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ABSTRACT. We discuss the existence and uniqueness of a solution to the non-local problem for

a fractional differential equation

Dα

0+u(t) = f(t, u(t)), a. e. in (0, 1),

I1−α

0+ u(0) = βI1−α

c
+ u(ξ),

using the contraction principle and a continuation method.
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1. INTRODUCTION

Fractional differential equations and initial and boundary value problems have

been studied actively for the past two decades [6, 7]. This paper is a study of

Riemann-Liouville integral equation associated with a non-local problem of fractional

order differential equation admitting singular solutions. The problems involving the

Riemann-Liouville derivative have been considered in [1, 2, 3] among many other ref-

erences. Recently there have been several works extending [10, 11], where singular

solutions of fractional order problems were obtained. In particular, such extensions

were obtained in [5]. Bai considered an impulsive fractional problem at resonance,

where the solutions u ∈ X and

X =
{

u : t2−αu, D1−α
0+ u ∈ PC[0, 1]

}

.

In this note we consider a type of a non-local problem of fractional order 0 < α < 1,

which involves unequal terminals:

(1.1) Dα
0+u(t) = f(t, u(t)), a. e. in (0, 1),

under the non-local condition

(1.2) I1−α
0+ u(0) = βI1−α

c+ u(ξ),
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where 0 < c < ξ < 1. We study the non-resonant case

Γ(α) 6= βI1−α
c+ (tα−1)(ξ).

To the best of our knowledge the solvability of this type of fractional order problem

has not been previously studied.

2. PRELIMINARIES

Within this paper we will use the Reimann-Liouville formulation of the fractional

order integral and derivative defined, respectively, as

(2.1) Iα
a+u(t) =

1

Γ(α)

∫ t

a

(t − x)α−1u(x)dx,

(2.2) Dα
a+u(t) =

1

Γ(n − α)

dn

dtn

∫ t

a

u(x)(t − x)−αdx,

where n = [α] + 1. The following results show the relationship between (2.1) and

(2.2) and can be found in [1].

Theorem 2.1. If α > 0, then

1. Dα
0+Iα

0+u(t) = u(t) for all u ∈ L1(0, 1).

2. For u, Dα
0+u ∈ L1(0, 1), In−α

0+ u ∈ ACn−1[0, 1], where n = [α] + 1, we have

Iα
0+Dα

0+u(t) = u(t) −
n−1
∑

k=0

tα−k−1

Γ(α − k)

dn−k−1

dtn−k−1
In−α
0+ u(0).

If 0 < α < 1, then

Iα
0+Dα

0+u(t) = u(t) −
tα−1

Γ(α)
I1−α
0+ u(0).

Theorem 2.2. Let α + β ≥ 1. If u ∈ L1(0, 1), then Iα
a+I

β
a+u = I

α+β
a+ u.

Suppose that the function f : (0, 1]×R → R satisfies the Carathéodory conditions

with respect to Lp(0, 1] : f(·, x) is Lebesgue measurable in [0, 1] for all x ∈ R, f(t, ·)

is continuous on R for almost all t ∈ (0, 1], and a boundedness condition holds.

That is, for each r > 0, there exists a real-valued function µr ∈ Lp(0, 1] such that

|f(t, x)| ≤ µr(t), for almost all t ∈ (0, 1] and all |x| ≤ r.

3. THE EXISTENCE OF A UNIQUE SOLUTION

We assume that f is Carathéodory with respect to Lp(0, 1], where p > 1
α

and

q = p
p−1

. We work in the Banach space X = {u ∈ C(0, 1] : limt→0+ t1−αu exists} with

the norm ‖u‖ = supt∈(0,1] |t
1−αu|. By a solution of the non-local problem (1.1), (1.2)

we understand a function u satisfying (1.1), (1.2) and such that Dα
0+u ∈ Lp(0, 1]. The

first result relates the non-local problem (1.1), (1.2) to an integral equation in X.
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Lemma 3.1. A function u ∈ X is a solution of the non-local problem (1.1), (1.2) if

and only if u ∈ X satisfies the fixed point problem

u(t) =
1

Γ (α)

∫ t

0

(t − x)α−1
f (x, u (x)) dx

+
βtα−1

(Γ(α) − βγ)Γ (1 − α)

∫ ξ

c

(ξ − x)−α

∫ x

0

f (y, u (y)) (x − y)α−1
dy dx,(3.1)

where γ = I1−α
c+ (sα−1)(ξ).

Proof. Let u be a solution to the non-local problem (1.1), (1.2). Then Dα
0+u is inte-

grable in (0, 1] and, as a result I1−α
0+ u ∈ AC(0, 1]. Thus, by Theorem 2.1,

Iα
0+f(t, u(t)) = Iα

0+Dα
0+u(t) = u(t) −

tα−1

Γ(α)
I1−α
0+ u(0).

In order to use the non-local condition (1.2), we apply the fractional integral of order

1 − α with terminal at c. Thus,

I1−α
c+ u(t) = I1−α

c+ Iα
0+f(t, u(t)) +

I1−α
0+ u(0)

Γ(α)
I1−α
c+ (sα−1)(t).

