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ABSTRACT. We consider the problem of identification of fundamental parameters for a com-

pressible viscous flow of a Newtonian fluid. The flow is governed by time dependent Navier-Stokes

equation subject to given boundary conditions. The objective of this study is to find an optimal set

of parameters of the compressible viscous fluid so that the corresponding model solution matches

with the observed data. This method of identification can be applied to blood flow through an

artificial heart chamber and the dynamic modeling of aquifers as special cases.
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1. INTRODUCTION

Fluids which obey a linear relationship between stress and rate of deformation

are known as Newtonian fluids. The viscosity of these fluids are normally assumed to

be constant although it may also be a function of space and time. In a compressible

flow the density of the fluid changes in most of the fluid flow systems. This change

in density is mainly caused by the variation of pressure in various locations of the

fluid medium. Microscopic analysis shows that the motion of the fluid molecules is

highly influenced by the propagation of pressure pulses in the fluid medium whereas

in a macroscopic sense these pressure pulses cause small disturbances in the thermo-

dynamic properties of the fluid.

In practice many flows can be modeled by assuming them to be isentropic. An

isentropic flow is a flow in which viscous losses are not significant. There are many

flows in which the major part of the flow can be considered to be isentropic. For

instance, in internal flows the effects of viscosity are restricted to thin layers near the

walls and the rest of the flow can be treated by assuming it to be isentropic. Similarly

in external flows the effects of viscosity are restricted to the wakes, shock waves and

the boundary layers whereas the flow is considered to be isentropic far away from the

boundary. Thus this approach has been adopted in our analysis of the flow.
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Weak solutions present the most suitable formulation for the mathematical frame-

work of the laws of conservation arising in continuum fluid dynamics. The theory of

weak solutions has emerged as an integral part of modern analysis of physical and

engineering applications. This theory has been adopted by Temam [1], Lions [2], Caf-

farelli et al. [3], and many others. These investigators studied incompressible fluids

where the weak solutions were expected to be regular based on the function spaces of

Sobolev type. The theory of compressible fluids significantly depend on the notion of

weak solutions involving various types of discontinuities and other irregularities (see

e.g., [4–7]). A more rigorous theory of compressible flows with large data was studied

by Lions [8]. Hoff [9] discussed a fundamental idea of weak continuity property of the

so-called effective viscous pressure in order to deal with possible density fluctuations.

Some authors [10–12] have developed the theory of measure solutions to describe os-

cillations that may develop in a finite time. One can find some useful results in this

direction in the monographs [13, 14].

The objective of this study is to identify the fundamental parameters of the

compressible flow of a viscous fluid. This is an inverse problem. The layout of the

paper is portrayed as follows. In Section 2, the formulation for the identification

problem of the flow is developed along with the system equations. The objective

functional and the variational equations are presented in Section 3. Existence of

optimal parameters and necessary conditions of optimality applied to identification

problems are discussed in Section 4. In Section 5, we develop the computational

scheme giving two algorithms for identification of the model parameters.

2. SYSTEM DYNAMICS AND PROBLEM FORMULATION

We consider a compressible viscous Newtonian fluid surrounded by an open

bounded domain Ω in a time interval I ≡ (0, T ). The flow is governed by the continu-

ity equation (conservation of mass) and the time dependent Navier-Stokes equation

(conservation of linear momenta) together with the initial-boundary conditions given

by

∂ρ

∂t
= −div(ρu),(2.1)

∂

∂t
(ρu) = −div (ρu ⊗ u) + divT + ρf ,(2.2)

u(0, ·) = u0, ρ(0, ·) = ρ0,(2.3)

u(t, ·)|∂Ω = 0, ρ(t, ·)|∂Ω = 0,

where Ω, an open bounded connected subset of R
3, is the domain of the flow regime

and ∂Ω is its boundary which is assumed to be sufficiently smooth. In the above

expressions ρ is the mass density of the fluid, u the velocity field, f the volume force,

T the Cauchy stress tensor and I the identity tensor.
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The constitutive relation for a compressible Newtonian fluid is given by

T = S − pI,

where

(2.4) S =

[
µ {∇u + (∇u)′} +

(
η −

2

3
µ

)
(divu) I

]
,

with µ and η being the shear and bulk viscosity coefficients respectively. In the above

expression S is the viscous stress tensor, p denotes the pressure and the prime over the

velocity gradient represents its transpose. We consider the flow to be an isentropic

one. Therefore we use the relation p = Γ(ρ) in the subsequent expressions where Γ

is a C1 function representing the constitutive law. Here it should be noted that the

second law of thermodynamics requires that µ, η ≥ 0. These are the two fundamental

parameters that we wish to identify on the basis of observed data.

