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ABSTRACT. In this paper, the authors prove some new dynamic inequalities of Hardy’s types
on time scales. The proofs make use of some algebraic inequalities, the Holder inequality, and a
simple consequence of Keller’s chain rule on time scales. The well-known Hardy type inequalities in

differential and difference forms with a best constant 1/4 are derived as special cases.
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1. INTRODUCTION

The classical Hardy inequality states that if f > 0 is integrable over any finite

interval (0,z), p > 1, and f? is integrable and its integral over (0, c0) converges, then

(1.1) /OOO (é /Oxf(t)dt)pdx < (]%)p/om f7(2)de,

and equality holds if and only if f(z) = 0 a.e. The constant (p/(p —1))” is the
best possible. This inequality was proved by Hardy in 1925, but it appeared as the
continuous version of a discrete inequality in his work in 1920 when he tried to find a
new elementary proof of Hilbert’s inequality for double series. Hardy [6] showed that

this inequality follows from the discrete version of (1.1):
0o n p 0o
1 p
S <_Zak> < (L) S (aa >0 p> 1)
n p—1
n=1 k=1 n=1
These two inequalities are known in the literature as Hardy-Hilbert type inequalities.
Since the discovery of these inequalities, many papers containing new proofs, various

generalizations, and extensions have appeared. Hardy’s inequality (1.1) was gener-

alized by Hardy himself in [7] where he showed that, for p > 1 and any integrable
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function f(z) > 0 on (0, c0),

(1.2) /OOO Iim </0 f(t)dt)pdx < (%)p/f In}_pfp(x)dx, m> 1,

and

(1.3) /OOO xim (/OO f(t)dt)pd:r < (1 fm)p/ooo xi_pf”(:c)dx, m<1,

The study of Hardy inequalities (continuous and discrete) or Hardy operators focused

on the investigations of new inequalities or operators with weight functions. These
results are of interest and important in analysis, not only because the mappings are
optimal in the sense that the size of weight classes cannot be improved, but also
because the weight conditions themselves are of interest. These inequalities have
natural applications in the theory of differential equations (ordinary and partial) and
have led to many interesting questions and connections between different areas of
mathematical analysis. For example, Hardy inequalities are closely related to the
quasi-additivity properties of capacitors [1] and recently have been used to find the
gaps between zeros of solutions of differential equations arising in the bending of
beams [22]. This intensively investigated area of mathematical analysis resulted in
the publication of numerous research papers and monographs, and we refer the reader
to the books [12,13,17] and the papers [2,5,10,11,14-16,19,20].

In what follows, we assume that the reader is familiar with the concepts and

notation from time scale calculus as can be found in Bohner and Peterson [3,4].

Recently, a number of dynamic inequalities of Hardy’s type on time scales have
been established [18,21,23,25]. In [21], Rehak proved a time scale version of (1.1)
showing that if p > 1 and ¢ is nonnegative and such that the delta integral f:o gP(t)At
exits as a finite number, then

(1.4) /:O <ﬁ /:(x)g(t)At> Az < (%)p/aoogp(x)dx.

If, in addition, u(t)/t — 0 as t — oo, then the constant is the best possible. However,

p

it is an open problem to determine whether the constant in inequality (1.4) is the

best possible on all time scales or just those satisfying lim; . (u(t)/t) = 0.

Ozkan and Yildirim [18] established a new inequality with weight functions that
can be considered as a time scale version of inequality (1.6) and proved that if u €
Cra([a,b],R) is a nonnegative function such that the delta integral ftb %As
exists as a finite number, the function v is defined by

B O B
0=t [ ooty e
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and @ : (¢,d) — R, ¢, d € R, is continuous and convex, then the inequality

b a(t) b
15 [ e <ﬁ / g(s)As> =< [

holds for all delta integrable functions g € Cy4([a,b],R) such that g(t) € (¢,d). In-
equality (1.5) can be considered as the time scale version of the (Hardy-Knopp type)

inequality

(1.6) [ e (i / mf(t)dt) e A

that was proved by Kaijser et al. [11], where ® is a convex function on (0, co).

