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ABSTRACT. Let q, a, b, p and T be real numbers such that ¢ > 0,a > 0,0<b < a, p > 0, and
0<T,D=1(0,a), Q=D x (0,7]. This article studies the following degenerate parabolic initial

boundary value problem:
2y — Uy = 0(z — b)(1 — u(z,t)) 7P in Q,

u(z,0) =0 on D,u(0,t) =0 = u(a,t) for 0 <t < T,
where §(z) is the Dirac delta function. The growth rate of the solution v as u — 17 is established.
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1. INTRODUCTION

Let q, a, b, p and T be real numbers such that ¢ > 0,a > 0,0 < b < a, p > 0,
and 0 < T, D = (0,a), 2 =D x (0,7]. Let Lyu = 2%u; — u,,. This article studies

the following degenerate parabolic initial boundary value problem:

(1.1) Lyu=46(x—b)(1—u(x,t))Pin Q,

(1.2) u(x,0) =0 on D,u(0,t) =0 =u(a,t) for 0 <t <T,

where 0(z) is the Dirac delta function. These types of problems are motivated by
applications in which the ignition of a combustible medium is accomplished through
the use of either a heated wire or a pair of small electrodes to supply a large amount
of energy to a very confined area. In particularly, when ¢ = 0, it can be used to
describe the temperature distribution on a rod with a concentrated nonlinear source
at point b (cf. [6]). When ¢ = 1, it may be used to describe the temperature u of the

channel flow of a fluid with temperature dependent viscosity in the boundary layer
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(cf. [4, 5]). For the case ¢ = 0, Deng and Roberts [12] studied the corresponding

nonlinear Volterra equation at the site b in a finite domain (0, a):
t
u(b,t) = a2/ G(b,t;b,7)(1 —u(b,7))"? dr,
0

where G(z,t;&,7) denotes the Green’s function corresponding to the problem (1.1)—
(1.2). They showed that there is a a* such that for a < a*, the solution u(b,t) of the
integral equation exists for all time and is uniformly bounded away from 1. When
a > a*, there exists a finite time 7" such that lim, . u(b,t) = 1, and lim; 7 uy (b, t) =

.

Chan and Jiang [6] investigated the solution u(z,t) of the problem (1.1)-(1.2).
They showed that the problem has a unique continuous solution which satisfies (1.1)—
(1.2), and ugp(z,t) > 0 for x € (0,b) and = € (b,a). Also, uy(b,t) = oo for any
t > 0.

For ¢ = 0, the study of the problems when the singularity of the right-hand
side of the equation (1.1) is replaced by (1 — u(x,t))"? was initiated in 1975 by
Kawarada [17], and since then, it has attracted much attention (cf. [5, 11]). Chan
and Tragoonsirisak [9], and Chan and Treeyaprasert [10] studied the existence and
quenching of the solution of a parabolic problem with a concentrated nonlinear source
in an infinite strip and on a semi-infinite interval respectively. Chan [2], and Chan
and Tragoonsirisak [8] investigated the quenching behavior of the solution in the

multi-dimensional cases.

The rate of change of the solution when max{u(x,t) : 2 € D} — 1" ast — T
were studies by Deng and Levine [13]. For ¢ > 0, Yuen [20] studied the rate of change
of the solution. When the right-hand side of the equation (1.1) is replaced by u?(x, t),
the rate of change of the solution as u(x,t) — oo was studied by Fila and Hulshof
[14], Guo [15], and Guo, Sasayama and Wang [16].

In this paper, a solution of the problem (1.1)—(1.2) is a continuous function
which satisfies (1.1)—(1.2). The solution is said to quench if there is a 7" such that
max{u(z,t):x € D} - 1" ast — T.

