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ABSTRACT. The coexistence of homoclinic orbit and saddle focus point is the basic assumption

in Shil’nikov homoclinic theorem. We attempt to study the existence of homoclinic orbit to saddle

focus point and give the necessary conditions for it. Firstly, the geometrical properties of homoclinic

orbit to saddle focus point are exposed by some lemmas which are used to drive the main theorem.

Consequently, the necessary conditions for the existence of homoclinic orbit to saddle focus point

are obtained. The result is applied to Lorenz-type systems. Finally, the conclusions for some typical

chaotic systems is presented.
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1. Introduction

Many typical chaotic systems, such as Lorenz system and Rössler system, Chua

electronics circuits and Duffing oscillator, Chen system and so on, are successively

discovered in past years. But as well known, it is not easy to give out rigorous proof

for these systems to be chaotic. In order to apply Shil’nikov homoclinic theorem

[1, 2, 3, 4, 5] to proving the existence of chaos, the key point is to show the existence

of homoclinic orbit to a saddle focus point of the system.

For this purpose, some of the contributions adopt qualitative analysis includ-

ing analytical method [6, 7, 8, 9] to look for the homoclinic orbit of the third-order

continuous system. More of the contributions construct homoclinic orbits by series

approximation method [10, 11, 12, 13]. All these method are based on the fact that the

homoclinic solution is the joint of the stable and unstable manifolds for the considered

dynamical system. Once the stable and unstable manifolds have intersections, the

third-order continuous system can not be structurally stable [14]. However, the proof

of the uniform convergence of series expansions of the homoclinic orbit is obtained

based on the assumptions of structurally stable in an open set of parameters space.

In addition, Algaba A. et al. [15] show another problem in the series approximation
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when proving the existence of homoclinic orbit for some chaotic third-order systems.

The approximate series expression for homoclinic orbit is wrongly supposed to be

symmetry and homoclinic orbit is necessarily non-symmetry. Usually, it spirals out-

ward along the two-dimensional unstable manifold and approaches the equilibrium

along its one-dimensional stable manifold. It should be noted that the homoclinic

solution expressed by series expressions are used in many contributions, which is at

question.

Even so, the coexistence of homoclinic orbit and saddle focus point has not been

found for a third-order continuous system with C2 vector field. For example, the

famous Lorenz system is considered as follows

ẋ = a(y − x)

ẏ = cx − y − xz

ż = xy − bz

with a = 10, b = 8/3 and c = 13.9265. Li and Zhu in [13] provide the series expression

of the homoclinic orbit to the origin (0, 0, 0)T . It is easy to calculate that the origin

is not a saddle focus point of the Lorenz system with above parameters. [16] shows

the general existence conditions of homoclinic trajectories to saddle node, which is

different from to saddle focus point.

To my knowledge, no example of a single third-order continuous time autonomous

system with C2 vector field is given out to show the existence of exact homoclinic

orbit to saddle focus point. The author also notice that Chua’s circuit are reported

to be chaotic in Shil’nikov sense in [5] in 1993 and it’s form is:

(1.1)

ẋ = α(y − x − k(x))

ẏ = x − y + z

ż = −βy

where

k(x) = bx +
1

2
(a − b)(|x + 1| − |x − 1|).

In [17], the author gives a detailed homoclinic orbit bifurcation analysis including

numerical simulation of a homoclinic orbit when α = 23.64051, β = 52, a = −8/7

and b = −5/7. And with these parameters, the eigenvalues of the Jacobi matrix

at equilibrium point of the system show that the origin point is saddle focus point.

However, the vector field of the system (1.1) is piecewise-linear. Actually, it is a

switch linear system, not a single system with C2 vector field. That is, there is an

piecewise-linear system having homoclinic orbits to its saddle focus points. Above all,

it is important to study the coexistence of homoclinic orbit and saddle focus point.

The paper is organized as follows. In Section 2, the preliminary knowledge is

introduced. In Section 3, some lemmas are given to expose the geometrical properties

of homoclinic orbit to saddle focus point and it is also useful in the proof of main
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theorem. In Section 4, the main theorem is proved. Consequently the necessary

condition of existing homoclinic orbit to saddle fucus point is obtained. The results

are applied to Lorenz-type systems. Finally, the conclusion is presented in Section 5.

