2

2

]
pi(t) =

m∑

i=1

µ(i)pi(t) −
σ2

2
,

we can simplify our notation and obtain

dP2(t)

P2(t)
= α̂(t)dt+ σdv̂(t),

by letting

α̂(t) =

m∑

i=1

µ(i)pi(t).

Now the dynamic of the wealth function ξ(t) can be reformulated by

dξ(t)

ξ(t)
= [1 − u(t)]rdt+ u(t)(α̂dt+ σdv̂(t)),

= [(1 − u(t))r + u(t)α̂(t)]dt+ u(t)σdv̂(t).(3.5)

The objective is to find an optimal control u to maximizes

J = Esy(Φ(ξ(T ))),

where T is a finite time and Φ is a utility function.

Denote Z(t) = log ξ(t) and z = log y. Then we have

dZ(t) = [(1 − u(t))r + u(t)α̂(t) − (1/2)(u(t)σ)2]dt+ u(t)σdv̂(t),

Z(s) = z,

dp(t) = p(t)Qdt+
p(t)A(t)

σ
dv̂(t),

p(s) = p.

Then, we have

J(s, z, p, u(·)) = Esz(Φ(exp(Z(T )))).

The value function is given by

v(s, z, p) = sup
u(·)∈A

J(s, z, p, u(·)).
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Let Y (t) = (Z(t)
... p(t))′, where A′ denote the transpose of the matrix (or vector)

A. Then

dY (t) =

(
(1 − u(t))r + u(t)α̂(t) − (1/2)(u(t)σ)2

Q′p(t)′

)
dt+




u(t)σ

A(t)p(t)′

σ



 dv̂(t).

Let

f(t, Y, u) =

(
(1 − u)r + uα̂− (1/2)(uσ)2

Q′p(t)′

)

and

Σ(t, Y, u) =




u(t)σ
A(t)p(t)′

σ


 .

Then

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dv̂(t).

Define

(3.6) H(Y, P,G) = fP +
1

2
tr{(ΣΣ′)G}

where P is an 1 × (m + 1) vector and G is an (m + 1) × (m + 1) matrix. Here, fP

should be understood as the inner product of two vectors.

Formally, the associated HJB equation is given as follows:

(3.7)
∂v

∂s
+ sup

u
H

(
Y,

∂v

∂Y
,
∂2v

∂Y 2

)
= 0

with the boundary condition v(T, z, p) = Φ(ez), where z = log y, y is the initial

wealth, and p is the initial probability vector.

4. PROPERTIES OF THE VALUE FUNCTIONS

An analytical solution to equation (3.7) is difficult to obtain (if not impossible).

It is not even clear if equation (3.7) has a classical solution. In this paper, We use

viscosity solution to characterize the dynamics of the system.

The theory of viscosity solutions applies to partial differential equations of the

form F (x, u,Du,D2u) = 0 where F : R
N × R × R

N × S(N) → R and S(N) is

the set of symmetric N × N matrices. The notion of viscosity solutions was first

introduced by Crandall and Lion for solving first-order Hamilton-Jacobi equations.

The user’s guide by Crandall, Ishii and Lion [7] offers a complete treatment of this

topic. Readers are referred to [8] for applications to deterministic and stochastic

control theory. Viscosity solution is also useful for characterizing numerical solutions

of partial differential equations of the form F (x, u,Du,D2u) = 0 where Du is the

gradient vector of u, D2u is its Hessian matrix. The condition on F is that it has to

be proper defined as follows.
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Definition 4.1. Function F is proper if it satisfies

F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X.

Definition 4.2. Let Ω be an open subset of R
N , F be proper and u : Ω → R.

(a) u is a viscosity subsolution of F (x, u,Du,D2u) = 0 in Ω if it is upper semicontin-

uous and for each φ ∈ C2(Ω) and local maximum point x0 of u− φ we have

F (x0, u(x0), Dφ(x0), D
2φ(x0)) ≥ 0.

(b) u is a viscosity supersolution of F (x, u,Du,D2u) = 0 in Ω if it is lower semicon-

tinuous and for each φ ∈ C2(Ω) and local minimum point x0 of u− φ we have

F (x0, u(x0), Dφ(x0), D
2φ(x0)) ≤ 0.

(c) u is a viscosity solution of F (x, u,Du,D2u) = 0 in Ω if it is both viscosity subso-

lution and supersolution of F (x, u,Du,D2u) = 0.

Let

F (Y, v,Dv,D2v) = sup
u
H

(
Y,

∂v

∂Y
,
∂2v

∂Y 2

)
.

