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ABSTRACT. We consider a four point fourth order boundary value problem of focal type. A suffi-

cient and necessary condition for the positivity of the Green function for the problem is established.
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1. INTRODUCTION

Boundary value problems are important both from a theoretical perspective as

well as for their many applications in the physical and engineering sciences. The

study of positive solutions for boundary value problems has been very active for the

last two decades. In a recent paper [1], Anderson and Avery considered the fourth

order four-point right focal boundary value problem

(1.1) u′′′′(t) + f(u(t)) = 0, 0 < t < 1,

(1.2) u(0) = u′(p) = u′′(q) = u′′′(1) = 0,

under the assumption that

(1.3) 1/2 < p < (1 + p)/2 < q < 1.

With this motivation, we in this paper consider the boundary value problem that

consists of the fourth order equation

(1.4) u′′′′(t) + f(t, u(t)) = 0, 0 < t < 1,

and the boundary conditions (1.2). Throughout the paper we assume that

(H1) f : [0, 1] × (−∞,∞) → (−∞,∞) is a continuous function, and p, q ∈ [0, 1] are

constants.
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Now we define G : [0, 1] × [0, 1] → (−∞,∞) by

G(t, s) = −t(p2/2 + p(q − s)H(q − s) − pq − ((p − s)2/2)H(p − s))

− t2(q/2 − ((q − s)/2)H(q − s)) + t3/6 − ((t − s)3/6)H(t − s).(1.5)

Here H : R → R is the unit step function given by

H(t) =







1, if t ≥ 0

0, if t < 0.

Then, G(t, s) is the Green function for the boundary value problem that consists of

(1.4) and (1.2). And, the problem (1.4), (1.2) is equivalent to the integral equation

(1.6) u(t) =

∫

1

0

G(t, s)f(s, u(s)) ds, 0 ≤ t ≤ 1.

Our goal is to establish a necessary and sufficient condition for the positivity of the

Green function in (1.5), and show that the new condition improves (1.3). In this

paper, when we say the Green function G(t, s) is positive, we mean G(t, s) ≥ 0 for

0 ≤ t, s ≤ 1.

2. POSITIVITY OF THE GREEN FUNCTION

Anderson and Avery [1] proved the following result.

Theorem 2.1. If p, q ∈ [0, 1] satisfy the condition (1.3), then

G(t, s) ≥ 0, 0 ≤ t, s ≤ 1.

Next, we will improve the condition (1.3). To this end, we begin with a technical

lemma.

Lemma 2.2. If a pair (x, y) in [0, 1] × [0, 1] satisfies
(

1 −
√

3y

3

)

y ≤ x ≤
(

1 +

√
3y

3

)

y,

then 6xy − 3x2 − 3y2 + y3 ≥ 0.

Proof. For any fixed y in [0, 1], define

h(x) = 6xy − 3x2 − 3y2 + y3 = (−3)x2 + (6y)x− 3y2 + y3.

The quadratic function h(x) has two real zeros:

x1 =

(

1 −
√

3y

3

)

y and x2 =

(

1 +

√
3y

3

)

y.

Since h(x) opens downwards, we have h(x) ≥ 0 for x1 ≤ x ≤ x2.

Lemma 2.3. Let k(x) = (1−
√

3x

3
)x. Then k(x) is increasing on [0, 4/3] and decreas-

ing on [4/3,∞).
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Proof. The proof is simple and is omitted here.

The next lemma provides some information about the sign property of G(t, s).

Theorem 2.4. If p, q ∈ [0, 1] are such that

(2.1) 2p ≤ 3q, p ≥
(

1 −
√

3q

3

)

q,

then

G(t, s) ≥ 0, 0 ≤ t, s ≤ 1.

Proof. The expression of the Green function G(t, s) involves three unit step functions

H(p− s), H(q− s), and H(t− s). Each one takes the value of 0 or 1. Overall, we will

have eight cases to discuss.

Case 1: H(p − s) = 1, H(q − s) = 1, and H(t− s) = 1.

In this case, we have

0 ≤ s ≤ p ≤ 1, 0 ≤ s ≤ q ≤ 1, and 0 ≤ s ≤ t ≤ 1

which lead to G(t, s) = s3/6 ≥ 0.

