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ABSTRACT. Under certain conditions, solutions of the boundary value problem, y′′ = f(x, y, y′),

a < x < b, y(x1) = y1,
∫

x2

x1

y(x)dx = y2, a < x1 < x2 < b, are differentiated with respect to the

boundary conditions.
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1. INTRODUCTION

In this paper, we will be concerned with differentiating solutions of boundary

value problems with respect to boundary data for the second order ordinary differen-

tial equation,

(1.1) y′′ = f(x, y, y′), a < x < b,

satisfying

(1.2) y(x1) = y1,

∫ x2

x1

y(x)dx = y2,

where a < x1 < x2 < b, and y1, y2 ∈ R, and where we assume:

(i) f(x, u1, u2) : (a, b) × R
2 → R is continuous,

(ii) ∂f

∂ui

(x, u1, u2) : (a, b) × R
2 → R are continuous, i = 1, 2, and

(iii) Solutions of initial value problems for (1.1) extend to (a, b).
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We remark that condition (iii) is not necessary for the spirit of this work’s results,

however, by assuming (iii), we avoid continually making statements in terms of solu-

tions’ maximal intervals of existence.

Under uniqueness assumptions on solutions of (1.1), (1.2), we will establish ana-

logues of a result that Hartman [11] attributes to Peano concerning differentiation

of solutions of (1.1) with respect to initial conditions. For our differentiation with

respect to boundary conditions results, given a solution y(x) of (1.1), we will give

much attention to the variational equation for (1.1) along y(x), which is defined by

(1.3) z′′ =
∂f

∂u1
(x, y(x), y′(x))z +

∂f

∂u2
(x, y(x), y′(x))z′.

Interest in nonlocal boundary value problems for ordinary differential equations

involving integral boundary conditions has been ongoing for several years. To see

only few of these papers, we refer the reader to the papers [1, 2, 3, 19, 21, 22].

Likewise, many papers have been devoted to smoothness of solutions of boundary

value problems in regard to smoothness of the differential equation’s nonlinearity, as

well as the smoothness of the boundary conditions. For a view of how this work

has evolved, involving not only boundary value problems for ordinary differential

equations, but also discrete versions, we suggest the manifold results in the classical

papers [4]–[9], [12], [13], [15], [20] and [23]–[28], as well as the more current papers

[10], [14] and [16]-[18].

The theorem for which we seek an analogue and attributed to Peano by Hartman

can be stated in the context of (1.1) as follows:

Theorem 1.1 ([Peano]). Assume that with respect of (1.1), conditions (i)–(iii) are

satisfied. Let x0 ∈ (a, b) and y(x) ≡ y(x, x0, c1, c2) denote the solution of (1.1)

satisfying the initial conditions y(x0) = c1, y′(x0) = c2. Then,

(a) ∂y

∂c1
and ∂y

∂c2
exist on (a, b), and αi ≡

∂y

∂ci

, i = 1, 2, are solutions of the variational

equation (1.3) along y(x) satisfying the respective initial conditions,

α1(x0) = 1, α′

1(x0) = 0,

α2(x0) = 0, α′

2(x0) = 1.

(b) ∂y

∂x0

exists on (a, b), and β ≡ ∂y

∂x0

is the solution of the variational equation (1.3)

along y(x) satisfying the initial conditions,

β(x0) = −y′(x0),

β ′(x0) = −y′′(x0).

(c) ∂y

∂x0

(x) = −y′(x0)
∂y

∂c1
(x) − y′′(x0)

∂y

∂c2
(x).

In addition, our analogue of Theorem 1.1 depends on uniqueness of solutions of

(1.1), (1.2), a condition we list as an assumption:
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(iv) Given a < x1 < x2 < b, if y(x1) = z(x1) and
∫ x2

x1

y(x)dx =
∫ x2

x1

z(x)dx, where

y(x) and z(x) are solutions of (1.1), then y(x) ≡ z(x).

We will also make extensive use of a similar uniqueness condition on (1.3) along

solutions y(x) of (1.1).