Theorem 1 (Existence theorem). Consider the following assumptions on the data

ρ0 ∈ L1(Ω) ∩ Lγ(Ω), ρ0 ≥ 0, f ∈ L1
(
0, T ; L2γ/(γ−1)(Ω, R3)

)
, ∀T > 0,

ρu0 = m0 ∈ L2γ/(γ+1)(Ω, R3),
|m0|

2

ρ0
∈ L1(Ω), ρ0 6≡ 0, m0 = 0 a.e on {ρ0 = 0}.

Then, the system (2.1)–(2.3) has a weak solution (ρ,u) ∈ L∞

loc (0,∞; Lγ(Ω))×L2
loc(0,∞;

H1
0 (Ω, R3)) satisfying

ρ ∈ C ([0,∞); Lp(Ω)) if 1 ≤ p < γ,

ρ|u|2 ∈ L∞

loc

(
0,∞; L1(Ω)

)
, ρu ∈ C

(
[0,∞); L2γ/(γ+1)

ω (Ω, R3)
)
,

ρ ∈ Lr
loc ([0,∞) × Ω) , for r = γ − 1 + 2γ/3,

where we denote by C
(
[0,∞); L

2γ/(γ+1)
ω (Ω, R3)

)
the space of continuous functions

with values in the Lebesgue space L2γ/(γ+1)(Ω, R3) which is endowed with the weak

topology.

Proof. The proof of this theorem can be found in Lions [8]. He proved the existence

theorem and presented sufficient conditions for existence of global solution to the

aforementioned system with large initial data. One can also refer to the work of

Desjardins [16] on the weak solutions of compressible Navier-Stokes equations.

2.1. Problem Formulation. Given the parameters (µ, η) and the boundary data in-

cluding the volume force, one considers the question of existence of solutions {p, ρ,u}

(often in the weak sense) and finally the computation thereof. This is the direct

problem. On the other hand, the inverse problem is to find the parameters (µ, η)

given some functional of the observed response or true solutions {p, ρ,u}. Here we

are interested in the inverse problem. Clearly, the solution {p, ρ,u} is dependent on

the parameters (µ, η). Thus there are two maps involved. One is the direct map
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(µ, η) −→ {p, ρ,u} and the other is the inverse map {p, ρ,u} −→ (µ, η). Even if the

direct map is single valued (unique), the inverse map may be multi valued. How-

ever this multi valued character may not be physically important to real world users.

Such users are perfectly satisfied if the mathematical model produces results close

to the naturally observed data. Usually scientific experiments are designed to deter-

mine these fundamental parameters often assuming that they are constant. However

it is quite conceivable that they may also depend on time and space in a dynamic

environment of the fluid flow. Let (µ0, η0) denote the true underlying parameters un-

known to the observer and {p0, ρ0,u0} the corresponding (weak) solution satisfying

the following system of equations:

∂ρ0

∂t
= −div(ρ0u0),(2.5)

∂

∂t
(ρ0u0) = −div

[
ρ0u0 ⊗ u0 + p0

I
]

(2.6)

+ div
[
µ0

{
∇u0 + (∇u0)′

}]

+ div

[(
η0 −

2

3
µ0

) (
divu0

)
I

]
+ ρ0f ,

u0(0, ·) = u0
0, ρ0(0, ·) = ρ0

0,(2.7)

u0(t, ·)|∂Ω = 0, ρ0(t, ·)|∂Ω = 0.