Case 2: H(p − s) = 1, H(q − s) = 1, and H(t− s) = 0.

In this case, we have

0 ≤ s ≤ p ≤ 1, 0 ≤ s ≤ q ≤ 1, and 0 ≤ t < s ≤ 1

which implies

G(t, s) =
1

6
t(3s(s − t) + t2) ≥ 0.

Case 3: H(p − s) = 1, H(q − s) = 0, and H(t− s) = 1.

In this case, we have

0 ≤ q < s ≤ p ≤ 1 and 0 ≤ s ≤ t ≤ 1

which, together with 2p ≤ 3q, leads to

G(t, s) =
1

2
(t − p)2(s − q) +

1

6
(s − p)2(s + 2p) +

1

6
p2(3q − 2p) ≥ 0.

Case 4: H(p − s) = 1, H(q − s) = 0, and H(t− s) = 0.

In this case, we have

0 ≤ q < s ≤ p ≤ 1 and 0 ≤ t < s ≤ 1

which, together with 2p ≤ 3q, implies

G(t, s) =
t

6

(

3(s − p)2 + (p − t)2 + (2p − t)(3q − 2p)
)

≥ 0

due to the fact that 2p − t ≥ 2s − t > 0.

Case 5: H(p − s) = 0, H(q − s) = 1, and H(t− s) = 1.
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In this case, we have

0 ≤ p < s ≤ q ≤ 1 and 0 ≤ p < s ≤ t ≤ 1

and

(2.2) G(t, s) =
1

6
(s3 + 6pts − 3tp2 − 3ts2) =

1

6
s3(1 − t) +

t

6
(6ps − 3p2 − 3s2 + s3).

In this case, we have 1 ≥ q ≥ s > p ≥ 0. It is seen from Lemma 2.3 that k(q) ≥ k(s)

since 1 ≥ q ≥ s ≥ 0. Thus, we have s > p ≥ k(q) ≥ k(s). Therefore, the pair (p, s)

satisfies the conditions of Lemma 2.2 from which, we have 6ps − 3p2 − 3s2 + s3 ≥ 0

and thus, G(t, s) ≥ 0 in view of (2.2).

Case 6: H(p − s) = 0, H(q − s) = 1, and H(t− s) = 0.

In this case, we have

0 ≤ t < s ≤ q ≤ 1 and 0 ≤ p < s ≤ q ≤ 1

and

G(t, s) =
t

6

(

t2 + 6ps − 3p2 − 3ts
)

=
t

6

(

6ps − 3p2 − 3s2 + s3
)

+
t

6

(

(s − t)2 + s(s − t) + s2(1 − s)
)

.(2.3)

As we have shown in Case 5, the inequalities 1 ≥ q ≥ s > p ≥ 0 implies that

6ps − 3p2 − 3s2 + s3 ≥ 0. It follows that G(t, s) ≥ 0 in this case.

Case 7: H(p − s) = 0, H(q − s) = 0, and H(t− s) = 1.

In this case, we have

0 ≤ p < s ≤ t ≤ 1 and 0 ≤ q < s ≤ t ≤ 1

and

(2.4) G(t, s) =
1

6

(

s3 − 3tp2 + 6tpq − 3t2q + 3t2s − 3ts2
)

.

This case can be divided into two subcases: (1) 0 ≤ q ≤ p < s ≤ t ≤ 1 or (2) 0 ≤
p ≤ q < s ≤ t ≤ 1.

For the first subcase where 0 ≤ q ≤ p < s ≤ t ≤ 1, the function G(t, s) in (2.4)

can be expressed as

G(t, s) =
1

24
(s − p)3 +

1

8
(s − p)(s + p − 2t)2 +

1

2
(p − q)(t − p)2 +

p2

6
(3q − 2p) ≥ 0.

For the second subcase where 0 ≤ p ≤ q < s ≤ t ≤ 1, the function G(t, s) in (2.4)

can be expressed as

(2.5) G(t, s) =
t

6
(6pq−3p2 −3q2 + q3)+

q3(1 − t)

6
+

(s − q)3

24
+

1

8
(s− q)(s+ q−2t)2.