2. MAIN RESULTS

In this section, we consider the problem (1.1)—(1.2) for the case when ¢ > 0. The
Green’s function G(z,t; £, 7) corresponding to the problem (1.1) is determined by the

following system:

L,G=6(x—&dt—r1),
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with G(z,t;&,7) = 0 for t < 7, and G(0,t;¢,7) = 0 = G(a,t;&, 7). By Chan and
Chan [3], we have

G(z,t:€,7) = Z% du(€)e T,
where A\, (n =1,2,...) are the eigenvalues of the problem
¢" + Xl =0, ¢(0)=0=¢(a),

and their corresponding eigenfunctions are given by

7. (Mx(qu)
On(@) = (q+2)/ 22 BT

2)\1/2
J1+
q+2 q+2

where Ji /(4+2) is the Bessel function of the first kind of order 1/(¢+2). The eigenvalues
satisfies 0 < A\; < Xg < -+- < Ay < Apy1 < -+, Ay & O(n?), and the set {¢,(7)} is a

maximal orthonormal set with the weight function z? (cf. [18, p. 506]).

By using the Green’s function G(x,t;&,7), the solution u(x,t) of the problem
(1.1)—(1.2) is given as

:g/ Z¢n (b)) (1 — u(b, 7)) Pdr,

for 0 < t. The solution u(z,t) can be shown to be unique, continuous, increasing with
respect to ¢ in €. Furthermore, u(z,t) satisfies the problem (1.1)-(1.2). Also there
is a positive real number a* such that for a > a*, the solution u(z,t) quenches in a
finite 7', and b is the only quenching point (cf. [6]). Chan and Tian [7] shows that
there is a positive constant k such that |¢,(x)| < kz=9* for z € D.

Theorem 2.1. If the solution u(z,t) of the problem (1.1) quenches in a finite time
T at x =b € D, then there exist two positive numbers Cy and Cy such that lim (1 —

t—T
u(b, )T = )70 = Cy, and T (1= u(b,0)(T = )7V0 = Cy.

Proof. Firstly, let us determine a lower bound of (1 — u(x,t)) when ¢ is close to T.

Since u(b,t) — 1 as t — T and u(z,t) is continuous, we have

3/0 Zl (6n (b)) T~ (1 — (b, 7)) Pdr = 1.
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By a direct computation, we have

1 —u(bt) = EZ (¢n(D))” (/ e M T=1(1 — (b, 7)) Pdr

a 0

_ / =T (1 — (b, T))—pdf)

0

= EZ (¢n(D))” [/0 (e_’\”(T_T) — e_’\”(t_T)) (1 —u(b,7))"Pdr

- %Z (fn (b)) (1 — u(b, )P L\in (6—)\nt B e‘*"T)]

It follows from the Mean Value Theorem that there is a n satisfying ¢t < n < T, such
that et — e=*T = )\ (T —t). Then we obtain
2 [ee)
1 —u(b,t) > <— > (6n(b)? 6‘A"T> (T =)L — u(b, 1)),

a
n=1

Since |¢,(b)| < kb~9/* for some constant k > 0, the series 3.°° (¢, (b)) e T con-
verges. Thus, there is K7 > 0 such that

(2.1) (1 —wu(b,t))P™ > K\(T —t)

for any 0 < t < T. This gives lim (1 — u(b, t))(T — t)~/®*Y = |, for some positive
t—T
constant (1.

For the upper bound, we consider

—/;t e (1 — (b, T))_pdT)
= % g (én(b))? { /O t (e — e =) (1 — w(b, 7)) Pdr

T
+ / e_’\"(T_T)(l — u(b, T))_pdT] )
¢
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It follows from the Mean Value Theorem that there is a p satisfying ¢ < p < T such
that

t
/ (7M@) — e =D) (1 — (b, 7)) Pdr
0
t
= —Xe (T — 1) / (1 = u(b, 7)) "dr.
0

On the other hand, by use of the inequality (2.1), we have
T T
(2.2) / eI (1 — (b, 7)) Pdr < KO / e MnT=7)(T — 7)~p/ ) g,
t ¢