We consider

vt + F (Y, v,Dv,D2v) = 0,

which is a classical parabolic equation. Here Dv = ∂v
∂Y

and D2v = ∂2v
∂Y 2 .

We need the following condition for the utility function Φ.

|Φ(y)| ≤ K(1 + | log y|k1 + yk2 + y−k3),

for y ∈ (0,∞), for some nonnegative constants K, ki, i = 1, 2, 3.

Moreover, for any y1, y2 ∈ (0,∞) and some K1 > 0, either

|Φ(y1) − Φ(y2)| ≤ K1| log y1 − log y2|

or, for some γ < 1 and γ 6= 0,

|Φ(y1) − Φ(y2)| ≤ K1|yγ
1 − yγ

2 |.

These conditions are needed so that the value functions have certain growth rate;

see [19] for related estimates.

Lemma 4.3. v(s, z, p) is continuous with respect to s, z, and p.

Proof. (1) v(s, ·, p) is continuous with respect to z.

Fix (s, p). For given z1, z2 and u define

R(t) =

∫ t

s

[
(1 − u(x))r + u(x)α̂(x) − 1

2
(u(x)σ)2

]
dx+

∫ t

s

u(x)σdv̂(x).
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Let Zi(t), i = 1, 2, be defined as Zi(t) = zi + R(t) then Z1(t) − Z2(t) = z1 − z2

and

|v(s, z1, p) − v(s, z2, p)| ≤ sup
u

|EΦ(ez1eR(T )) − EΦ(ez2eR(T ))|

≤ sup
u

|E{[Φ(ez1) − Φ(ez2)]eR(T )}|

≤ K1|z1 − z2|E(eR(T )).

Or

|v(s, z1, p) − v(s, z2, p)| ≤ sup
u

|EΦ(ez1eR(T )) − EΦ(ez2eR(T ))|

≤ sup
u

|E{[Φ(ez1) − Φ(ez2)]eR(T )}|

≤ EK1|(ez1R(T ))γ − (ez2R(T ))γ |
= K1|eγz1 − eγz2 |E(eγR(T )).

It suffices to show the boundedness of E(eγR(T )).

By Ito’s differential rule, we have

deγR(t) = eγR(T )

[
γdR(t) +

γ2

2
(u(t)σ)2dt

]
.

Taking expectation on both sides yields

EeγR(t) ≤ 1 + C

∫ t

s

EeγR(x)dx,

for some constant C > 0. Then the Gronwall inequality implies

EeγR(t) ≤ eC(t−s), s ≤ t ≤ T.

(2) v(·, z, p) is continuous with respect to s.

Fix (z, p). For a given s,∆s > 0, and u define

Ẑ(t) = Z(t− ∆s),

ũ(t) = u(t− ∆s),

p̃(t) = p(t− ∆s),

α̃(t) =
m∑

i=1

µ(i)p(t− ∆s).

Write Z(·) in terms of ũ(t):

Z(t) = z +

∫ t+∆s

s+∆s

(1 − ũ(x))r + ũ(x)α̃(x) − 1

2
(ũ(x)σ)2dx+

∫ t+∆s

s+∆s

ũ(x)σdv̂(x).

Let

Ẑ(t) = z +

∫ t

s+∆s

(1 − ũ(x))r + ũ(x)α̃(x) − 1

2
(ũ(x)σ)2dx+

∫ t

s+∆s

ũ(x)σdv̂(x).

Then

J(s+ ∆s, z, p̃, ũ) = EΦ(eẐ(t)).
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Moreover,

Z(T ) − Ẑ(t) = z +

∫ t+∆s

t

(1 − ũ(x))r + ũ(x)α̃(x) − 1

2
(ũ(x)σ)2dx

+

∫ t+∆s

t

ũ(x)σdv̂(x),

|J(s, z, p, u) − J(s+ ∆s, z, p̃, ũ)| = |EΦ(eZ(T )) − EΦ(eẐ(t))|

either ≤ K1E|Z(T ) − Ẑ(T ) ≤ K1

√
∆s

or ≤ K1|E(eγZ(T ) − eγẐ(T ))|.

Note that E(eγZ(T )) ≤ K.

By the Cauchy-Schwarz inequality, we have

|E(eγZ(T ) − eγẐ(T ))|2 ≤ E(eγ(Z(T )−Ẑ(T )) − 1)2 ≤ K∆s.

The last inequality follows by Ito’s rule.

(3) v(s, z, ·) is continuous with respect to p.