We assume that our time scale T satisfies supT = oo, and we define the time
scale interval [ty, 00)r by [tg, 00)T := [tg,00) N'T.

Our aim in this paper is to prove some new inequalities of Hardy’s type on
time scales by making use of the chain rule, Holder’s inequality, and some algebraic
inequalities. The inequalities to be proved contain the inequalities (1.2) and (1.3) and
some new discrete inequalities as special cases. As one special case of our results, we
establish the well-known inequality due to Hardy

/1 (Vi) = %/1%U2(t), with U(0) =0,

0
where 1/4 is the best possible constant.

2. MAIN RESULTS

In this section, we will prove our main results. As indicated above, concepts and
results on the time scale calculus as can be found in [3,4] will be used as needed.
However, it will be convenient to have the following at our disposal. First, the ex-

pression
1

Y / 2 (8) + (1 — R)z (e~ dh b 22 (1),

(2.1) (z*(t))

is a well known consequence of Keller’s chain rule [3, Theorem 1.90]. And using the
fact that g(a(t)) = g(t) + u(t)g>(t), we have
1
(2.2) (ask(t))A =\ / [x(t) + hu(t)a:A(t)}/\_1 dh p z2(t).
0
For easy reference, we also give the time scale integration by parts formula

(2.3) /u(t)vA(t)At:u(t)v(t)\Z—/ u®(t)v° (t) At.

Finally, to prove our main results, we will use the following Hélder Inequality |3,
Theorem 6.13]:
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Let a, b € T. For u, v € C4(T, R), we have

(2.4 [ wonoracs | [uora % [ vt 3

Wherep>1and%+%:1.

Throughout the paper, we will assume that the functions f and g are nonnegative
rd-continuous functions that are A-differentiable, locally delta integrable, and the left
hand sides of the inequalities exits if the right hand sides exist. We will assume also,

without loss of generality, that

S 1
. _ > — >
(2.5) o) 2K for s>a,

for some constant K > 0. Now, we are ready to state and prove the main results in
this paper and begin with the case where p/q > 2.

Theorem 2.1. Let T be a time scale, a € T, v > 1, and p and q be real numbers
with p > q >0 and p/q > 2. Assume that f is nonincreasing on [a,00)r and define

(2.6) A(t) = f(lt) / o (S)SQ(S)AS, for t€ [a,o00)r.
If
P (2p/q—2) K7 th(t) 1
(2.7) =T o 2w
for some constant m > 0, then
I T t207 2 mKY ,_ v

(2.8) / el [A (t)—%uq Y) (AR(@) 7| At

2 i [ 1 (1000 e,

— A A

o LR U)o |
Proof. Integrating the term [ L (A”(t))"? At by parts with

wAt) =1 and o7(0) = (A7()
we obtain

00 (AT (4))P/1 o0

(2.9) /a %At = wv|’ +/a (—u(t)) (Ap/q(t))A At,
where

(2.10) u(t) = /:O (;—j) As.
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Applying the chain rule (2.1), we see that

<s:-11)A = (7—1)/01 [ho(s)+11—h)s]vdh

> 00 [ e
- [

Then (2.5) and (2.11) imply

Hence,

(2.12) =

Therefore,

)
(2.13) —u(t) = —/too (;—1) As < fl (t%) .

Using (2.2), we have

1
(2.14) (A7) = £ {/ (A + phA®] e dh} AL ().
T
From (2.9), (2.13), and (2.14), and the fact that u(co) = 0 and A(a) = 0, we have

L eyl pK” sl 1 N A
(2.15) /a = (A7 ()P At < 1) {/a ﬂ_l/[AjLuhA ] dh}A (t)At.

From the definition of A(¢) and the fact that f2(t) < 0 we see that

s £ (s _ fWgt)  FA0) f A
AR(H) = ( / ) = 7677 (1)

(t) > 0.