Thus in order to determine these parameters one introduces a functional, often called

cost functional, which is a measure of discrepancy between the observables and the

true solutions of the dynamic system corresponding to the assumed (trial) parameters

(µ, η). Let {p, ρ,u} denote the solution of the model system corresponding to (µ, η)

and {p0, ρ0,u0} the solution corresponding to the true parameters (µ0, η0) which is

unknown to the observer. If the true solution {p0, ρ0,u0} is observable, the natural

objective functional is given by the following expression,

J(µ, η) ≡

∫

I×Ω

|(p − p0)2 + (ρ − ρ0)2 + |u− u0|2|dx dt(2.8)

+

∫

Ω

|(p(T,x) − p0(T,x))2 + (ρ(T,x) − ρ0(T,x))2 + |u(T,x) − u0(T,x)|2|dx.

From a practical point of view it is not possible to measure this functional as all the

physical quantities under consideration are continuously distributed in the domain

I × Ω. However, in order to have a reasonable error estimation we can select some

accessible regions of the domain and evaluate the cost functional based on the available

data. This is given in its general form in the following section.

3. PERFORMANCE MEASURE AND VARIATIONAL EQUATION

Since the flow is assumed to be isentropic p is given by a function of ρ only as

indicated by the expression p = Γ(ρ). Therefore, it suffices to consider the pair (ρ,u)
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as the state variable. In general we consider the following cost functional

J (µ, η) =

∫

I×Ω

ℓ (t,x, ρ,u) dx dt +

∫

Ω

L (x, ρ(T,x),u(T,x)) dx,(3.1)

where ℓ : I × R
3 × R × R

3 −→ R and L : R
3 × R × R

3 −→ R are suitable functions

which represent the mismatch between the observed data and the data produced by

the model corresponding to the parameter (µ, η) with {ρ,u} being the correspond-

ing solutions (response) of the model system (2.1)–(2.3). Let C be a closed convex

bounded set in R
2 defined as

C ≡
{
(µ, η) ∈ R

2 : 0 ≤ µ1 ≤ µ ≤ µ2, 0 ≤ η1 ≤ η ≤ η2

}
.

In general, the parameters (µ, η) are measurable functions defined on I×Ω with values

in the set C. This class of functions is denoted by P = B∞ (I × Ω, C) ⊂ B∞(I×Ω, R2)

where B∞ (I × Ω, R2) ⊂ L∞ (I × Ω, R2) is the space of bounded measurable functions

defined on I × Ω. Furnished with the supnorm topology, this is a closed subspace of

the Banach space L∞ (I × Ω, R2) and hence a Banach space. Our objective is to find

(µ0, η0) ∈ P such that

J(µ0, η0) ≤ J(µ, η) ∀(µ, η) ∈ P.

We define µǫ = µ0 + ǫ(µ − µ0) and ηǫ = η0 + ǫ(η − η0) for any ǫ ∈ [0, 1]. Since C is a

closed convex set, P is also a closed convex subset of B∞(I × Ω, R2) and so we have

(µǫ, ηǫ) ∈ P. Thus

(3.2) J(µ0, η0) ≤ J(µǫ, ηǫ) ∀ǫ ∈ [0, 1] and ∀(µ, η) ∈ P,

where

J (µǫ, ηǫ) =

∫

I×Ω

ℓ (t,x, ρǫ,uǫ) dx dt +

∫

Ω

L (x, ρǫ(T,x),uǫ(T,x)) dx(3.3)

with (ρǫ,uǫ) being the solution of (2.1)–(2.3) corresponding to the parameter (µǫ, ηǫ)

and

J
(
µ0, η0

)
=

∫

I×Ω

ℓ
(
t,x, ρ0,u0

)
dx dt +

∫

Ω

L
(
x, ρ0(T,x),u0(T,x)

)
dx,(3.4)

corresponding to the parameter (µ0, η0). Let us denote the Gâteaux differential of J

at (µ0, η0) in the direction (µ − µ0, η − η0) by dJ (µ0, η0; µ − µ0, η − η0). Then using

the inequality (3.2) to compute the differential quotient and letting ǫ ↓ 0 one can

easily verify that

(3.5) dJ
(
µ0, η0; µ − µ0, η − η0

)
≥ 0 ∀(µ, η) ∈ P.

