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1. Introduction

In this paper, we study the Sturm-Liouville boundary-value problem for the

fourth-order impulsive differential equations with a positive parameter λ

(1.1)







































u(iv)(t) − u′′(t) + u(t) = λf(t, u(t)), t ∈ [0, T ] \ {t1, t2, . . . , tl},
−∆u′′′(ti) = λI1i(u(ti)), i = 1, 2, . . . , l,

−∆u′′(ti) = λI2i(u
′(ti)), i = 1, 2, . . . , l,

au(0) − bu′(0) = 0, cu(T ) + du′(T ) = 0,

au′′(0) − bu′′′(0) = 0, cu′′(T ) + du′′′(T ) = 0,

where a, b, c and d are positive real constants, and 0 = t0 < t1 < · · · < tl < tl+1 = T ,

∆u′′′(ti) = u′′′(t+i ) − u′′′(t−i ), ∆u′′(ti) = u′′(t+i ) − u′′(t−i ), where u′′′(t+i ), u′′(t+i ) and

u′′′(t−i ), u′′(t−i ) denote the right and the left limits, respectively, of u′′′(ti), u′′(ti) at

t = ti (i = 1, 2, . . . , l).

Recently, there has been much application of variational methods in the study of

the existence of solutions for impulsive boundary-value problems [3, 5, 8, 9, 12, 14,
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15, 16, 17]. Related basic information is available in [4, 6]. Some papers for a fourth-

order equation are about Neumann boundary condition and Dirichlet condition, the

others are mostly for a second-order equation. In [8], the authors studied the following

problem

(1.2)



























u(iv)(t) + Au′′(t) + Bu(t) = f(t, u(t)), a.e. t ∈ [0, T ],

−∆u′′(tj) = I1j(u
′(tj)), j = 1, 2, . . . , l,

−∆u′′′(tj) = I2j(u(tj)), j = 1, 2, . . . , l,

u(0) = u(T ) = u′′(0+) = u′′(T−) = 0.

It was proved that when f , I1j and I2j satisfy some conditions, (1.2) has at least

one solution or infinitely many classical solutions by methods of variational methods.

Moreover, as far as we know, besides [3, 9, 10, 12] for second-order equations, little

study is about the Sturm-Liouville boundary-value problem for second-order equa-

tions or higher order. In [9], the following problem with impulsive effects is studied

(1.3)



















−(ρ(t)Φp(x
′(t)))′ + s(t)Φp(x(t)) = f(t, x(t)), t 6= ti, a.e. t ∈ [a, b],

−∆(ρ(ti)Φp(x
′(ti))) = Ii(x(ti)), i = 1, 2, . . . , l,

αx′(a) − βx(a) = A, γx′(b) + σx(b) = B.

It is proved that (1.3) has at least two positive solutions by means of variational

methods, when f and Ii satisfy some conditions.

On the other hand, in the work about application of variational methods, more

and more three critical points theorems are used and generalized [2, 7, 11], we choose

one of them, that is, Theorem 2.1 of [2] (see Theorem 2.1). In [2], the authors studied

the following equations without impulsive effects

(1.4)



















uiv + Au′′ + Bu = λf(t, u) in[0, 1],

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0.

They essentially get multiplicity results when f satisfy some conditions.

It is aimed to apply the three critical points theorem used in [2] to problem

(1.1), which is with impulsive effects and about Sturm-Liouville boundary conditions.

What’s more, to prove the existence of positive solutions is also our aim. Taking the

impulse effects, the Sturm-Liouville boundary conditions and the transformation for

the problem to get nonnegative solutions into account, it will be difficult to get the

corresponding variational functional J . Moreover, we must get over the difficulties

such as how to make the transformation of problem (1.1) to get the positive solutions

and how to prove J (or its subitems Φ, Ψ) and the assumptions that we have chosen

to satisfy the conditions of the three critical points theorem.
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We assume the following conditions are fulfilled:

(H0) For I1i, I2i and f ,

(c1) f ∈ C([0, T ] × [0, +∞); [0, +∞)), I1i ∈ C([0, +∞); (−∞, 0]), I2i ∈ C(R; R),

i = 1, 2, . . . , l;

(c2) f(t, 0) = I1i(0) = I2i(0) = 0 for almost every t ∈ [0, T ] and I2i(x)x ≥ 0 for

all x ∈ R.