F0u) £ N
tfe(e)  fo()
Recalling that p/q > 2 and applying the inequality

(2.16)

(2.17) a* + b < (a+b)* < 2’\_1(a’\ +vY) if a,b>0 and \>1,

to the expression [A + h,uAA} ®/9)= gives
1
2.18 Pl IA + At dh < 2<P/q AT () + 2002 (ALY T
q

0
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Substituting (2.16) and (2.18) into (2.15), we get

[Ty o pEIT <A<t>>”/“[ Bat) 770 5] ar

t ~ q(vy-1) =1 tf"(t) fo(t)
P/OD=2)¢7 oo (pu(t))P/a? p/a
+2 K / (u(t)) (A2(1)) At
Y= 1 a t’Y—

Now (A%(£))”/7 > (A(t))"? since A2(t) > 0, so

o0 l o/ P (2(?/(1-2) K7 th(t)
IR0 TEDENED

_ oP/I=2p (Y /°° l(tv)(P—‘Z)/p f(t)g(t)} [(t'y)—(p—q)/pA(p—q)/Q(t)} At

1+ At

q(y—1) t fo(t)
w/I2 K ME 1() p/q
(2.19) + po— /a e (AR (1)PAL.
Applying the Hoélder inequality (2.4) with indices p/q and p/(p — q) to the ex-
pression y
/a [(t )tV f;tz?t()t)} [(tw)—(p—q)/pA(p—q/q)(t)} At
gives
- (tw)(p_q)/p f(t)g(t) V= (P—a)/p A (P—a/a)
(2.20) / l i } [(£7)~®=0/P A®=0/0) (1)] At
o [ (1) ®=0/p £(1)g(1)]"* z < APla(y) 1
TR

Substituting (2.20) into (2.19), we have

/OO l(A(t))% [1 +2 () K7 8£2(0)

7 CESTRN IO

25 2(p/g) K “{(ﬂ)@‘q’/pf(t)g(t)f A,
=T [/ TR T /a o
202K [ ,Up/q_l(t) p/q
* 7—1/a -1 <AA<t)> At

From condition (2.7), we obtain

/ :n/th
m

282K [ [ [(0)9% f(1)g(1)]"
n U o

% 0o ADP/q %
[
a t

202K [ (8 »
+ 7_1/ o (A2(1))s At.
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This implies

/OO l(A(t))p/th _ M /OO w (AA(t))p/q At

Y v—1 =1
v o0 AP/4(t v
A
o« U

p/q—2 ] 00 p/a

< 2 pmK / 1 ( f(#) ) gPlU(t) At
q (7 - 1) a 2] fo (t>

and upon simplification, we get the desired inequality (2.8). This completes the proof

of the theorem. O

Theorem 2.2. Let T be a time scale, a, b € T, v > 1, and p and q be real numbers
with p > q >0 and p/q > 2, and f be a nonincreasing function. If

pK” () \*tF2) _ 1
221 ot () o 2
for some constant m > 0, then

(2.22)

o (i [ 1900s) s (55) [ o () o

Proof. We proceed as in the proof of Theorem 2.1 to obtain

(2.23) / " Livmyna< (f ¥ / L) AL

Applying the chain rule [3, Theorem 1.87]

QI3

!

F2(g(t)) = F (9(c)g™(t) where ce€ [t,o(t)],
to the term (Ap/q(t))A, we see that

(2.24) (A1) = AT (A2 () for ce [t o).
q
From (2.16), we see that A7(t) > A(c) since o(t) > c. Substituting this into (2.23)

and using (2.16), we have
[T o [
a t - q (7 - 1) a =1 7
KT (M) f(h)g(t)
q(y—1) /a o=t tfo(t) 5
_ pK” /°° (A7()"" A ()fA(t)
q(v—1) Ja 2 f"(t)
pK? /°° (A7) f(t)g (1) A
a(v—1) Ja ! tf"(t)
pKY [ (A" A1)
ooy ) e

~+

IA

t.
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Hence,

[ | ey (fa(fw)p/q t;i(tt)) A
e [,
Using condition (2.21) and rewriting the right hand side, we have
e

_ % /a > {(t”)(;‘q)/p f ;tg(gt()t)} [(£7) -0/ (A7 (1)) P~ )/9) A,

We now apply Holder’s inequality (2.4) with indices p/q and p/(p — q) to the right
hand side to obtain

[emesGRE) [ w ()

which gives the desired inequality (2.22). This completes the proof of the theorem. [