By using the substitution s = T"— 7, the integral on the right-hand side of the above

inequality becomes

T—t
/ e Mnsg = 0D s (4 1)(T — ¢)~2/126+D] () )~ LHe/20+0)
0

—(1/2)An (T— 1
xe 0PN (=it — it + 3 0(T 1))

where M (k,m,z) is the Whittaker function (cf. [19]). The Whittaker function can

be rewritten in terms of confluent hypergeometric function as

2 1
M(k,m,z) = T3P (m —k+ 5,2m+ 1,2) ,

where ®(a, 7, z) is the confluent hypergeometric function. Note that the hypergeo-

metric function ® has a Kummer series expansion

ala+1)

!
q)a,'y,z :1—|——Z—|—7Z2_|_’
( ) v Ay +1)2!
which shows that this function is entire for any z. Then, we get
p p 1
M| - , — + (T —t
(- m H e T -0)

> 1
= [\o(T = )] 720 ¢~ (/2T (1,1+—,)\n T—t )
[An( )] P ( )

By putting the Whittaker function back into the estimation (2.2), we obtain

T
/ e MT=7)(1 — u(b, 7)) ~Pdr
¢

i 1
< KPP (4 1)(T - 1)V T0g (1, gl = t)) :

For 0 < to < T, since e T =D®(1,1 + 1/(p + 1), A\ (T — t)) is continuous and is
decreasing on [0, 7], there is M > 0 such that for any ¢ty < t; <ty < T, we have

1 1
TG (11 4+ —— AT —ty) ) — e T2D (114 —— N\ (T —t
‘ ( pr T —h))—e At T k)
1
<M |e TG (1,1 4+ ——— \(T —to) )|
< P (T —to)
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Thus, for any to <t < T, we get
1
e MI-0g (1, T4+ —— (T - t)) ‘
p+1

1
T (1,1 + —— N, (T — ¢
€ Y Y n .
( P (1" = o)

< (M+1)

Since A,e MT0)P(1, 1+ 1/(p+ 1), \,(T — o)) — 0 as n — oo, there exists Ky > 0
such that

3 1
K p/(pH)(p + DApe =0 (1, L+ —— (T — t)) < Ko.
p+1
This gives
t
/ (7T — = Anl=m)) (1 — (b, 7)) Pdr
0

T
+ e_A”(T_T)(l —u(b, T))"Pdr

t

< — e MP(T —t) /Ot(l —u(b, 7)) "Pdr

1
+KT p/(p+1) (p+1)(T — )1/(p+1)6—>\n(T—t)q) (17 1+ — (T — t))
p
< &(T — t)l/p+1.

n

Thus,
L) < 20 S 0 5

Since S°°° (6 (b))’ 3= converges, we have 1 — u(b t) < K3(T — )P+ for some
K3 > 0. This shows that @(1 —u(b,t))(T — )Y@+ = ¢, O

When ¢ = 0, the operator Ly in the problem (1.1) becomes Lou = u; — u,, which

is the heat operator, and its corresponding Green’s function on (2 is given as (cf. [1])
2H t_ nm 2
Gz, t; €, 1) = ") Z in 7% smn—ﬂge () (t=7)

where H(t — 7) is the Heaviside function. The representation form of the solution
u(z,t) of the problem (1.1)—(1.2) is given as
2 [ b (nr)?
u(z,t) = —/ sin 0 gin 02 o= (%) =) (1 — u(b, 7)) "Pdr,
aty = a a
for 0 < t. The solution u(z,t) can be shown to be unique, continuous, increasing with
respect to time ¢ in §2. Furthermore, u(z,t) satisfies the problem (1.1)—(1.2). Also

there is a positive real number a*, for a > a*, the solution u(z, t) quenches in a finite T,

and b is the only quenching point. Since | sin "T“b| < 1, the series Y, (sm "—”b) L

nmw

converges. It follows from a similar argument as in the proof of the Theorem 2.1 that

the quenching rate can be estimated to obtain the following result.
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Corollary 2.2. For q = 0, if the solution u(x,t) of the problem (1.1) quenches in

a finite time T at x = b, then there exist two positive numbers Cs and Cy such that

1]

Tim (1= (b, t))(T = 1)~/ = Cy, and Tim (1 — u(b,))(T — )Y@ = .

t—T
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