This paper is organized as follows. In Section 2, we present some preliminaries

and establish the variational structure. In Section 3, we discuss the existence of

solutions for problem (1.1), and some examples are given in this section.

2. Preliminaries and Variational Structure

In this section, the following three critical points theorem will be needed in our

discussion. Let X be a nonempty set and Φ, Ψ : X → R be two functions. For all

r, r1, r2 > infX Φ, r2 > r1, r3 > 0, we define

ϕ(r) : = inf
u∈Φ−1(]−∞,r[)

(supu∈Φ−1(]−∞,r[) Ψ(u)) − Ψ(u)

r − Φ(u)
,

β(r1, r2) : = inf
u∈Φ−1(]−∞,r1[)

sup
v∈Φ−1([r1,r2[)

Ψ(v) − Ψ(u)

Φ(v) − Φ(u)
,

γ(r2, r3) : =
supu∈Φ−1(]−∞,r2+r3[) Ψ(u)

r3
,

α(r1, r2, r3) : = max
{

ϕ(r1), ϕ(r2), γ(r2, r3)
}

.

Lemma 2.1 (Theorem 2.1 [2]). Let X be a reflexive real Banach space, Φ : X → R be

a convex, coercive and continuously Gâteaux differentiable functional whose Gâteaux

derivative addmits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux

differentiable functional whose Gâteaux derivative is compact, such that

(1) infX Φ = Φ(0) = Ψ(0) = 0;

(2) for every u1, u2 such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0 one has

inf
t∈[0,1]

Ψ
(

tu1 + (1 − t)u2

)

≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2, such that

(i) ϕ(r1) < β(r1, r2);

(ii) ϕ(r2) < β(r1, r2);

(iii) γ(r2, r3) < β(r1, r2).

Then, for each λ ∈] 1
β(r1,r2)

, 1
α(r1,r2,r3)

[, the functional Φ − λΨ admits three distinct

critical points u1, u2, u3 such that u1 ∈ Φ−1(] − ∞, r1[), u2 ∈ Φ−1([r1, r2[) and u3 ∈
Φ−1(] −∞, r2 + r3[).
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Let X := {u ∈ H2(0, T )|au(0) − bu′(0) = 0, cu(T ) + du′(T ) = 0} be equipped

with the inner product

(u, v) =

∫ T

0

u(t)v(t) + u′(t)v(t) + u′′(t)v′′(t)dt, ∀u, v ∈ X,

which induces the usual norm

‖u‖X =
(

∫ T

0

|u(t)|2 + |u′(t)|2 + |u′′(t)|2dt
)

1
2
.

Since X is sequentially closed in Y = H2(0; T ), being compactly embedded in

C1([0; T ] (see the Rellich-Kondrachov theorem in Chapter 6 of [1]), it turns out that

(X; ‖ · ‖X) is a Banach space.

Define the usual norm of C1([0, T ]), L2(0, T ), respectively, they are

‖u‖ = max
{

max
t∈[0,T ]

|u(t)|, max
t∈[0.T ]

|u′(t)|
}

, ‖u‖L2 =
(

∫ T

0

u2(t)dt
)

1
2
.

Lemma 2.2 (Lemma 2.2 [9]). For u ∈ X, let u± = max {±u, 0}. Then the following

five properties hold:

(i) u ∈ X ⇒ u+, u− ∈ X;

(ii) u = u+ − u−;

(iii) ‖u+‖X ≤ ‖u‖X;

(iv) If (un) uniformly converges to u in C([0, T ]), then (u+
n ) uniformly converges to

u+ in C([0, T ]);

(v) u+(t)u−(t) = 0, (u+)′(t)(u−)′(t) = 0 for a.e. t ∈ [0, T ].

Definition 2.1. A function u ∈ X is said to be a classical solution of problem (1.1),

if u satisfies the equation in (1.1) for a.e. t ∈ [0, T ] \ {t1, t2, . . . , tl} and the impulsive

condition and boundary condition of (1.1). Moreover, u is said to be a nonnegative

classical solution of problem (1.1) if u(t) ≥ 0 for t ∈ [0, T ] and positive classical

solution of problem (1.1) if u(t) ≥ 0 and u(t) 6≡ 0 for t ∈ [0, T ].