P—q
P p

Y

[rueort,

t'y

From (2.16), we have
A
FO9(t) _ F20), 0
tfe@)  fot)
Notice that the condition f2(t) < 0 in Theorems 2.1 and 2.2 can be replaced by
fA(t) > 0 provided we require the additional condition
A
F0) | £20),
tfet) — fot)

Using this inequality, we see that A2(¢) > 0 and we would have

(2.26) AR (t) =

f()g(t)
(2.27) AR () < o)

Proceeding as in the proof of Theorem 2.2 and using (2.27) in (2.24), we can obtain

the following result.

Theorem 2.3. Let T be a time scale, a € T, v > 1, p and q be real numbers with
p>q>0andp/q> 2, and let f be nondecreasing. If (2.27) holds, then

[ (1) e ) [ (i)

In the following, we will use the form of the chain rule given in (2.2) to obtain

p/q A_Z_Q o o s—l A
(2.28) () =2 / BA” + (1 — B)A]S "V dh S A% ),

0
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and use this in place of (2.14). We can then prove the following result.

Theorem 2.4. Let T be a time scale, a € T, v > 1, p and q be real numbers with
p>q>0andp/q>2, and let f be nonincreasing. If

PIVY HFA(A(E) 1
(2.29) 1+ NI > >0

for some constant m > 0, then

(2.30) / " Lyt < (W> / h < /(1) )p/q L vty ar.

v-1 ) v

Proof. Proceed as in the proof of Theorem 2.1 to obtain

1 K7 00 (Ap/q(t))A
2.31 A7 ()PlIAL < A
(2.31) | maryars 2 [T A
after combining (2.9) and (2.13). From (2.28) and (2.17), we see that

1

(AP/a($))A < %—gg/ hA“ h)%‘lAf‘l] dhA> (t)

(2.32) = 2072 [(A7)i" 1+AE_]AA(t)
Now A2(t) >0, so
(2.33) (AP/a()2 < 2071 (A7(1) 5 AR (L),
This, (2.16), and (2.31) imply
(2.34) )

O R e
Thus,

(2(;n/q)—1) KA (At
(v=1)  fo(®)A()
20 LK [ [ (E) 0 f()g(t) —o-a)/p( A7 (1)) (P—0)/a
<o [ [ ) Lo o
Applying the Holder inequality (2.4) with indices p/q and p/(p — q) to the right hand

At

(2.35) /OO 1(AU( NWPAAL |1+

side, we see that

(2.36) /OO {(ﬂ)(p_q)/p f(t)g(t)} [(tfy)—(p—q)/p(Acr(t))(p—q)/q} At

TR0
S [ [ [ f<t>g<t>]”/" N [ o

tr fo(t)
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Substituting (2.36) into (2.35) and using (2.29), we have

/a ) %(A"(t))l’/mt
< 2 [0 0P )

a
p

Ua“’ 1 (A"(t))p/mt] 5 - 2" mK? [/a“’ {(tV)(p—Q)/p f(t)g(t)]p/q N

t(t) v-1 =t tfo(t)
Hence,
<1 20 KT\ [ FO N
—(A°()PIAL < | ——— —g""(t)At
| s _< - ) JT(L)
which is the desired inequality (2.8) and completes the proof of the theorem. O

Remark 2.5. In Theorems 2.1, 2.2, and 2.4, we assumed that the function f is
nonincreasing. We note that this may be replaced by the condition

tf2() [ g(s)f(s)
(2.37) g(t) > fz(t)/a . As

(see (2.16)).

As special cases when T = R and T = N, we can derive some new differential and
discrete inequalities from Theorems 2.1-2.4. We begin with Theorem 2.1 for T = R.
In this case, p(t) =0, o(t) = ¢, and K = 1, so Theorem 2.1 reduces to the following
corollary after p/q is replaced by A > 2.

Corollary 2.6. Leta € RT, A\ > 2 and~y > 1 be real numbers, and f be nonincreasing.

If
P2Ntf (1) 1
(2.38) 1+’Y—1WZE

>0
for some constant m > 0, then

(2.39) / wt% l fgt) / o (S)sg(s)dsydt < <2:?1")A / ) %gA(t)dt.