(v) Given a < x1 < x2 < b and a solution y(x) of (1.1), if u(x1) = 0 and
∫ x2

x1

u(x)dx =

0, where u(x) is a solution of (1.3) along y(x), then u(x) ≡ 0.

2. AN ANALOGUE OF PEANO’S THEOREM FOR (1.1), (1.2)

In this section, we derive our analogue of Theorem 1.1 for boundary value problem

(1.1), (1.2). For such a differentiation result, we need continuous dependence of

solutions on boundary conditions. Proof of continuous dependence usually makes

application of the Brouwer theorem on invariance of domain. The spirit of such

arguments can be found in [14] or [17]; we state the continuity result here, but we

omit the details.

Theorem 2.1. Assume (i)–(iv) are satisfied with respect to (1.1). Let u(x) be a

solution of (1.1) on (a, b), and let a < c < x1 < x2 < d < b be given. Then,

there exists a δ > 0 such that, for |xi − ti| < δ, i = 1, 2, |u(x1) − y1| < δ, and

|
∫ x2

x1

u(x)dx−y2| < δ, there exists a unique solution uδ(x) of (1.1) such that uδ(t1) =

y1,
∫ t2

t1
uδ(x)dx = y2, and {u

(j)
δ (x)} converges uniformly to u(j)(x), as δ → 0, on [c, d],

for j = 0, 1.

We now present the result of this paper.

Theorem 2.2. Assume conditions (i)–(v) are satisfied. Let u(x) be a solution of

(1.1) on (a, b). Let a < x1 < x2 < b be given, so that u(x) = u(x, x1, x2, u1, u2), where

u(x1) = u1 and
∫ x2

x1

u(x)dx = u2. Then,

(a) ∂u
∂u1

and ∂u
∂u2

exist on (a, b), and ri := ∂u
∂ui

, i = 1, 2, are solutions of (1.3) along

u(x) and satisfy the respective boundary conditions,

r1(x1) = 1,

∫ x2

x1

r1(x)dx = 0,

r2(x1) = 0,

∫ x2

x1

r2(x)dx = 1.

(b) ∂u
∂x1

and ∂u
∂x2

exist on (a, b), and zi := ∂u
∂xi

, i = 1, 2, are solutions of (1.3) along

u(x) and satisfy the respective boundary conditions,

z1(x1) = −u′(x1),

∫ x2

x1

z1(x)dx = u(x1),

z2(x1) = 0,

∫ x2

x1

z2(x)dx = −u(x2).
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(c) The partial derivatives satisfy,

∂u

∂x1
(x) = −u′(x1)

∂u

∂u1
(x) + u(x1)

∂u

∂u2
(x),

∂u

∂x2
(x) = −u(x2)

∂u

∂u2
(x).

Proof. For part (a) we first give the argument for ∂u
∂u1

. Let δ > 0 be as in Theorem 2.1.

Let 0 < |h| < δ be given and define

r1h(x) =
1

h
[u(x, x1, x2, u1 + h, u2) − u(x, x1, x2, u1, u2)].

Note that u(x1, x1, x2, u1 + h, u2) = u1 + h, and u(x1, x1, x2, u1, u2) = u1, so that for

every h 6= 0,

r1h(x1) =
1

h
[u1 + h − u1] = 1,

and
∫ x2

x1

r1h(x)dx =
1

h

∫ x2

x1

[u(x, x1, x2, u1 + h, u2) − u(x, x1, x2, u1, u2)]dx

=
1

h
[u2 − u2] = 0.

Let

β2 = u′(x1, x1, x2, u1, u2),

and

ǫ2 = ǫ2(h) = u′(x1, x1, x2, u1 + h, u2) − β2.

By Theorem 2.1, ǫ2 = ǫ2(h) → 0, as h → 0. Using the notation of Theorem 1.1 for

solutions of initial value problems for (1.1) and viewing the solutions u as solutions

of initial value problems, we have

r1h(x) =
1

h
[y(x, x1, u1 + h, β2 + ǫ2) − y(x, x1, u1, β2)].