We evaluate both sides at ξ and apply (1.2) to obtain

1

β
I1−α
0+ u(0) = I1−α

c+ u(ξ) = I1−α
c+ Iα

0+f(·, u(·))(ξ) +
I1−α
0+ u(0)

Γ(α)
γ.

Hence

I1−α
0+ u(0) =

βΓ(α)

Γ(α) − βγ
I1−α
c+ Iα

0+f(·, u(·))(ξ).

Thus u satisfies the integral equation (3.1).

Conversely, if u satisfies the integral equation (3.1), we have

u(t) = Iα
0+F (t) + Ktα−1,

where K and F (t) = f(t, u(t)) are introduced for convenience. Clearly, the second

term is in X. Let t1, t2 ∈ (0, 1] with t1 < t2. Then, since 0 < q(α − 1) + 1 < 1,

|Iα
0+F (t2) − Iα

0+F (t1)| =

∣

∣

∣

∣

∫ t2

0

(t2 − x)α−1F (x)dx −

∫ t1

0

(t1 − x)α−1F (x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t2

t1

(t2 − x)α−1F (x)dx +

∫ t1

0

((t2 − x)α−1 − (t1 − x)α−1)F (x)dx

∣

∣

∣

∣

≤

∫ t2

t1

(t2 − x)α−1 |F (x)| dx +

∫ t1

0

((t1 − x)α−1 − (t2 − x)α−1) |F (x)| dx

= C1(t2 − t1)
α−1+ 1

q ‖F‖p +

[
∫ t1

0

((t1 − x)α−1 − (t2 − x)α−1)qdx

]

1

q

‖F‖p

= C1(t2 − t1)
α−1+ 1

q ‖F‖p + C1

(

t
q(α−1)+1
1 − t

q(α−1)+1
2 + (t2 − t1)

q(α−1)+1
)

1

q

‖F‖p,

where C1 > 0 is a generic constant that depends on α and p.
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Thus u ∈ C(0, 1] and, moreover,

lim
t→0+

|t1−αIα
0+F (t)| ≤ lim

t→0+
C1t

1

q ‖F‖p = 0.

That is,

lim
t→0+

t1−αu(t) = K

and u ∈ X. By Theorem 2.2, I1−α
0+ u = I1

0+F + Γ(α)K ∈ AC(0, 1]. We apply Dα
0+

to both sides of (3.1) and see from Theorem 2.1 that (1.1) is satisfied. It is easily

verified that (1.2) also holds.

We define the mapping T : X → X as

Tu(t) =
1

Γ (α)

∫ t

0

(t − x)α−1
f (x, u (x)) dx

+
βtα−1

(Γ(α) − βγ)Γ (1 − α)

∫ ξ

c

(ξ − x)−α

∫ x

0

f (y, u (y)) (x − y)α−1
dy dx.

From Lemma 3.1 we have Tu ∈ C(0, 1] and limt→0+ t1−αTu(t) exists. Thus T

is a self-map. We can now state and prove a uniqueness result. First we recall the

incomplete beta-function

B(z; a, b) =

∫ z

0

ta−1(1 − t)b−1 dt,

which can be found in [12].

Theorem 3.2. The non-local problem (1.1), (1.2) has a unique solution provided

|f(t, u) − f(t, v)| ≤ |u − v|, u, v ∈ R, a. e. in (0, 1],

where

q = L

(

Γ(α)

Γ(2α)
+

βΓ2(α)

(Γ(α) − βγ) Γ(1 − α)Γ(2α)
ξαB

(

1 −
c

ξ
; 1 − α, 2α

))

< 1.

Proof. Let u, v ∈ X and introduce for convenience

C2 =
β

(Γ(α) − βγ) Γ(1 − α)
.

Then

‖Tu − Tv‖

≤ sup
t∈(0,1]

t1−α

∣

∣

∣

∣

1

Γ(α)

∫ t

0

(t − x)α−1(f(x, u(x)) − f(x, v(x)))dx

∣

∣

∣

∣

+ C2

∣

∣

∣

∣

∫ ξ

c

(ξ − x)−α

∫ x

0

(f(y, u(y))− f(y, v(y)))(x− y)α−1dy dx

∣

∣

∣

∣

= sup
t∈(0,1]

t1−α 1

Γ(α)

∫ t

0

(t − x)α−1|f(x, u(x)) − f(x, v(x))|x1−αxα−1dx
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+ C2

∫ ξ

c

(ξ − x)−α

∫ x

0

(x − y)α−1|f(y, u(y))− f(y, v(y))|y1−αyα−1dy dx

≤ sup
t∈(0,1]

t1−α L

Γ(α)

∫ t

0

(t − x)α−1|u(x) − v(x)|xα−1x1−αdx

+ LC2

∫ ξ

c

(ξ − x)−α

∫ x

0

(x − y)α−1|u(y)− v(y)|yα−1y1−αdy dx

≤ L

(

sup
t∈(0,1]

t1−α 1

Γ(α)

∫ t

0

(t − x)α−1xα−1dx

+C2

∫ ξ

c

(ξ − x)−α

∫ x

0

(x − y)α−1yα−1dy dx

)