Remark 2.7. From Corollary 2.6, if f(t) = 1/at for @ > 1, we see that condition
(2.38) becomes

222 1
— > — >0,

2.40 1
( ) y—1"m

and the inequality (2.39) reduces to

> 1 tgls) \* 2-m\* [~ 1
(241) /l; ﬂ—_)‘ (/l; ?db“) dt S ( fy—l ) /l; t_“/g (t)dt, A Z 2.




HARDY’S TYPE INEQUALITIES 93

With T = R and p/q replaced by A, Theorem 2.2 yields the following corollary.

Corollary 2.8. Let a € RY, A\ > 2 and v > 1 be real numbers, and let [ be nonin-

creasing. If

for some constant m > 0, then

s [ (i ) s (2 [ o

Theorem 2.4 with T = R and p/q replaced by X gives the following corollary.

Corollary 2.9. Leta € RT, A\ > 2 and~y > 1 be real numbers, and f be nonincreasing.

If

for some constant m > 0, then

[TA[L [ A, ] e EEa

As the special case with f(t) = 1, we see that m = 1, and inequality (2.42)

reduces to

(2.43) ‘émg;(£%%9¢ﬁxm@;(;%T)iém%gwoﬁ.

Setting G(t) = g(t)/t in (2.43), we have the Hardy inequality (1.2) in the form

(2.44) / OO% ( / tG(s)ds)Adt < (W—il)A / h ﬂ%@*(t)dt.

As a special case with v = 2 and A = 2, (2.43) becomes

e’} t 2 e’} 2
[ Sl azs [ (10
PR A I P ; t
With u(t) = g(t)/t, this takes the form
[ee] 1 t
/a 2 [/a u(s)ds}
which is equivalent to
N2 1 [, ,
(U (t)) dt> < [ U, with Ula) =0.

By choosing a = 0 and replacing co by 1, we obtain the well-known inequality due to
Hardy [8, page 330]

(2.45) /1 (U’(t))zdt > i/lézﬁ@), with U(0) = 0,

2

ﬁ§4/ u?(t)dt,
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with the best constant 1/4.

If T =N, we have the following result as a special case of Theorem 2.1. Notice
that for T = N, the K in (2.5) can be chosen to be “t

Corollary 2.10. Let a € N, A > 2, and v > 1. Let f(n) and g(n) be nonnegative
sequences such that Af(n) <0 and define

1 f(s)g(s)
) An) = .
(2.46) M=
If
2PAKT nAf(n) 1
B CEN RS TRRT
for some constant m > 0, then
= AMn P 2MKY &
; ni ) _ 7T1 ;n(AA(n))’\
A 2mEY [ oy [ f)g(n) \* ST m]
v—1 Lgan/\ (nf(n+1))] ; ny

If T = N, we have the following result as a special case of Theorem 2.2.

Corollary 2.11. Let a € N, A > 2, and v > 1. Let f(n) and g(n) be nonnegative
sequences such that Af(n) <0. If

AK < A(n) )AnAf(n)
(v—1D)\A(n+1)) fn+1)

for some constant m > 0, then

=1 ZZZGM * ImE N\ 1 f(n)g(n) A
ZH( T 1) ) a< (T5) Lo ()

n=a n=a

1+

> > 0,

1
m

Finally, the following result is a special case of Theorem 2.4 in case T = N.

Corollary 2.12. Leta € N, A > 2, and v > 1, and let f(n) and g(n) be nonnegative
sequences such that Af(n) <0. If

2A-LKT  nAf(n)A(n) >i 0

bt vy—1 f(n+1An+1) —m

for some constant m > 0, then

[e.e]

Z% (f(n1+ 1) if(slg(S)y = (2A 1mK7)Ai%< n+1)))A

n=a n=a
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Next, we consider the case where p/q < 2. To prove these results, we need the

inequality
(2.47) 2" a"+ V) < (a+b)" <a" +b", where a,b>0and 0 <r < 1.