Fix (s, z). For given p1, p2 and u, define

Ri(t) =

∫ t

s

[
(1 − u(x))r + u(x)α̂i(x) −

1

2
u2(x)σ2

]
dx+

∫ t

s

u(x)σdv̂(x),

where α̂i(x) =
∑m

k=1 µ(k)pi
k(x), i = 1, 2.

Since Zi(t) = z +Ri(t), i = 1, 2, then Z1(t) − Z2(t) = R1(t) − R2(t). Either

|J(s, z, p1, u) − J(s, z, p2, u)| = |EΦ(eZ1(T )) − EΦ(eZ2(T ))|
= |EΦ(ez+R1(T )) −EΦ(ez+R2(T ))|
≤ K1E|Z1(T ) − Z2(T )| = K1E|R1(T ) −R2(T )|,

or

|J(s, z, p1, u) − J(s, z, p2, u)| = |EΦ(eZ1(T )) − EΦ(eZ2(T ))|
= |EΦ(ez+R1(T )) − EΦ(ez+R2(T ))|
≤ K1E|(ez+R1(T ))γ − (ez+R2(T ))γ|
= K1e

γzE|eγR1(T ) − eγR2(T )|.

E|R1(T ) − R2(T )| = E

∫ T

s

u(x) [α̂1(x) − α̂2(x)] dx

= E

∫ T

s

u(x)
m∑

k=1

µk

[
p1

k(x) − p2
k(x)

]
dx

≤ ‖p1 − p2‖.
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Theorem 4.4. The value function v(s, z, p) is the unique viscosity solution of HJB

equation (3.7).

Proof. The proof can be found in [18].

5. MARKOV CHAIN APPROXIMATION

In the previous section, we have shown that the value function v is the unique

viscosity solution of the HJB equations

(5.1)
∂v

∂s
+H

(
Y,

∂v

∂Y
,
∂2v

∂Y 2

)
= 0

with the boundary condition v(T, z, p) = Φ(ez).

A common choice to compute the value function is to use finite difference approx-

imation. But finite difference method is not applicable in this problem. The obstacle

is due to the fact that the matrix a(u, p) = ΣΣ′ is not diagonally dominant. To apply

finite difference method, one needs

aii(u, p) −
∑

j:j 6=i

|aij(u, p)| ≥ 0.

We can see that this is not the case in this paper. For example, if p(t) is 2-

dimensional,

A(t)P (t)′ =

(
µ1 − α̂ 0

0 µ2 − α̂

)(
p1(t)

p2(t)

)
=

(
(µ1 − α̂)p1

(µ2 − α̂)p2

)
,

it follows that

Σ(t, Y, u) =




uσ
A(t)p(t)′

σ


 =




uσ
1
σ
(µ1 − α̂)p1

1
σ
(µ2 − α̂)p2


 .

Thus

ΣΣ′ =




uσ
1
σ
(µ1 − α̂)p1

1
σ
(µ2 − α̂)p2



(
uσ

1

σ
(µ1 − α̂)p1

1

σ
(µ2 − α̂)p2

)
,

ΣΣ′ =




u2σ2 u(µ1 − α̂)p1 u(µ2 − α̂)p2

u(µ1 − α̂)p1
1
σ2 (µ1 − α̂)2p2

1
1
σ2 (µ1 − α̂)p1(µ2 − α̂)p2

u(µ2 − α̂)p2
1
σ2 (µ1 − α̂)p1(µ2 − α̂)p2

1
σ2 (µ2 − α̂)2p2

2


 .

In order to have

aii(u, p) −
∑

j:j 6=i

|aij(u, p)| ≥ 0,
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we must have

uσ2 ≥ |µ1 − α̂|p1 + |µ2 − α̂|p2

1

σ2
(µ1 − α̂)2p2

1 ≥ u|µ1 − α̂|p1 +
1

σ2
(µ1 − α̂)p1(µ2 − α̂)p2

1

σ2
(µ2 − α̂)2p2

2 ≥ u|µ2 − α̂|p2 +
1

σ2
(µ1 − α̂)p1(µ2 − α̂)p2.

Suppose µ1 > µ2, hence µ1 − α̂ > 0, µ2 − α̂ < 0. We then hope to have

uσ2 ≥ (µ1 − α̂)p1 + (α̂− µ2)p2,

(µ1 − α̂)p1 ≥ uσ2 + (µ2 − α̂)p2,

(µ2 − α̂)p2 ≤ uσ2 + (µ1 − α̂)p1.