Lemma 2.3. If u ∈ C([0, T ]) is a classical solution of problem

(2.1)







































u(iv)(t) − u′′(t) + u(t) = λf(t, u+(t)), t ∈ [0, T ] \ {t1, t2, . . . , tl},
−∆u′′′(ti) = λI1i(u

+(ti)), i = 1, 2, . . . , l,

−∆u′′(ti) = λI2i((u
+)′(ti)), i = 1, 2, . . . , l,

au(0) − bu′(0) = 0, cu(T ) + du′(T ) = 0,

au′′(0) − bu′′′(0) = 0, cu′′(T ) + du′′′(T ) = 0,

then u(t) ≥ 0 for t ∈ [0, T ], and hence it is a nonnegative classical solution of problem

(1.1).
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Proof. Since u ∈ C[0, T ] and f ∈ C([0, T ] × [0, +∞); [0, +∞)), we have u(iv) ∈
C[0, T ]\{t1, t2, . . . , ti}. If u ∈ C([0, T ]) is a classical solution of problem (2.1), by

Lemma 2.2, (H0) and boundary conditions, we have

0 =

∫ T

0

(u(iv)(t) − u′′(t) + u(t) − λf(t, u+(t)))u−(t)dt

=

l
∑

i=0

u′′′(t)u−(t)

∣

∣

∣

∣

ti+1

t=t+
i

−
l

∑

i=0

u′′(t)(u−)′(t)

∣

∣

∣

∣

ti+1

t=t+
i

+

∫ T

0

u′′(t)(u−)′′(t)dt

− u′(t)u−(t)

∣

∣

∣

∣

T

0

+

∫ T

0

u′(t)(u−)′(t)dt +

∫ T

0

u(t)u−(t)dt − λ

∫ T

0

f(t, u+(t))u−(t)dt

= λ

l
∑

i=1

I1i(u
+(ti))u

−(ti) − λ

l
∑

i=1

I2i((u
+)′(ti))(u

−)′(ti) + u′′′(T )u−(T )

− u′′′(0)u−(0) − u′′(T )(u−)′(T ) + u′′(0)(u−)′(0) − u′(T )u−(T ) + u′(0)u−(0)

− λ

∫ T

0

f(t, u+(t))u−(t)dt − ‖u−‖2
X

= − c

d
u′′(T )u−(T ) − a

b
u′′(0)u−(0) − u′′(T )(u−)′(T ) + u′′(0)(u−)′(0)

+
c

d
u(T )u−(T ) +

a

b
u(0)u−(0) − ‖u−‖2

X

= − c

d
u′′(T )u−(T ) − a

b
u′′(0)u−(0) − u′′(T )(u−)′(T ) + u′′(0)(u−)′(0)

− c

d

(

u−(T )
)2 − a

b

(

u−(0)
)2 − ‖u−‖2

X .

If u(T ) ≥ 0, u−(T ) = 0, (u−)′(T ) = 0,

− c

d
u′′(T )u−(T ) − u′′(T )(u−)′(T ) = 0;

If u(T ) < 0, u−(T ) = −u(T ), (u−)′(T ) = −u′(T ),

− c

d
u′′(T )u−(T ) − u′′(T )(u−)′(T ) =

c

d
u′′(T )u(T ) + u′′(T )u′(T )

=
c

d
u′′(T )u(T ) + u′′(T )(− c

d
u(T )) = 0.

Similarly, −a
b
u′′(0)u−(0) + u′′(0)(u−)′(0) = 0. One has

0 = − c

d

(

u−(T )
)2 − a

b

(

u−(0)
)2 − ‖u−‖2

X ≤ −‖u−‖2
X ,

so u−(t) = 0 for t ∈ [0, T ], that is, u(t) ≥ 0. The proof is complete.

Remark 2.1. By Lemma 2.3, it suffices to obtain classical solutions of (2.1) in order to

find the nonnegative classical solutions of problem (1.1). Moreover, the nonnegative

classical solutions would be positive classical solutions when verifying they are not

equivalent to 0.
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For each u ∈ X, set

Φ(u) =
1

2
‖u‖2

X +
c

2d

(

u(T )
)2

+
a

2b

(

u(0)
)2

,(2.2)

Ψ(u) = −
l

∑

i=1

∫ u+(ti)

0

I1i(s)ds +

l
∑

i=1

∫ (u+)′(ti)

0

I2i(s)ds +

∫ T

0

F (t, u+(t))dt,(2.3)

J(u) = Φ(u) − λΨ(u),(2.4)

where F (t, u) =
∫ u

0
f(t, s)ds.