In this second subcase, we have q ≥ p ≥ k(q). Therefore, the pair (p, q) satisfies the

conditions of Lemma 2.2. Thus, we have 6pq − 3p2 − 3q2 + q3 ≥ 0 which implies

G(t, s) ≥ 0 in view of (2.5).
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Case 8: H(p − s) = 0, H(q − s) = 0, and H(t− s) = 0.

In this case, we have p < s, q < s, and t < s. And, we have

(2.6) G(t, s) =
t

6
(t2 − 3qt + 6pq − 3p2) ≡ t

6
g1(t),

where

g1(t) = t2 − 3qt + 6pq − 3p2.

First, we notice that

g1(t) = (t − 3q/2)2 + 3(2p − q)(3q − 2p)/4.

Hence, if p > q, then g1(t) ≥ 0. It follows that, if p > q, then G(t, s) ≥ 0 for

t, s ∈ [0, 1].

Next, we assume that p ≤ q. Under this assumption, the pair (p, q) satisfies the

conditions of Lemma 2.2 and thus

(2.7) 6pq − 3p2 − 3q2 + q3 ≥ 0,

which leads to

g1(t) = (6pq − 3p2 − 3q2 + q3) + (t2 − 3qt + 3q2 − q3)

≥ t2 − 3qt + 3q2 − q3 ≡ g2(t).

Observe that

g2(t) = (3q/2 − t)2 + q2(3/4 − q) ≥ 0 for 0 ≤ q ≤ 3/4

and

g2(t) = (3q − 1 − t)(1 − t) + (1 − q)3 ≥ 0 for 2/3 ≤ q ≤ 1

due to the fact that 3q−1−t ≥ 1−t ≥ 0 for q ≥ 2/3. Thus, we have g1(t) ≥ g2(t) ≥ 0

for all q in [0, 1] when p ≤ q. This concludes the proof of G(t, s) ≥ 0 for Case 8.

The proof of the theorem is now complete.

We would like to point out that Theorem 2.4 is established under a very general

assumption. Notice that we have never assumed p ≤ q in its proof. The next theorem

shows that condition (2.1) is not only sufficient but also necessary for the positivity

of the Green function G(t, s).

Theorem 2.5. Let p, q ∈ [0, 1]. If

(2.8) either 2p > 3q or p <

(

1 −
√

3q

3

)

q,

then there exists a point (t0, s0) ∈ [0, 1] × [0, 1] such that G(t0, s0) < 0.
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Proof. If 2p > 3q, then q < 2p/3 ≤ 2/3 < 1 which implies H(q − 1) = 0. It is easily

seen that

G(p, 1) = (3q − 2p)p2/6 < 0.

If p <
(

1 −
√

3q

3

)

q, then p − q < 0 implying H(p − q) = 0. Thus, we have

G(1, q) = −1

2

(

p2 − 2pq + q2 − 1

3
q3

)

= −1

2

(

p −
(

1 −
√

3q

3

)

q − 2q
√

3q

3

)(

p −
(

1 −
√

3q

3

)

q

)

< 0.

The proof is complete.

3. A COMPARISON

Let

R1 = {(q, p) ∈ [0, 1] × [0, 1] : 1/2 < p < (1 + p)/2 < q < 1}
and

R2 =

{

(q, p) ∈ [0, 1] × [0, 1] : 2p ≤ 3q, p ≥
(

1 −
√

3q

3

)

q

}

be two subsets of the square [0, 1]×[0, 1] in the qp-plane. Obviously, we have R1 ⊂ R2.

Theorems 2.4 and 2.5 indicate that R2 contains all the points (q, p) that define the

problem by (1.4) and (1.2) with positive Green function G(t, s).

The region of R1 is a right triangle whose legs are 1

2
and 1

4
, respectively. So the

area of R1 is obviously 0.0625. The area of R2, denoted by A(R2), can also be easily

computed:

A(R2) =

∫ 2

3

0

(

3

2
q −

(

1 −
√

3

3
q

1

2

)

q

)

dq +

∫

1

2

3

(

1 −
(

1 −
√

3

3
q

1

2

)

q

)

dq

=
1

6
+

2
√

3

15
≈ 0.3976.

Therefore, the region of R2 is more than six times that of R1. In this sense, the

condition (2.1) improves the condition (1.3) significantly.
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