The third condition holds. To satisfy the first two condition, we must have

uσ2 = (µ1 − α̂)p1 + (α̂− µ2)p2.

However, u is the control function that is allowed to take value 0.

To find numerical solutions, we apply Kushner’s Markov chain approximation

method see [12]. The main idea is: Based on probabilistic methods, we construct a

Markov chain with specified transition probabilities leading to the approximation to

the cost function, and the value functions etc. We refer the reader to [16] for Markov

chain approximation to regime-switching diffusions using relaxed control setup and

weak convergence approach.

One of the key requirements in finding the proper Markov chain approximation is

to verify the “local consistency conditions,” which basically means that the approxi-

mating chain should have local properties that are consistent with that of the original

chain. Recall that we denote Y (t) = (Z(t)
... p(t))′, and Y (t) evolves according to the

stochastic process

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dv̂(t).

So the approximating chain Y h(t) should satisfy the following local consistency con-

ditions:

Eh,u
z,p,n∆Y

h
n = f(t, Y (t), u(t))∆th(Y, u) + o(∆th(Y, u))

covh,u
z,p,n∆Y

h
n = Σ(t, Y (t), u(t))Σ(t, Y (t), u(t))′∆th(Y, u) + o(∆th(Y, u))

If we can find approximating chain Y h(t) whose transition probability P h(Y, Z |
u) and time step functions ∆th(Y, u) satisfy the “local consistency conditions” then

we can use it to compute the value function vh(s, Y h) for the approximating chain.

For a detailed discussion of this method, see [12].
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The value function is

v(s, Y0) = sup
u
E[Φ(exp(Z(T ))) | Y (s) = Y0],

where Y0 = (z, p) is the initial condition. By the principle of dynamic programming,

v(s− ∆th, Y0) = sup
u
E[v(s, Y (s)) | Y (s− ∆th) = Y0].

The approximation function vh should have the same property

vh(s− ∆th, Y0) = sup
u
E[vh(s, Y (s)) | Y (s− ∆th) = Y0].

The degenerate structure of the noise covariance matrix suggests that the part of the

transitions of any approximating Markov chain which approximates the effects of the

“noise” would move the chain in the directions ±Σ(s, Y, u). Let the state space Sh

be such that

Y ± hΣ(s, Y, u) ∈ Sh, for Y ∈ Sh,

and

Y ± eih ∈ Sh, for Y ∈ Sh,

We use the following steps to choose a set of transition probabilities P h(Y, Z | u)
and time step functions ∆th(Y, u) to satisfy the “local consistency conditions.” First

we consider the stochastic process

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dv̂(t)

as having two different components, represented respectively by

dY (t) = Σ(t, Y (t), u(t))dv̂(t)

and

dY (t) = f(t, Y (t), u(t))dt.

We choose two different sets of transition probability and time step functions, so

these two SDE’s individual “local consistency conditions” can be satisfied. Then we

combine them to obtain a choice that can satisfy the “local consistency conditions”

for the original state Y (t). The idea of this construction can be found in [13, p. 118].

(1) One set of transition probabilities for a locally consistent chain for the com-

ponent represented by

dY (t) = Σ(t, Y (t), u(t))dv̂(t)

is P h
1 (Y, Y ±hΣ(s, Y, u) | u) = 1/2. With these transition probabilities, the covariance

of the state transition can be written as
∑

Z

(Z − Y )(Z − Y )′P h
1 (Y, Z | u) = ΣΣ′h2.

Then, if we define the interpolation interval ∆th1(Y, u) = h2, P h
1 (Y, Y ±hΣ(s, Y, u) | u)

is locally consistent.
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(2) One possibility for the transition probability of the approximation to

dY (t) = f(t, Y (t), u(t))dt

is

P h
2 (Y, Y ± eih | u) = f±

i (t, Y, u) × normalization,

where the normalization is

1

Qh
2(Y, u)

=
1

∑m+1
i=1 fi(t, Y, u)

,

f+ = max{f, 0}, f− = max{−f, 0}. Define

∆th2(Y, u) =
h

∑m+1
i=1 fi(t, Y, u)

.

The local consistency can be shown by the calculations
∑

Z

(Z − Y )P h
2 (Y, Z | u) = f(t, Y, u) × ∆th2(Y, u),

where Z ∈ {Y ± eih, i = 1, . . . , m}, and
∑

Z

(Z − Y )(Z − Y )′P h
2 (Y, Z | u) = o(∆th2(Y, u)).