It is clear that Φ, Ψ and J are differentiable at any u ∈ X. If u ≥ 0, in some

intervals, u+ = u, (u+)′ = u′,

Ψ′(u)(v) = −
l

∑

i=1

I1i(u
+(ti))v(ti) +

l
∑

i=1

I2i((u
+)′(ti))v

′(ti) +

∫ T

0

f(t, u+(t))v(t)dt;

If u < 0, in some intervals, u+ = 0, (u+)′ = 0, by (H0)

0 = Ψ′(u)(v)

= −
l

∑

i=1

I1i(u
+(ti))v(ti) +

l
∑

i=1

I2i((u
+)′(ti))v

′(ti) +

∫ T

0

f(t, u+(t))v(t)dt.

So we have

Φ′(u)(v) =

∫ T

0

(u′′v′′ + u′v′ + uv)dt +
c

d
u(T )v(T ) +

a

b
u(0)v(0),(2.5)

Ψ′(u)(v) = −
l

∑

i=1

I1i(u
+(ti))v(ti) +

l
∑

i=1

I2i((u
+)′(ti))v

′(ti)(2.6)

+

∫ T

0

f(t, u+(t))v(t)dt,

J ′(u)(v) =

∫ T

0

(u′′v′′ + u′v′ + uv)dt + λ

l
∑

i=1

I1i(u
+(ti))v(ti)(2.7)

− λ

l
∑

i=1

I2i((u
+)′(ti))v

′(ti) − λ

∫ T

0

f(t, u+(t))v(t)dt

+
c

d
u(T )v(T ) +

a

b
u(0)v(0).

Definition 2.2. A function u ∈ X is said to be a weak solution of (2.1), if u satisfies

J ′(u)(v) = 0 for all v ∈ X.

Lemma 2.4. If u ∈ X is a weak solution of (2.1), then u is a classical solution of

(2.1).

Proof. It is similar to the proof of Lemma 2.4 in [13], so we omit it here.



FOURTH-ORDER IMPULSIVE BVP 195

Lemma 2.5 (Lemma 2.5 of [13]). Let u ∈ X. Then ‖u‖ ≤ M‖u‖X , where

M = (
1√
T

+
√

T ).

We need the following lemmas for applying Lemma 2.1 in Theorem 3.1.

Lemma 2.6. The functional Φ in (2.2) is convex.

Proof. Let ε ∈ (0, 1) and u, v ∈ X,

Φ(εu + (1 − ε)v)

=
1

2
‖εu + (1 − ε)v‖2

X +
c

2d

(

εu(T ) + (1 − ε)v(T )
)2

+
a

2b

(

εu(0) + (1 − ε)v(0)
)2

=
1

2

∫ T

0

∣

∣εu′′(t) + (1 − ε)v′′(t)
∣

∣

2
+

∣

∣εu′(t) + (1 − ε)v′(t)
∣

∣

2
+

∣

∣εu(t)

+ (1 − ε)v(t)
∣

∣

2
dt +

c

2d

(

εu(T ) + (1 − ε)v(T )
)2

+
a

2b

(

εu(0) + (1 − ε)v(0)
)2

≤ 1

2

∫ T

0

ε|u′′(t)|2 + (1 − ε)|v′′(t)|2 + ε|u′(t)|2 + (1 − ε)|v′(t)|2 + ε|u(t)|2

+ (1 − ε)|v(t)|2dt +
c

2d

(

εu2(T ) + (1 − ε)v2(T )
)

+
a

2b

(

εu2(0) + (1 − ε)v2(0)
)

= εΦ(u) + (1 − ε)Φ(v),

which implies that Φ is convex. The proof is complete.

Lemma 2.7. Φ′ : X → X∗ admits a continuous inverse on X∗.