Applying this inequality with r = p/q — 1 < 1 instead of (2.17), we see that

1
(p/q) / A+ hpA®) P07 dn < (p/q) AP/ 4 (AR plg < 2.
0

Proceeding as in the proof of Theorem 2.1, we can prove the following result.

Theorem 2.13. Let T be a time scale with a € T, v > 1, and p and q be positive
constants with p/q < 2, and f be nonincreasing. If

pKT  tfA(t)
q(y—1) fo(t)

(2.48) 1+ > — >0

1
m

for some constant m > 0, then

oo AP/4 o0 v P/t
/ At (t )At — mKt/i—_l(t)(AA(t))p/th

a

L) s [ s

Similar to the proof of Theorem 2.2 we can show that the following result holds.

Theorem 2.14. Let T be a time scale with a € T, v > 1, and p and q be positive
constants with p/q < 2, and f be nonincreasing. If

2K tfA(H)A(t)
(v = 1) fo(t)A(t)

for some constant m > 0, then

[ o (F9) [T () o

Next, we prove a new class of inequalities on time scales for the case v < 1 by

1+ >—>0

1
m

Q

using the new function

(2.49) Qt) == f(lt) /too f(s)sg(s)AS for any t € [a,00)T

instead of A(t).



96 S. H. SAKER AND J. R. GRAEF

Theorem 2.15. Let T be a time scale with a € T, v < 1, and p and q be positive
constants with p/q > 2, and f be nondecreasing. Then

p/

@) [ WK (2w \" A0
(2.50) /a + [1 (1—7) ((Q"(t))) fo(t) A

S o] (]

Proof. First note that applying the chain rule (2.1) and using the fact that o(s) > s

and property (2.5), we have

1—v A — _ 1 1
(7)) = @ 7)/0 [ho(s)+ (1 — h)s]vdh
1 1 )
> 09 | T i e

(1—7)s” _ (1-7) 1
o7 (s)sY = s K7

This implies

a(t) q K7 a(t) 1 \2
() = / Las< / <—) At
a s7 11— Y Ja Sﬁy_l

(2.51) = - < (o),

(2.52) 7(t) < ’ (Kt)!™7 = K1
' tUETT (1=t
Integrating by parts and using the facts that (oc) = 0 and v(a) = 0, we obtain
o0 1 o0
(2.53) / (@A = / (1) (9(1))> A,

and applying the chain rule (2.2) and inequality (2.52), we have
o0 1 P
(2.54) / () ()AL p/ a / e / [Q + ()] dhAt.

Now

(2.55) —02(1) [ /f } W) | A0 S I A

oo T forn

since f2(t) > 0. Also, since Q2(t) < 0,

1
P

(2.56) / [Q+ u(t)hQ?)] Tan < it
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Combining (2.54), (2.55), and (2.56), we have

1 /g p/q (t)g(t)  f2(t)
/a o (Q7(t ())/ At < / e - ( {tfa() +f"(t)Q(t) At
_ p/q \2- f(t)g(t)
- s f@)“
p/q ) JA(@1)
/ PRl fo(t) Fon "

SO

st [ oy 2O [T ﬂ1<» Iy
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An application of Holder’s inequality with indices p/q and p/(p — q) gives

oy [ 200 st [ot0g
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A substitution of (2.58) into (2.57) yields
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from which the desired inequality follows. O

If we apply inequality (2.47) to the term [h27 + (1 — h)Q)]g_l with p/q < 2, we
obtain

1 1
]3/ Qe + Q)i dh < Z—’/ [h§_1 Q)i (1 h)ﬁ—lsﬁ—l] dh
¢ 0 ¢ 0
(2.59) = [@)i "+ i <2057

Then proceeding as in the proof of Theorem 2.15, we can prove the following theorem.
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Theorem 2.16. Let T be a time scale with a € T, v < 1, and p and q be positive

constants with p/q > 2, and f be nondecreasing. Then

[ @y | 2K ((W) )m ZmulpN

t L=y \( @)/  f°(®)

[ (s [ ]

As special cases, Theorems 2.15 and 2.16 can be used to derive some differential

and discrete inequalities, i.e., for T=R and T = N. The details are left to the
interested reader.
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