(3) Combine the above “partial” transition probabilities from the diffusion and

drift component to get

P h(Y, Y ± hΣ(s, Y, u) | u) =
1

2Qh(Y, u)
,

P h(Y, Y ± eih | u) = f±
i (t, Y, u)

h

Qh(Y, u)

where

Qh(Y, u) = 1 + h

m+1∑

i=1

|fi(Y, u)| ,

and

∆th(Y, u) =
h2

Qh(Y, u)
.

To show that the local consistency is satisfied, we see that

∑

Z∈Sh

(Z − Y )P h(Y, Z | u) = f(t, Y, u)
h2

Qh(Y, u)
,

where Z ∈ {Y ± eih, i = 1, Y ± hΣ(s, Y, u), . . . , m}, and

∑

Z∈Sh

(Z − Y )(Z − Y )′P h(Y, Z | u) = ΣΣ′ h2

Qh(Y, u)
+ o(∆th2(Y, u)).

The numerical scheme for the value function is

(5.2) vh(s− ∆th(Y, u), Y ) = sup
u

[
∑

Z∈Sh

P h(Y, Z | u)vh(s, Z)

]
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with

(5.3) vh(T, z, p) = Φ(ez), (z
... p) ∈ Sh.

For calculation purposes, it would be better if we can find a constant interpolation

intervals ∆th. This can be done by defining

Q
h

= sup
u,p

Qh(Y, u).

Then the following are locally consistent:

∆th = h2/Q
h
,

P h(Y, Y ± hΣ(s, Y, u) | u) = 1/2Q
h
,

P h(Y, Y ± eih | u) = f±
i (t, Y, u)h/Q

h
,

P h(Y, Y | u) = (Q
h −Qh(Y, u))/Q

h
.

Let

Fh(φ)(Y ) = sup
u

[
∑

Z∈Sh

P h(Y, Z | u)φ(Z)

]
.

Then the scheme for computing the value function approximation can be rewritten

as
vh(s, Y ) = Fh(v

h(s+ ∆th(Y, u), ·))(Y ), Y ∈ Sh,

vh(T, z, p) = Φ(ez), (z
...p) ∈ Sh.

In order to use the Barles-Souganidis method [2] to prove the desired convergence,

we need to check the following condition:

Fh(φ1) ≤ Fh(φ2) if φ1 ≤ φ2 (monotonicity).

For 0 < h < 1, there exists a solution vh to the computation scheme and a constant

K such that ‖vh‖ ≤ K(stability).

For every “test function” w ∈ C1,2(Rm+1),

lim
(t,q) →

h↓0
(s,p)

h−1[Fh(w(t+ h, ·))(q) − w(t, q)] =
∂w

∂s
+H

(
Y,
∂w

∂Y
,
∂2w

∂Y 2

)
(consistency).

We have the consistency because

lim
(t,q) →

h↓0
(s,p)

h−1[Fh(w(t+ h, ·))(q) − w(t, q)]

= lim
(t,q) →

h↓0
(s,p)

supu[
∑

Z P
h(q, Z | u)w(t+ h, Z)] − w(t, q)

h

= lim
(t,q) →

h↓0
(s,p)

supu

[∑
Z P

h(q, Z | u)[w(t+ h, Z) − w(t+ h, q)]
]
+ w(t+ h, q) − w(t, q)

h

=
∂w

∂s
+H(Y,

∂w

∂Y
,
∂2w

∂Y 2
).
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Since P h(Y, Z | u) ≥ 0, the monotonicity is immediate.

‖Fh(φ1)(Y ) − Fh(φ2)(Y )‖ =

∥∥∥∥∥sup
u

[
∑

p∈Sh

P h(Y, Z | u)[φ1(Z) − φ2(Z)]

]∥∥∥∥∥

≤ sup
u




∑

p∈Σh

0

Pw(p, q)



 ‖φ1 − φ2‖

= sup
u

‖φ1 − φ2‖ .

Therefore Fh is a contraction mapping. The fixed point vh of this contraction mapping

is the solution of (5.2). This proves the stability.

Define

v∗(s, Y ) = lim sup
(t,Z)→

h↓0
(s,Y )

vh(t, Z)

v∗(s, Y ) = lim inf
(t,Z)→

h↓0
(s,Y )

vh(t, Z).

Lemma 5.1. v∗ is a viscosity subsolution of equation (5.1), and v∗ is a viscosity

supersolution.