Proof. Firstly, for every u ∈ X\{0}, it follows from (2.5) that

lim
‖u‖X→+∞

Φ′(u)(u)

‖u‖X

= lim
‖u‖X→+∞

‖u‖2
X + c

d
u2(T ) + a

b
u2(0)

‖u‖X

= lim
‖u‖X→+∞

(

‖u‖X +
c
d
u2(T ) + a

b
u2(0)

‖u‖X

)

= +∞,

which means Φ′ is coercive.

Moreover, given u, v ∈ X, one has

(Φ′(u) − Φ′(v))(u − v) = ‖u − v‖2
X +

c

d

(

u(T ) − v(t)
)2

+
a

b

(

u(0) − v(0)
)2

≥ ‖u − v‖2
X ,

so Φ′ is uniformly monotone. By Theorem 26.A(d) of [18], we have that (Φ′)−1 exists

and is continuous on X∗. Thus, Φ′ : X → X∗ admits a continuous inverse on X∗.

The proof is complete.

Lemma 2.8. Ψ′ : X → X∗ is a continuous and compact operator.
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Proof. First we will show that Ψ′ is strongly continuous on X. Let un ⇀ u as n → ∞
on X; by [18] we have un converges uniformly to u on [0, T ] as n → ∞. Since f is

continuous, one has f(t, un) → f(t, u) as n → ∞. Moreover, I1i, I2i are continuous.

So Ψ′(un) → Ψ′(u), which implies that Ψ′ is a compact operator by Proposition 26.2

of [18] and that Ψ′ is continuous. The proof is compete.

3. Main results

In this section, we shall show our main results and prove them. We need the

following conditions:

(H1) There exists a constant µ ∈ (0, 1
2
) and put

k : =
{

2M2
[ 16

µ3T 3
+

4

3µT
− 37

60
µT +

T

2

]

}−1

,(3.1)

I(s) : =
l

∑

i=1

|I1i(s)| +
l

∑

i=1

|I2i(s)|.(3.2)

Moreover, there exist four positive constants m, n, p, q, with
√

km < n <
√

kp <√
kq such that

(c3)

∫ m

0
I(s)ds +

∫ T

0
F (t, m)dt

m2
< k

−
∫ m

0
I(s)ds +

∫ (1−µ)T

µT
F (t, n)dt −

∫ T

0
F (t, m)dt

n2
,

(c4)

∫ p

0
I(s)ds +

∫ T

0
F (t, p)dt

p2
< k

−
∫ m

0
I(s)ds +

∫ (1−µ)T

µT
F (t, n)dt−

∫ T

0
F (t, m)dt

n2
,

(c5)

∫ q

0
I(s)ds +

∫ T

0
F (t, q)dt

q2 − p2
< k

−
∫ m

0
I(s)ds +

∫ (1−µ)T

µT
F (t, n)dt −

∫ T

0
F (t, m)dt

n2
.

Theorem 3.1. Suppose (H0) and (H1) hold. Then, for every

λ ∈
]

n2

2M2k

(

−
∫ m

0

I(s)ds +

∫ (1−µ)T

µT

F (t, n)dt −
∫ T

0

F (t, m)dt

)−1

,

min

{

m2

2M2

(
∫ m

0

I(s)ds +

∫ T

0

F (t, m)dt

)−1

,

p2

2M2

(
∫ p

0

I(s)ds +

∫ T

0

F (t, p)dt

)−1

,

q2 − p2

2M2

(
∫ q

0

I(s)ds +

∫ T

0

F (t, q)dt

)−1}[

,
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the problem (1.1) has at least three distinct nonnegative classical solutions ui (i =

1, 2, 3), such that ‖ui‖ < q, for i = 1, 2, 3, which means the problem (1.1) has at least

two distinct positive classical solutions.

Proof. Owing to Lemma 2.4, our aim is to apply Lemma 2.1 to Φ in (2.2) and Ψ in

(2.3).

Φ is coercive, obviously, convex by Lemma 2.6 and its Gâteaux derivative admits a

continuous inverse by Lemma 2.7. Ψ’s Gâteaux derivative is continuous and compact

by Lemma 2.8. Clearly, infX Φ = Φ(0) = Ψ(0) = 0. By (H0), we have

−
∫ s

0

I1i(s)ds ≥ 0,

∫ s

0

I2i(s)ds ≥ 0, F (t, s) =

∫ s

0

f(t, s)ds ≥ 0,

which deduces Ψ(u) ≥ 0 for all u ∈ X. So Φ and Ψ satisfy the hypotheses of

Lemma 2.1.