Then, by utilizing a telescoping sum, we have

r1h(x) =
1

h

[

{y(x, x1, u1 + h, β2 + ǫ2) − y(x, x1, u1, β2 + ǫ2)}

+ {y(x, x1, u1, β2 + ǫ2) − y(x, x1, u1, β2)}
]

.

By Theorem 1.1 and the Mean Value Theorem, we obtain

r1h(x) =
1

h
α1(x, y(x, x1, u1 + h̄, β2 + ǫ2))(u1 + h − u1)

+
1

h
α2(x, y(x, x1, u1, β2 + ǭ2))(β2 + ǫ2 − β2),
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where αi(x, y(·)), i = 1, 2, is the solution of the variational equation (1.3) along y(·)

and satisfies in each case,

α1(x1) = 1, α′

1(x1) = 0,

α2(x1) = 0, α′

2(x1) = 1.

Furthermore, u1 + h̄ is between u1 and u1 + h, and β2 + ǭ2 is between β2 and β2 + ǫ2.

Now simplifying,

r1h(x) = α1(x, y(x, x1, u1 + h̄, β2 + ǫ2))

+
ǫ2

h
α2(x, y(x, x1, u1, β2 + ǭ2)).

Thus, to show limh→0 r1h(x) exists, it suffices to show limh→0
ǫ2
h

exists.

Now α2(x, y(·)) is a nontrivial solution of (1.3) along y(·), and α2(x1, y(·)) = 0.

So, by assumption (v),
∫ x2

x1

α2(x, y(·))dx 6= 0.

However, we observed that
∫ x2

x1

r1h(x)dx = 0, from which we obtain

ǫ2

h
=

−
∫ x2

x1

α1(x, y(x, x1, u1 + h̄, β2 + ǫ2))dx
∫ x2

x1

α2(x, y(x, x1, u1, β2 + ǭ2))dx
.

As a consequence of continuous dependence, we can let h → 0, so that

lim
h→0

ǫ2

h
=

−
∫ x2

x1

α1(x, y(x, x1, u1, β2))dx
∫ x2

x1

α2(x, y(x, x1, u1, β2))dx

=
−

∫ x2

x1

α1(x, u(·))dx
∫ x2

x1

α2(x, u(·))dx

:= D.

Let r1(x) = limh→0 r1h(x), and note by construction of r1h(x),

r1(x) =
∂u

∂u1
(x, x1, x2, u1, u2).

Furthermore,

r1(x) = lim
h→0

r1h(x)

= α1(x, y(x, x1, u1, β2)) + Dα2(x, y(x, x1, u1, β2))

= α1(x, u(x, x2, x2, u1, u2)) + Dα2(x, u(x, x1, x2, u1, u2)),

which is a solution of the variational equation (1.3) along u(x). In addition because

of the boundary conditions satisfied by r1h(x), we also have,

r1(x1) = 1 and

∫ x2

x1

r1(x)dx = 0.

This completes the argument for ∂u
∂u1

.
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While there are similarities with the previous arguments, there are significant

enough differences for us to include the details concerning the characterization of ∂u
∂u2

.

Again, let δ > 0 be as in Theorem 2.1. Let 0 < |h| < δ be given and define

r2h(x) =
1

h
[u(x, x1, x2, u1, u2 + h) − u(x, x1, x2, u1, u2)].

This time, for h 6= 0,

r2h(x1) =
1

h
[u1 − u1] = 0,

and
∫ x2

x1

r2h(x)dx =
1

h

∫ x2

x1

[u(x, x1, x2, u1, u2 + h) − u(x, x1, x2, u1, u2)]dx

=
1

h
[u2 + h − u2] = 1.

Let

β2 = u′(x1, x1, x2, u1, u2),

and

ǫ2 = ǫ2(h) = u′(x1, x1, x2, u1, u2 + h) − β2.