Proof. In order to prove that v∗ is a viscosity subsolution, we suppose that φ is a

test function such that v∗ − φ has a strict local maximum at (s, Y ). Then there is a

sequence converging to zero denoted by h, such that vh − φ has a local maximum at

(th, Yh) which converges to (s, Y ) as h ↓ 0.

vh(th, Yh) − φ(th, Yh) ≥ vh(th + h, Yh) − φ(th + h, Yh),

φ(th + h, Yh) − φ(th, Yh) ≥ vh(th + h, Yh) − vh(th, Yh).

By the monotonicity we proved above,

Fh(φ(th + h, ·))(Yh) − φ(th, Yh) ≥ Fh(v
h(th + h, ·))(Yh) − vh(th, Yh).

Since vh is the solution of (5.2), the right side is 0. We divide by h and let h ↓ 0. By

the consistency, we have

∂φ

∂s
+H

(
Y,
∂φ

∂Y
,
∂2φ

∂Y 2

)
≥ 0

Therefore, v∗ is a viscosity subsolution.

Similarly, suppose that φ ∈ C1,2 is a test function such that v∗ − φ has a strict

local minimum at (s, Y ). Then there is a sequence converging to zero denoted by h,

such that vh − φ has a local minimum at (th, Yh) which converges to (s, Y ) as h ↓ 0.

vh(th, Yh) − φ(th, Yh) ≤ vh(th + h, Yh) − φ(th + h, Yh),

φ(th + h, Yh) − φ(th, Yh) ≤ vh(th + h, Yh) − vh(th, Yh).
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By the monotonicity we proved above,

Fh(φ(th + h, ·))(Yh) − φ(th, Yh) ≤ Fh(v
h(th + h, ·))(Yh) − vh(th, Yh).

Since vh is the solution of (5.2), the right side is 0. We divide both sides by h and let

h ↓ 0. By the consistency, we have

∂φ

∂s
+H

(
Y,
∂φ

∂Y
,
∂2φ

∂Y 2

)
≤ 0

Therefore, v∗ is a viscosity supersolution.

Theorem 5.2. As h→ 0 the solution vh of (5.2) converges uniformly on any compact

subset of [0, T ] × R1 × [0, 1]m to the unique continuous viscosity v of (5.1).

Proof. By Lemma 5.1, v∗ is a viscosity subsolution of equation (5.1). By comparison

result for viscosity solutions, v∗ ≤ v. Similarly, v∗ ≥ v. Since v∗ ≤ v∗, we have proved

lim
(t,Z)→

h↓0
(s,Y )

vh(t, Z) = v(s, Y ).

6. SEPARABLE CASE

In this section, we consider a special case in which the value function can be

written as the product of a function of (s, p) and that of z. Such a separation allows

us to reduce the complexity of the overall problem and leads to simpler HJB equations

for numerical solutions. We have proved that v is the unique viscosity solution of the

PDE

(6.1)
∂v

∂s
+H(Y,

∂v

∂Y
,
∂2v

∂Y 2
) = 0

with the boundary condition v(T, z, p) = Φ(ez), where z = ln y and y is the initial

wealth, and p is the initial probability vector. When the utility function is of the

form Φ(x) = xk, we can simplify the numerical solution even further by separation

variables.

Recall that

H

(
Y,

∂v

∂Y
,
∂2v

∂Y 2

)
= sup

u

{
f
∂v

∂Y
+

1

2
tr

{
(ΣΣ′)

∂2v

∂Y 2

}}
.

Let

f(t, Y, u) =

(
(1 − u)r + uα̂− (1/2)(uσ)2

Q′p(t)′

)
.

If we denote f(t, Y, u) = (fu, fp)
′, then

f
∂v

∂Y
= fu

∂v

∂z
+ fp

∂v

∂p
,

where fp
∂v
∂p

is the inner product of the two vectors.
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Recall that

Σ(t, Y, u) =




uσ
A(t)p(t)′

σ


 .

We denote Σ(t, Y, u) = (cu, cp)
′. Then

(ΣΣ′)
∂2v

∂Y 2
=

(
c2u cuc

′
p

cpcu cpc
′
p

)



∂2v

∂z2

∂2v

∂z∂p
∂2v

∂p∂z

∂2v

∂p2


 .

So,

1

2
tr

{
(ΣΣ′)

∂2v

∂Y 2

}
=

1

2

(
c2u
∂2v

∂z2
+ cuc

′
p

∂2v

∂p∂z
+ c′ucp

∂2v

∂z∂p

)
+

1

2
tr

(
cpc

′
p

∂2v

∂p2

)
.