Let v̄ ∈ X be defined by

v̄(t) =







































2n
µ2T 2 t

2, t ∈ [0, µT

2
],

− 2n
µ2T 2 (t − µT )2 + n, t ∈ ]µT

2
, µT ],

n t ∈ ]µT, (1 − µ)T ],

− 2n
µ2T 2 [t − (1 − µ)T ]2 + n, t ∈ ](1 − µ)T, (1 − µ

2
)T ],

2n
µ2T 2 (t − T )2, t ∈ ](1 − µ

2
)T, T ],

so

v̄′(t) =







































4n
µ2T 2 t, t ∈ [0, µT

2
],

− 4n
µ2T 2 (t − µT ), t ∈ ]µT

2
, µT ],

0 t ∈ ]µT, (1 − µ)T ],

− 4n
µ2T 2 [t − (1 − µ)T ], t ∈ ](1 − µ)T, (1 − µ

2
)T ],

4n
µ2T 2 (t − T ), t ∈ ](1 − µ

2
)T, T ].

It is easy to verify that

(3.3) v̄+ = v̄, v̄− = 0,

and

(3.4) Φ(v̄) =

[

16

µ3T 3
+

4

3µT
− 37

60
µT +

T

2

]

n2 =
n2

2M2k
.

Put r1 = m2

2M2 , r2 = p2

2M2 , and r3 = q2−p2

2M2 . From
√

km < n <
√

kp <
√

kq, one has

r1 < Φ(v̄) < r2, which means v̄ ∈ Φ−1([r1, r2[), and r3 > 0. When Φ(u) < r1, by

Lemma 2.5 and (2.2), we have

max

{

max
t∈[0,T ]

|u+(t)|, max
t∈[0.T ]

|(u+)′(t)|
}

≤ M‖u+‖X ≤ M‖u‖X ≤
√

2M2Φ(u) < m,
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hence, with (2.2), (3.2) and (H0) we have

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)

≤ max
|ξ|≤m

l
∑

i=1

∫ ξ

0

(−I1i(s)) ds + max
|ξ|≤m

l
∑

i=1

∫ ξ

0

|I2i(s)|ds +

∫ T

0

max
|ξ|≤m

F (t, ξ)dt(3.5)

=

∫ m

0

I(s)ds +

∫ T

0

F (t, m)dt.

Similarly, we obtain

(3.6) sup
u∈Φ−1(]−∞,r2[)

Ψ(u) ≤
∫ p

0

I(s)ds +

∫ T

0

F (t, p)dt,

and

(3.7) sup
u∈Φ−1(]−∞,r2+r3[)

Ψ(u) ≤
∫ q

0

I(s)ds +

∫ T

0

F (t, q)dt.

Therefore, taking into consideration that 0 ∈ Φ−1(]−∞, r1[) and 0 ∈ Φ−1(]−∞, r2[),

from (3.5), (3.6) and (3.7), we have

ϕ(r1) ≤
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
(3.8)

≤ 2M2

m2

(
∫ m

0

I(s)ds +

∫ T

0

F (t, m)dt

)

,

ϕ(r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
(3.9)

≤ 2M2

p2

(
∫ p

0

I(s)ds +

∫ T

0

F (t, p)dt

)

,

γ(r2, r3) =
supu∈Φ−1(]−∞,r2+r3[) Ψ(u)

r3

(3.10)

≤ 2M2

q2 − p2

(
∫ q

0

I(s)ds +

∫ T

0

F (t, q)dt

)

.

On the other hand, by (3.3) and the definition of v̄,

Ψ(v̄) = −
l

∑

i=1

∫ v̄(ti)

0

I1i(s)ds +

l
∑

i=1

∫ v̄′(ti)

0

I2i(s)ds +

∫ T

0

F (t, v̄(t))dt

≥ −
l

∑

i=1

∫ mint∈[0,T ] v̄(t)

0

I1i(s)ds +
l

∑

i=1

∫ mint∈[0,T ] |v̄
′(t)|

0

|I2i(s)|ds(3.11)