Using the differentiability assumptions on ℓ and L, and the expressions (3.3) and

(3.4), one can easily verify that the directional derivative dJ is given by

dJ
(
µ0, η0; µ − µ0, η − η0

)
=

∫

I×Ω

〈
ℓρ

(
t,x0, ρ0,u0

)
, q

〉
dx dt(3.6)
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+

∫

I×Ω

〈
ℓu

(
t,x, ρ0,u0

)
,w

〉
dx dt

+

∫

Ω

〈
Lρ

(
x, ρ0(T,x),u0(T,x)

)
, q(T,x)

〉
dx

+

∫

Ω

〈
Lu

(
x, ρ0(T,x),u0(T,x)

)
,w(T,x)

〉
dx

where (ℓρ, Lρ) and (ℓu, Lu) are the partial derivatives of ℓ and L with respect to ρ and

u respectively. The mass density field q and velocity vector w in the last expression

are given by the limits:

q = lim
ǫ→0

(ρǫ − ρ0)

ǫ
, w = lim

ǫ→0

(uǫ − u0)

ǫ
.

By straightforward variational argument it is easy to verify that the the pair (q,w)

satisfies the following set of partial differential equations together with the initial-

boundary conditions:

K1(q,w) = G0
1

(
µ − µ0, η − η0

)
,(3.7)

K2(q,w) = G0
2

(
µ − µ0, η − η0

)
,(3.8)

q(0, ·) = 0, w(0, ·) = 0,

q(t, ·)|∂Ω = 0, w(t, ·)|∂Ω = 0,(3.9)

in which the differential operators K1 and K2 are given by

K1(q,w) =
∂q

∂t
+ div

(
qu0 + ρ0w

)
,(3.10)

K2(q,w) =
∂

∂t

(
qu0 + ρ0w

)
(3.11)

+ div
{
q(u0 ⊗ u0) + ρ0(w ⊗ u0 + u0 ⊗w) + q d Γ(ρ0)

}

− div

[
µ0 {(∇w) + (∇w)′} + (η0 −

2

3
µ0) (divw) I

]
− qf ,

G0
1

(
µ − µ0, η − η0

)
= 0 and(3.12)

G0
2

(
µ − µ0, η − η0

)
= div

[(
µ − µ0

) {
(∇u0) + (∇u0)′

}]

+ div

[{
(η − η0) −

2

3
(µ − µ0)

} (
divu0

)
I

]
.

In view of the above analysis we have the following result.

Lemma 2 (Variational equations (3.7)–(3.8)). Let (ρ,u)(µ, η) denote the weak so-

lution of the system (2.1)–(2.3) corresponding to (µ, η) ∈ P. Then at each point

(µ0, η0) ∈ P, the function (µ, η) −→ (ρ,u)(µ, η) has weak Gâteaux differential in the

direction (µ − µ0, η − η0), denoted (ρ̂, û)(µ0, η0; µ − µ0, η − η0) and it is the weak

solution (q,w) of the system of variational equations (3.7)–(3.8) satisfying (ρ̂, û) ∈

L∞

loc (0,∞; Lγ(Ω)) × L2
loc (0,∞; H1

0(Ω, R3)), where (ρ,u)(µ0, η0) is the solution of the

system (2.1)–(2.3) corresponding to the pair (µ, η) = (µ0, η0).
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Proof. We omit the proof since the basic arguments leading to the proof is identical

to that of Lemma 2.1 in [15].

4. NECESSARY CONDITIONS FOR IDENTIFICATION

As stated before, our objective is to find optimal parameters (µ0, η0) ∈ P which

minimizes the cost functional (3.1) subject to the given initial boundary value problem

(2.1)–(2.3). For this we need some basic assumptions on differentiability of {ℓ, L} as

stated below:

(A1): ℓ is continuously differentiable with respect to the third and fourth ar-

gument satisfying ℓu(·, ·, ρ(·, ·),u(·, ·)) ∈ L2(I, H−1(Ω, R3)) and ℓρ(·, ·, ρ(·, ·),u(·, ·)) ∈

L1(I, Lr′(Ω)) for any feasible solution (ρ,u).

(A2): L is continuously differentiable with respect to the second and the third

argument satisfying Lu(·, ρ(T, ·),u(T, ·)) ∈ H−1(Ω, R3) and Lρ(·, ρ(T, ·),u(T, ·)) ∈

Lr′(Ω) for any feasible solution (ρ,u).