The PDE becomes

0 =
∂v

∂s
+H

(
Y,

∂v

∂Y
,
∂2v

∂Y 2

)

=
∂v

∂s
+ sup

u

{
fu
∂v

∂z
+ fp

∂v

∂p
+

1

2

(
c2u
∂2v

∂z2
+ cuc

′
p

∂2v

∂p∂z
+ c′ucp

∂2v

∂z∂p

)

+
1

2
tr

(
cpc

′
p

∂2v

∂p2

)}

=
∂v

∂s
+ sup

u

{
fu
∂v

∂z
+

1

2
c2u
∂2v

∂z2
+ fp

∂v

∂p
+ c′ucp

∂2v

∂z∂p

}
+

1

2
tr

(
cpc

′
p

∂2v

∂p2

)
.

Suppose that the value function has the form

v(s, z, p) = ykw(s, p) = ekzw(s, p).

Then

∂v

∂s
= ekz ∂w

∂s
,

∂v

∂z
= kekzw(s, p),

∂v

∂p
= ekz ∂w

∂p
,

∂2v

∂z2
= k2ekzw(s, p),

∂2v

∂z∂p
=

(
∂2v

∂p∂z

)′

= kekz ∂w

∂p
,

∂2v

∂p2
= ekz ∂

2w

∂p2
.
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It follows that

0 =
∂v

∂s
+H

(
Y,

∂v

∂Y
,
∂2v

∂Y 2

)

= ekz ∂w

∂s
+ sup

u

{
fuke

kzw(s, p) +
1

2
c2uk

2ekzw(s, p)

+fpe
kz ∂w

∂p
+ cucpke

kz ∂w

∂p

}
+

1

2
tr

(
cpc

′
pe

kz ∂
2w

∂p2

)
.

Therefore, if the value function has the form v(s, z, p) = ykw(s, p) = ekzw(s, p), then

∂w

∂s
+ sup

u

{
fukw(s, p) +

1

2
c2uk

2w(s, p)

+ fp
∂w

∂p
+ cucpk

∂w

∂p

}
+

1

2
tr

(
cpc

′
p

∂2w

∂p2

)
= 0.(6.2)

This is a reduced PDE that only contains the variables s and p.

Theorem 6.1. If w(s, p) is the viscosity solution of the PDE (6.2), then v(s, z, p) =

ekzw(s, p) is the viscosity solution of the HJB equation (3.7).

Proof. Suppose w(s, p) is the viscosity solution of the PDE (6.2), then

∂φ

∂s
+ sup

u

{
fukw(s, p) +

1

2
c2uk

2w(s, p)

+fp
∂φ

∂p
+ cucpk

∂φ

∂p

}
+

1

2
tr

(
cpc

′
p

∂2φ

∂p2

)
≤ 0.

for all φ ∈ C2 such that w−φ has a local minimum at (s, p). Then w(s, p)−φ(s, p) ≤
w(t, q) − φ(t, q).

Suppose v(s, z, p) = ekzw(s, p) and ψ ∈ C2 such that v− ψ has a local minimum

at (s, z, p). That is,

(6.3) ekzw(s, p) − ψ(s, z, p) ≤ ekxw(t, q) − ψ(t, x, q)

for all (t, x, q)in a neighborhood N(s, z, p).

(1) Let t = s, q = p, x = z + ∆z in (6.3) we have

ekzw(s, p) − ψ(s, z, p) ≤ ek(z+∆z)w(s, p) − ψ(s, z + ∆z, p),

or,

(6.4) ψ(s, z + ∆z, p) − ψ(s, z, p) ≤ ek(z+∆z)w(s, p) − ekzw(s, p).

Therefore,
ψ(s, z + ∆z, p) − ψ(s, z, p)

∆z
≤ ek(z+∆z) − ekz

∆z
w(s, p).

Letting ∆z → 0, we have

(6.5)
∂ψ

∂z
≤ ∂v

∂z
at (s, z, p).
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Similarly, we have

(6.6) ψ(s, z − ∆z, p) − ψ(s, z, p) ≤ ek(z−∆z)w(s, p) − ekzw(s, p).

Add (6.4) and (6.6). We have

ψ(s, z+∆z, p)−2ψ(s, z, p)+ψ(s, z−∆z, p) ≤ ek(z+∆z)w(s, p)+ek(z−∆z)w(s, p)−2ekzw(s, p).

Hence

ψ(s, z + ∆z, p) − 2ψ(s, z, p) + ψ(s, z − ∆z, p)

(∆z)2
≤ ek(z+∆z) − 2ekz + +ek(z−∆z)

(∆z)2
w(s, p).