‖u − v‖

= L

(

sup
t∈(0,1]

tαΓ(α)

Γ(2α)
+ C2

∫ ξ

c

(ξ − x)−α Γ(α)2x2α−1

Γ(2α)
dx

)

‖u − v‖

= L

(

Γ(α)

Γ(2α)
+

Γ2(α)C2

Γ(2α)
ξα

∫ 1

c
ξ

(1 − s)−αs2α−1ds

)

‖u − v‖

= L

(

Γ(α)

Γ(2α)
+

Γ2(α)C2

Γ(2α)
ξα

∫ 1− c
ξ

0

s−α(1 − s)2α−1ds

)

‖u − v‖

= L

(

Γ(α)

Γ(2α)
+

Γ2(α)C2

Γ(2α)
ξαB

(

1 −
c

ξ
; 1 − α, 2α

))

‖u − v‖

= q‖u − v‖,

where q < 1.

Thus T is a contractive mapping and, by the Banach fixed point theorem, T has

a unique fixed point, which is a solution of (1.1), (1.2).

4. AN EXISTENCE CRITERION

An existence result can be obtained by the Leray-Schauder continuation principle

(see, e.g., [13]):

Theorem 4.1. Let X be a Banach space and T : X → X be a compact map. Suppose

that there exists an R > 0 such that if u = λTu for λ ∈ (0, 1), then ‖u‖ ≤ R. Then

T has a fixed point.

Again, we assume that f is Carathéodory with respect to Lp(0, 1], where pα > 1

and q = p
p−1

. The Banach space X is the same as before. By a solution of the

non-local problem (1.1), (1.2) we understand a function

u ∈ dom L = {u : I1−α
0+ u ∈ AC(0, 1], Dα

0+u ∈ Lp(0, 1], and (1.2) holds},

which satisfies (1.1), and L = Dα
0+ .
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Lemma 4.2. Let g ∈ Lp[0, 1], where p > 1
α

and q = p
p−1

. Then the solution of the

differential equation Lu = g subject to the boundary conditions (1.2) satisfies

(4.1) ‖u‖ ≤ A‖g‖p,

where

(4.2)

A = ((α − 1)q + 1)−1/q

(

1

Γ(α)
+

β

(Γ(α) − βγ) Γ(1 − α)
ξ1/qB

(

1 −
c

ξ
; 1 − α, α +

1

q

))

.

Proof. As in Lemma 3.1,

|t1−αu(t)| ≤
1

Γ(α)
t1−α

∫ t

0

(t − x)α−1|g(x)| dx

+ C2t
1−α

∫ ξ

c

(ξ − x)−α

∫ x

0

(x − y)α−1|g(y)| dy dx

≤
1

Γ(α)

t1−α

((α − 1)q + 1)1/q
t
α−1+ 1

q ‖g‖p

+ C2
t1−α

((α − 1)q + 1)1/q

∫ ξ

c

(ξ − x)−αxα−1+ 1

q dx‖g‖p

≤ ((α − 1)q + 1)−1/q

(

1

Γ(α)
+ C2

∫ ξ

c

(ξ − x)−αxα−1+ 1

q dx

)

‖g‖p

= ((α − 1)q + 1)−1/q

(

1

Γ(α)
+ C2ξ

1/q

∫ 1

c
ξ

(1 − s)−αsα−1+ 1

q ds

)

‖g‖p

= ((α − 1)q + 1)−1/q

(

1

Γ(α)
+ C2ξ

1/q

∫ 1− c
ξ

0

s−α(1 − s)α−1+ 1

q ds

)

‖g‖p

= ((α − 1)q + 1)−1/q

(

1

Γ(α)
+ C2ξ

1/qB

(

1 −
c

ξ
; 1 − α, α +

1

q

))

‖g‖p.

The assertion follows.

Theorem 4.3. Assume that f is Carathéodory with respect to Lp(0, 1], where pα > 1

and q = p
p−1

and satisfies

(4.3) |f(t, u)| ≤ β(t)|u| + γ(t),

where A‖tα−2β‖p < 1 and A is given by (4.2).

Then the boundary value problem (1.1), (1.2) has at least one solution.

Proof. We consider, for λ ∈ (0, 1),

(4.4) Dα
0+u(t) = λf(t, u(t)), a. e. in (0, 1),

subject to the boundary conditions (1.2). It readily follows from the results in Sec-

tion 3 that the function u ∈ X is a solution of the boundary value problem (4.4),

(1.2) if u ∈ X is a solution of u = λTu.
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Using (4.3) and (4.1), we obtain

‖u‖ = λA‖f(·, u)‖p ≤ A‖βu‖p + A‖γ‖p

≤ A‖tα−1βt1−αu‖p + A‖γ‖p ≤ A‖tα−1β‖p‖u‖ + A‖γ‖p.

Hence,

‖u‖ ≤
A‖γ‖p

1 − A‖tα−1β‖p

,

that is, the solution set of u = λTu, λ ∈ (0, 1), is a priori bounded in X by a constant

independent of λ. The mapping T is compact. Since the a priori boundedness

condition of Theorem 4.1 is verified, the assertion follows.
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