Using the above assumptions we can develop the necessary conditions of optimal-

ity. This is presented as Theorem 3 at the end of this section. The reader may also be

referred to Theorem 2.1 in reference [15]. Let {(ρǫ,uǫ), (ρ0,u0)} denote the solutions

of the system (2.1)–(2.3) corresponding to the pairs (µǫ, ηǫ) and (µ0, η0) respectively.

For the pair (µ0, η0) ∈ P to be optimal it is necessary that J(µǫ, ηǫ) − J(µ0, η0) ≥ 0

for all ǫ ∈ [0, 1] and for all (µ, η) ∈ P. From this inequality it is easy to verify that the

differential dJ at (µ0, η0) in the direction (µ − µ0, η − η0) must satisfy the inequality

dJ (µ0, η0; µ − µ0, η − η0) ≥ 0 for all (µ, η) ∈ P. Using the expressions on the right-

hand side of (3.6) giving the directional derivative, and the assumptions (A1)–(A2),

we observe that the map

(q,w) −→ dJ

is a continuous linear functional on the Banach space L∞(I, Lr(Ω))×L2(I, H1
0 (Ω, R3)).

Also it is noted that
(
G0

1,G
0
2

)
−→ (q,w)

is a continuous linear map from the Hilbert space L2(I, H1
0) × L2(I, H−1(Ω, R3)) to

the Banach space L∞(I, Lr(Ω)) × L2(I, H1
0(Ω, R3)). Then the composition map

(
G0

1,G
0
2

)
−→ (q,w) −→ dJ

is a continuous linear functional on L2(I, H1
0)×L2(I, H−1(Ω, R3)). Hence there exists

a pair (Φ,Ψ) ∈ L2(I, H−1) × L2(I, H1
0(Ω, R3)) such that

dJ
(
µ0, η0; µ − µ0, η − η0

)
=

∫

I×Ω

(〈
G0

1, Φ
〉

+
〈
G0

2,Ψ
〉)

dx dt.(4.1)
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Thus it follows from equation (3.5) that
∫

I×Ω

(〈
G0

1, Φ
〉

+
〈
G0

2,Ψ
〉)

dx dt ≥ 0, ∀ (µ, η) ∈ P.(4.2)

Using the equations (3.7) and (3.8) the expression on the right of equation (4.1) can

be written as∫

I×Ω

(〈
G0

1, Φ
〉

+
〈
G0

2,Ψ
〉)

dx dt =

∫

I×Ω

(〈K1, Φ〉 + 〈K2,Ψ〉) dx dt.(4.3)

Now integrating by parts, the expression on right of equation (4.3) gives
∫

I×Ω

(〈
G0

1, Φ
〉

+
〈
G0

2,Ψ
〉)

dxdt =

∫

I×Ω

(〈q, K∗

1 (Φ,Ψ)〉 + 〈w,K∗

2(Φ,Ψ)〉) dxdt(4.4)

+

∫

Ω

q(T,x)
〈
u0(T,x),Ψ(T,x)

〉
dx +

∫

Ω

ρ0(T,x) 〈w(T,x),Ψ(T,x)〉dx

+

∫

Ω

q(T,x)Φ(T,x)dx.

where K∗

1 (Φ,Ψ) and K∗

2(Φ,Ψ) are the adjoint differential operators given by

K∗

1 (Φ,Ψ) = −
∂Φ

∂t
−

〈
u0,

∂Ψ

∂t

〉
− tr

{
(u0 ⊗ u0)(∇Ψ)′

}
(4.5)

− tr
(
u0(∇Φ)′

)
− 〈f ,Ψ〉 − d Γ(ρ0)tr ((divΨ) I)

K∗

2(Φ,Ψ) = −ρ0 ∂Ψ

∂t
− div{ρ0 (∇Ψ + (∇Ψ)′)u0} + div

{
µ0 (∇Ψ + (∇Ψ)′)

}
(4.6)

+ div

{(
η0 −

2

3
µ0

)
((divΨ) I)

}
− ρ0(∇Φ)′.