+

∫ (1−µ)T

µT

F (t, v̄(t))dt

=

∫ (1−µ)T

µT

F (t, n)dt.
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Taking into consideration that v̄ ∈ Φ−1([r1, r2[), by (3.4), (3.5), (3.11), (c3) and

Φ(u) ≥ 0, one has

β(r1, r2) ≥ inf
u∈Φ−1(]−∞,r1[)

Ψ(v̄) − Ψ(u)

Φ(v̄) − Φ(u)

≥
∫ (1−µ)T

µT
F (t, n)dt −

(

∫ m

0
I(s)ds +

∫ T

0
F (t, m)dt

)

n2

2M2k

(3.12)

=
2M2k

n2

(

−
∫ m

0

I(s)ds +

∫ (1−µ)T

µT

F (t, n)dt −
∫ T

0

F (t, m)dt

)

.

By (3.8), (3.9), (3.10), (3.12) and (c3)-(c5) of (H1), we have

α(r1, r2, r3) < β(r1, r2).

Up to this point, the conditions of Lemma 2.1 are all fulfilled. By Lemma 2.1, it

follows that, for each

λ ∈
]

n2

2M2k

(

−
∫ m

0

I(s)ds +

∫ (1−µ)T

µT

F (t, n)dt −
∫ T

0

F (t, m)dt

)−1

,

min

{

m2

2M2

(
∫ m

0

I(s)ds +

∫ T

0

F (t, m)dt

)−1

,

p2

2M2

(
∫ p

0

I(s)ds +

∫ T

0

F (t, p)dt

)−1

,

q2 − p2

2M2

(
∫ q

0

I(s)ds +

∫ T

0

F (t, q)dt

)−1}[

,

the functional J = Φ − λΨ has three distinct points ui (i = 1, 2, 3) in X with

Φ(ui) < r2 + r3, which by Lemma 2.5 and (2.2) deduces

‖u+
i ‖ = max

{

max
t∈[0,T ]

|u+
i (t)|, max

t∈[0.T ]
|(u+

i )′(t)|
}

≤ M‖u+
i ‖X ≤ M‖ui‖X ≤

√

2M2Φ(ui) < q.

The proof is complete.

Remark 3.1. If we choose different v, the constrictions on F , Ii are different.

Example 3.1. Let T = 1, ti ∈ (0, 1), a, b, c, d > 0, i = 1, 2, . . . , l. Consider Sturm-

Liouville boundary-value problem with impulse

(3.13)







































u(iv)(t) − u′′(t) + u(t) = λf(t, u(t)), t ∈ [0, 1] \ {t1, t2, . . . , tl},
−∆u′′′(ti) = λI1i(u(ti)), i = 1, 2, . . . , l,

−∆u′′(ti) = λI2i(u
′(ti)), i = 1, 2, . . . , l,

au(0) − bu′(0) = 0, cu(1) + du′(1) = 0,

au′′(0) − bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0,
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where

f(t, s) = −I1i(s) = I2i(s) =



























0, 0 < s ≤ 1,

16483t(s − 1), 1 < s ≤ 2,

−16483t(s − 3), 2 < s ≤ 3,

0, s > 3.

For every λ ∈ [1977944
1977960

, +∞), problem (3.13) has at least two distinct positive

classical solutions.

In fact, compared with (1.1), M = 2, (H0) is fulfilled. Let µ = 1
4
, so k = 30

247243
.

Considering with
√

km < n <
√

kp <
√

kq, we can choose m = 1
2
, n = 2, and

sufficiently large p, q, while q2 − p2 is also sufficiently large. We have

(3.14)



















































n2

2M2k

(

−
∫ m

0
I(s)ds +

∫ (1−µ)T

µT
F (t, n)dt −

∫ T

0
F (t, m)dt

)−1

= 1977944
1977960

,

m2

2M2

(

∫ m

0
I(s)ds +

∫ T

0
F (t, m)dt

)−1

= ∞,

p2

2M2

(

∫ p

0
I(s)ds +

∫ T

0
F (t, p)dt

)−1

is sufficiently large,

q2−p2

2M2

(

∫ q

0
I(s)ds +

∫ T

0
F (t, q)dt

)−1

is sufficiently large,

and that (H1) is satisfied. Applying Theorem 3.1, problem (3.13) has at least two

distinct positive classical solutions for every λ ∈ [1977944
1977960

, +∞).
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