Letting ∆z → 0, we have

(6.7)
∂2ψ

∂z2
≤ ∂2v

∂z2
at (s, z, p).

(2) Let x = z in (6.3). We also have

ekzw(s, p) − ψ(s, z, p) ≤ ekzw(t, q) − ψ(t, z, q).

Fix z and divide both sides by ekz, we have

w(s, p) − ψ(s, z, p)

ekz
≤ w(t, q) − ψ(t, z, q)

ekz
,

for all (t, q) in the neighborhood N(s, p). Because w is the viscosity solution of (6.2),

we must have

1

ekz

∂ψ

∂s
+ sup

u(·)

{
fukw(s, z, p) +

1

2
c2uk

2w(s, z, p)

+ fp
1

ekz

∂ψ

∂p
+ cucpk

1

ekz

∂ψ

∂p
Bigg}+

1

2

1

ekz
tr

(
cpc

′
p

∂2ψ

∂p2

)
≤ 0.

Therefore,

∂ψ

∂s
+ sup

u(·)

{
fuke

kzw(s, z, p) +
1

2
c2uk

2ekzw(s, z, p)

+ fp
∂ψ

∂p
+ cucpk

∂ψ

∂p

}
+

1

2
tr

(
cpc

′
p

∂2ψ

∂p2

)
≤ 0.

This is true for all value of z. So

∂ψ

∂s
+ sup

u(·)

{
fu
∂v

∂z
+

1

2
c2u
∂2v

∂z2

+ fp
∂ψ

∂p
+ cucpk

∂ψ

∂p

}
+

1

2
tr

(
cpc

′
p

∂2ψ

∂p2

)
≤ 0.
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Table 1. Different initial time

s v(s, log(1000), 0.8) MC

0 33.5278 33.8943

0.1 33.2449 33.4353

0.2 32.8735 33.2977

0.3 32.4707 32.4048

0.4 32.0480 32.1506

Consider (6.5) and (6.7). We have

∂ψ

∂s
+ sup

u(·)

{
fu
∂ψ

∂z
+

1

2
c2u
∂2ψ

∂z2

+ fp
∂ψ

∂p
+ cucpk

∂ψ

∂p

}
+

1

2
tr

(
cpc

′
p

∂2ψ

∂p2

)
≤ 0.

This proves that v(s, z, p) = ekzw(s, p) is a viscosity subsolution of (3.7). The proof

for supersolution is similar.

Recall that the numerical scheme for the value function is

(6.8) vh(s− ∆t, Y ) = sup
u

[
∑

Z

P h(Y, Z | u)vh(s, Z)

]

with

(6.9) vh(T, z, p) = Φ(z), z ∈ Sh.

Now with v(s, z, p) = ekzw(s, p) we can simplify this scheme and have

(6.10) wh(s− ∆t, p) = sup
u

[
∑

q

P h(p, q | u)δ(q)wh(s, p)

]
,

with

(6.11) wh(T, p) = 1.

7. A NUMERICAL EXAMPLE

In order to test the numerical scheme in this paper, we compare the value function

from the Markov chain approximation and from the Monte Carlo simulation. To take

advantage of the separable case, we assume the utility function is Φ(x) = x1/2.

Assume T = 0.5, a half year time frame. With initial investment of $1000, the

value function v(s, x, p) for different initial time s compared with the data from Monte

Carlo simulation is shown in Table 1.
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Table 2. Different initial probability

p v(0.2, log(1000), p) MC

0 32.5956 32.9894

0.1 32.5964 32.7831

0.2 32.5981 32.8393

0.3 32.6024 32.8257

0.4 32.6140 32.9907

0.5 32.6511 32.9886

0.6 32.6963 33.0124

0.7 32.7415 33.1261

0.8 32.7868 33.1319

0.9 32.8321 33.2506

1.0 32.8588 33.2377

With initial investment of $1000, the value function v(s, x, p) for different ini-

tial probability p compared with the data from Monte Carlo simulation is shown in

Table 2.

8. CONCLUSIONS

In this paper, we considered an asset allocation problem under the formulation of

geometric Brownian motion with regime switching. We focused on the problem with

partial observations. Wonham filter is used to estimate the conditional probability

of the market mode process. We used Kushner’s Markov approximation to solve the

problem. We also considered a separable case and showed that only a simpler HJB

equation is needed for the corresponding numerical solutions.

It would be interesting to extend our results to incorporate the case when the

volatility is Markov chain dependent. Nevertheless, this requires further study of ex-

tended Wonham filters or approximation methods for handling the associated infinite

dimensional filtering equations.
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