On comparison of the integrals in expressions (3.6) and (4.4), we get the following

adjoint differential equations together with the corresponding terminal and boundary

conditions:

∂Φ

∂t
+

〈
u0,

∂Ψ

∂t

〉
= −tr

{
(u0 ⊗ u0)(∇Ψ)′

}
(4.7)

− tr
(
u0(∇Φ)′

)
− 〈f ,Ψ〉 − d Γ(ρ0)tr ((divΨ) I)

− ℓρ

(
t,x, ρ0(t,x),u0(t,x)

)
,

ρ0 ∂Ψ

∂t
= −div{ρ0 (∇Ψ + (∇Ψ)′)u0} + div

{
µ0 (∇Ψ + (∇Ψ)′)

}
(4.8)

+ div

{(
η0 −

2

3
µ0

)
tr ((divΨ) I)

}
− ρ0(∇Φ)′ − ℓu

(
t,x, ρ0(t,x),u0(t,x)

)
,

Φ(T,x) +
〈
u0(T,x),Ψ(T,x)

〉
= Lρ

(
x, ρ0(T,x),u0(T,x)

)
,(4.9)

ρ0(T,x)Ψ(T,x) = Lu

(
x, ρ0(T,x),u0(T,x)

)
,

Φ(T, ·)|∂Ω = 0, Ψ(T, ·)|∂Ω = 0.

The above system of equations can also be expressed in the following matrix form:

(4.10) S
∂Z

∂t
= E(Z) + F,
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where

S =





1 u0
1 u0

2 u0
3

0 ρ0 0 0

0 0 ρ0 0

0 0 0 ρ0




, Z =





Φ

Ψ1

Ψ2

Ψ3




, E(Z) =




K∗

1 (Φ,Ψ)

K∗

2(Φ,Ψ)



 and F =




−ℓu

−ℓρ



 .

In summary we have proved the following theorem.

Theorem 3 (Necessary conditions of optimality). Consider the system (2.1)–(2.3)

with the performance functional given by (3.1) and suppose the assumptions (A1) and

(A2) hold. Then, for the (µ0, η0) ∈ P to be optimal it is necessary that the system of

equations (2.5)–(2.7) and the adjoint equations (4.7)–(4.9), and the inequality (4.2)

hold.

5. A COMPUTATIONAL SCHEME

Here we present an algorithm for identification of the fundamental parameters

determining the dynamics of the system. In order to carry out this it is convenient

to express the necessary inequality dJ(µ0, η0; µ − µ0, η − η0) ≥ 0 given by (4.1) and

(4.2) in the following form

dJ
(
µ0, η0; µ − µ0, η − η0

)
=

∫

I×Ω

(µ − µ0)tr
{(

∇u0 + (∇u0)′
)
(∇Ψ0)′

}
dxdt(5.1)

+

∫

I×Ω

{
(η − η0) −

2

3
(µ − µ0)

}
tr

{
((divu0)I)(∇Ψ0)′

}
dxdt

=

∫

I×Ω

(µ − µ0)tr

{(
∇u0 + (∇u0)′

)
∇Ψ0 −

2

3
((divu0)I)(∇Ψ0)′

}
dxdt

+

∫

I×Ω

(η − η0)tr
{
((divu0)I)(∇Ψ0)′

}
dxdt ≥ 0 ∀ (µ, η) ∈ P.

We use this inequality to construct the algorithm.

Step 1: Let (µn, ηn) ∈ P denote the value of the parameter pair at nth stage of

iteration and let (ρn,un) denote the corresponding (weak) solution of the system

equations (2.1)–(2.3).

Step 2: Use {µn, ηn} and {ρn,un} in the adjoint equations (4.7)–(4.9) and solve

for {Φn,Ψn}.

Step 3: Use this set {µn, ηn, ρn,un, Φn,Ψn} to determine if the following inequal-

ity is satisfied.

dJ (µn, ηn; µ − µn, η − ηn) =(5.2)
∫

I×Ω

(µ − µn)tr

{
(∇un + (∇un)′) (∇Ψn)′ −

2

3
((divu0)I)(∇Ψn)′

}
dxdt

+

∫

I×Ω

(η − ηn)tr
{
((divu0)I)(∇Ψn)′

}
dxdt ≥ 0, ∀(µ, η) ∈ P.
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If the inequality (5.2) is satisfied then (µn, ηn) is the optimal pair and this ends

the algorithm. Otherwise take

µn+1 = µn − ǫ tr

{
(∇un + (∇un)′) (∇Ψn)′ −

2

3
((divu0)I)(∇Ψn)′

}
(5.3)