As before, ǫ2 = ǫ2(h) → 0, as h → 0. Employing the notation of Theorem 1.1 for

solutions of initial value problems for (1.1) and viewing the solutions u as solutions

of initial value problems, we have

r2h(x) =
1

h
[y(x, x1, u1, β2 + ǫ2) − y(x, x1, u1, β2)].

By Theorem 1.1 and the Mean Value Theorem, we obtain

r2h(x) =
1

h
α2(x, y(x, x1, u1, β2 + ǭ2))(β2 + ǫ2 − β2)

=
ǫ2

h
α2(x, y(x, x1, u1, β2 + ǭ2)),

where β2+ ǭ2 is between β2 and β2+ǫ2, and α2(x, y(·)) is the solution of the variational

equation (1.3) along y(·) and satisfies,

α2(x1) = 0, α′

2(x1) = 1.

Thus, to show limh→0 r2h(x) exists, it suffices to show limh→0
ǫ2
h

exists.

Now by assumption (v),
∫ x2

x1

α2(x, y(·))dx 6= 0,

and we have above that
∫ x2

x1

r2h(x)dx = 1, from which we obtain

ǫ2

h
=

1
∫ x2

x1

α2(x, y(x, x1, u1, β2 + ǭ2))dx
.
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By continuous dependence, we can let h → 0, so that

lim
h→0

ǫ2

h
=

1
∫ x2

x1

α2(x, y(x, x1, u1, β2))dx

=
1

∫ x2

x1

α2(x, u(·))dx

:= E.

Let r2(x) = limh→0 r2h(x), and then by construction of r2h(x),

r2(x) =
∂u

∂u2
(x, x1, x2, u1, u2).

Moreover,

r2(x) = lim
h→0

r2h(x)

= Eα2(x, y(x, x1, u1, β2))

= Eα2(x, u(x, x1, x2, u1, u2)),

which is a solution of the variational equation (1.3) along u(x). Because of the

boundary conditions satisfied by r2h(x), we also have,

r2(x1) = 0 and

∫ x2

x1

r2(x)dx = 1.

And this completes the argument for ∂u
∂u2

.

In part (b) of the theorem, we will produce the details for ∂u
∂x1

, with the arguments

for ∂u
∂x2

being somewhat along the same lines. Again, let δ > 0 be as in Theorem 2.1,

let 0 < |h| < δ be given, and define

z1h(x) =
1

h
[u(x, x1 + h, x2, u1, u2) − u(x, x1, x2, u1, u2)].



140 M. BENCHOHRA, J. HENDERSON, R. LUCA, AND A. OUAHAB

First, we consider boundary conditions. By employing the Mean Value Theorem

for integrals, we have, for h 6= 0,
∫ x2

x1

z1h(x)dx =
1

h

∫ x2

x1

[u(x, x1 + h, x2, u1, u2) − u(x, x1, x2, u1, u2)]dx

=
1

h

{
∫ x1+h

x1

u(x, x1 + h, x2, u1, u2)dx

+

∫ x2

x1+h

u(x, x1 + h, x2, u1, u2)dx

−

∫ x2

x1

u(x, x1, x2, u1, u2)dx

}

=
1

h

{
∫ x1+h

x1

u(x, x1 + h, x2, u1, u2)dx + u2 − u2

}

=
1

h
u(ch, x1 + h, x2, u1, u2) · h

= u(ch, x1 + h, x2, u1, u2)

for some ch inclusively between x1 and x1 + h. By Theorem 2.1, we can compute the

limit,

lim
h→0

∫ x2

x1

z1h(x)dx = u(x1, x1, x2, u1, u2) = u(x1).

Next, we apply the Mean Value Theorem in looking at

z1h(x1) =
1

h
[u(x1, x1 + h, x2, u1, u2) − u(x1, x1, x2, u1, u2)]

=
1

h
[u(x1, x1 + h, x2, u1, u2) − u(x1 + h, x1 + h, x2, u1, u2)]

= −
1

h
u′(ζh, x1 + h, x2, u1, u2) · h

= −u′(ζh, x1 + h, x2, u1, u2),

where ζh is between x1 and x1 + h. And so, in passing to the limit, we have

lim
h→0

z1h(x1) = −u′(x1, x1, x2, u1, u2) = −u′(x1).