≡ µn − ǫ tr(An)

ηn+1 = ηn − ǫ tr
{
((divu0)I)(∇Ψn)′

}
(5.4)

≡ ηn − ǫ tr(Bn)

so that for sufficiently small ǫ > 0, (µn+1, ηn+1) ∈ P. For this choice of (µ, η) in

(5.2) one can easily verify that at (n + 1)-th iteration we have

J(µn+1, ηn+1) = J(µn, ηn) + dJ(µn, ηn ; µn+1 − µn, ηn+1 − ηn) + o(ǫ)(5.5)

= J(µn, ηn) − ǫ

∫

I×Ω

{
(tr An)

2 + (tr Bn)2
}

dxdt + o(ǫ).

For ǫ sufficiently small, it follows from the above expression that

J(µn+1, ηn+1) < J(µn, ηn).

Thus it is evident that this process will generate a monotone convergent sequence

{J(µn, ηn), n ∈ N}.

Step 4: Using the pair (µn+1, ηn+1), go to Step 1 and continue till a desired level

of accuracy is achieved. For example, for sufficiently small δ > 0, we may require

that

|J(µn+1, ηn+1) − J(µn, ηn)| ≤ δ.

This may be chosen as the stopping criterion.

5.1. An Algorithm for Constant Parameters. In the previous algorithm we have

assumed that the parameters are functions of time and space belonging to the set P.

In case one wishes to find the best constant parameter from the set C one can easily

modify the previous algorithm as follows. Replace the equation (5.2) by the following

equation

dJ (µn, ηn; µ − µn, η − ηn) =(5.6)

(µ − µn)

∫

I×Ω

tr

{
(∇un + (∇un)′) (∇Ψn)′ −

2

3
(div(u0

I))(∇Ψn)′
}

dxdt

+ (η − ηn)

∫

I×Ω

tr
{
(div(u0

I))(∇Ψn)′
}

dxdt ≥ 0, ∀ (µ, η) ∈ C.

In this case equations (5.3) and (5.4) take the form

µn+1 = µn − ǫ

∫

I×Ω

tr

{
(∇un + (∇un)′) (∇Ψn)′ −

2

3
(div(u0

I))(∇Ψn)′
}

dxdt(5.7)

≡ µn − ǫ

∫

I×Ω

tr(An) dxdt
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ηn+1 = ηn − ǫ

∫

I×Ω

tr
{
(div(u0

I))(∇Ψn)′
}

dxdt(5.8)

≡ ηn − ǫ

∫

I×Ω

tr(Bn) dxdt.

Thus choosing (µ, η) = (µn+1, ηn+1) as given above we have

J(µn+1, ηn+1) = J(µn, ηn) + dJ(µn, ηn; µn+1 − µn, ηn+1 − ηn) + o(ǫ)(5.9)

= J(µn, ηn) − ǫ

{(∫

I×Ω

tr(An)dxdt

)2

+

(∫

I×Ω

tr(Bn)dxdt

)2}
+ o(ǫ).

Again, for ǫ > 0 sufficiently small, we have

J(µn+1, ηn+1) < J(µn, ηn).

Thus by appropriate choice of the sequence {(µn, ηn), n ∈ N} as shown above we can

construct a monotone sequence of the cost functionals {J(µn, ηn), n ∈ N} decreasing

to a local minimum.

Remark 4. With reference to the first algorithm, note that the set P is a weak

star compact subset of L∞(I × Ω, R2). Hence every sequence from P has a weak

star convergent subsequence. Thus, there exists an element (µ0, η0) ∈ P such that

the sequence generated by the first algorithm will converge in the weak star sense to

(µ0, η0) and the local minimum is given by J(µ0, η0).

With reference to the second algorithm, where the parameters are required to be

constant taking values from the compact set C ⊂ R
2, similar conclusions hold.

If one wishes to determine whether or not the algorithm gives a global minimum,

one must choose and start the algorithm with different initial values for (µ, η) and ex-

amine if J(µn, ηn) converges to the same minimum. There are some adhoc algorithms

such as RRS (recursive random search) that can do the job.
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