Finally, we deal with the limh→0 z1h(x). This time, let

β2 = u′(x1, x1, x2, u1, u2),

and

ǫ2 = ǫ2(h) = u′(x1 + h, x1 + h, x2, u1, u2) − β2.

By Theorem 2.1, ǫ2 = ǫ2(h) → 0, as h → 0. As in part (a), we use the notation of

Theorem 1.1 for solutions of initial value problems for (1.1) and viewing the solutions
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u as solutions of initial value problems, we have

z1h(x) =
1

h
[u(x, x1 + h, x2, u1, u2) − u(x, x1, x2, u1, u2)]

=
1

h
[y(x, x1 + h, u1, β2 + ǫ2) − y(x, x1, u1, β2)]

=
1

h
[y(x, x1 + h, u1, β2 + ǫ2) − y(x, x1, u1, β2 + ǫ2)

+ y(x, x1, u1, β2 + ǫ2) − y(x, x1, u1, β2)]

=
1

h
{β(x, y(x, x1 + h̄, u1, β2 + ǫ2)) · h

+ α2(x, y(x, x1, u1, β2 + ǭ2)) · ǫ2}

= β(x, y(x, x1 + h̄, u1, β2 + ǫ2)) +
ǫ2

h
α2(x, y(x, x1, u1, β2 + ǭ2)),

where β(x, y(·)) is the solution of (1.3) along y(·) and satisfies

β(x1) = −y′(x1) = −u′(x1) and β ′(x1) = −y′′(x1) = −u′′(x1),

and α2(x, y(·)) is the solution of (1.3) along y(·) and satisfies

α2(x1) = 0, α′

2(x1) = 1,

and moreover, β2 + ǭ2 lies between β2 and β2 + ǫ2, and x1 + h̄ lies between x1 and

x1 + h. As before, to show limh→0 z1h(x) exists, it suffices to show limh→0
ǫ2
h

exists.

Since α2(x, y(·)) is a nontrivial solution of (1.3) along y(·) and since α2(x1, y(·)) =

0, it follows from assumption (v) that
∫ x2

x1

α2(x, y(·))dx 6= 0.

Hence,

ǫ2

h
=

∫ x2

x1

z1h(x)dx −
∫ x2

x1

β(x, y(x, x1 + h̄, u1, β2 + ǫ2))dx
∫ x2

x1

α2(x, y(x, x1, u1, β2 + ǭ2))dx
.

And so in passing to the limit, we have from above,

lim
h→0

ǫ2

h
=

u(x1) −
∫ x2

x1

β(x, u(·))dx
∫ x2

x1

α2(x, u(·))dx
:= H.

From above,

z1h(x) = β(x, y(x, x1 + h̄, u1, β2 + ǫ2)) +
ǫ2

h
α2(x, y(x, x1, u1, β2 + ǭ2)),

and so we can evaluate the limit as h → 0, and if we let z1(x) = limh→0 z1h(x), we

have z1(x) = ∂u
∂x1

. We obtain

z1(x) =
∂u

∂x1

(x) = lim
h→0

z1h(x) = β(x, u(x)) + Hα2(x, u(x))
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which is a solution of (1.3) along u(x). In addition, from above computations, z1(x)

satisfies the boundary conditions,

z1(x1) = lim
h→0

z1h(x1) = −u′(x1),
∫ x2

x1

z1(s)dx = lim
h→0

∫ x2

x1

z1h(s)dx = u(x1).

This completes the proof of part (b).

Part (c) of the theorem is immediate by verifying that each side of the respective

equations are solutions of (1.3) along u(x) and satisfy the same boundary conditions,

and then assumption (v) establishes the equalities.
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