2. PRELIMINARIES

Consider a third-order autonomous system

(2.1) ẋ(t) = f(x(t)), t ∈ R, x(t) ∈ R
3

where the vector field f : R
3 → R

3, belongs to class Cr(r > 2).

Let xe ∈ R
3 be the equilibrium of system (2.1) and Df |xe

be the Jacobi matrix

of system (2.1) at xe.

Definition 2.1. xe is called a saddle foci point if Df |xe
possesses three eigenvalues

with the following form

ν, σ ± iω

where ν, σ and ω all are real numbers and

(2.2) σν < 0, ω 6= 0

The Shil’nikov homoclinic criterion for chaos to be existed is described by the

following lemma (referred to [5]).

Lemma 2.2 (Shil’nikov homoclinic theorem). Suppose that there is a saddle foci

point xe of system (2.1), and Df |xe
possesses three eigenvalues as in Definition 1

satisfying the following Shil’nikov inequality

(2.3) |ν| > |σ| > 0.

Suppose also that there exists a homoclinic orbit based at xe. Then

(1) The Shil’nikov map, defined in a neighborhood of the homoclinic orbit, has a count-

able number of Smale horseshoes in its discrete dynamics;

(2) For any sufficiently small C1 perturbation g of f , the perturbed system

(2.4) ẋ(t) = g(x(t)), x(t) ∈ R
3

has at least a finite number of Smale horseshoes in the discrete dynamics of Shil’nikov

map defined near the homoclinic orbit;

(3) Both the original system (2.1) and perturbed system (2.4) have horseshoes type of

chaos.
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No loss of generality, one can assume λ < 0 and ρ > 0. The system (2.1) is

described by

(2.5)

ẋ1(t) = λx1 + f1(x1, x2, x3)

ẋ2(t) = ρx2 − ωx3 + f2(x1, x2, x3)

ẋ3(t) = ωx2 + ρx3 + f3(x1, x2, x3)

with the equilibrium point E = (0, 0, 0)T , where fi(0, 0, 0) = 0(i = 1, 2, 3). Any

solution X(t) = (x1(t), x2(t), x3(t))
T with initial value X0 = (x1(t0), x2(t0), x3(t0))

T

of the system (2.5) can be formulated as the following

x1(t) = exp(λ(t − t0))x1(t0) +

∫

t

t0

exp(λ(t − s))f1(x1(s), x2(s), x3(s))ds(2.6)

x2(t) = exp(ρ(t − t0))x2(t0) cos ω(t− t0) − exp(ρ(t − t0))x3(t0) sin ω(t − t0)

+

∫

t

t0

exp(ρ(t − s))[cos ω(t − s)f2(x1(s), x2(s), x3(s))]ds

−

∫

t

t0

exp(ρ(t − s))[sin ω(t − s)f3(x1(s), x2(s), x3(s))]ds

x3(t) = exp(ρ(t − t0))x2(t0) sin ω(t− t0) + exp(ρ(t − t0))x3(t0) cos ω(t− t0)

+

∫

t

t0

exp(ρ(t − s))[sin ω(t − s)f2(x1(s), x2(s), x3(s))]ds

+

∫

t

t0

exp(ρ(t − s))[cos ω(t − s)f3(x1(s), x2(s), x3(s))]ds

Let (h1(t), h2(t), h3(t))
T be a homoclinic orbit of the system (2.5). We have

(2.7) hi(t) → 0 as t → ±∞, i = 1, 2, 3

and

(2.8) |hi(t)| ≤ M ∀t ∈ (−∞, +∞) i = 1, 2, 3

for some constant M , and xi(t) = hi(t) (i = 1, 2, 3) satisfies (2.6).

Let gi(i = 1, 2, 3) be notated by

g1(t) =

∫

t

t0

exp(λ(t − s))f1(x1(s), x2(s), x3(s))ds(2.9)

g2(t) =

∫

t

t0

exp(ρ(t − s))[cos ω(t− s)f2(x1(s), x2(s), x3(s))]ds

−

∫

t

t0

exp(ρ(t − s))[sin ω(t − s)f3(x1(s), x2(s), x3(s))]ds

g3(t) =

∫

t

t0

exp(ρ(t − s))[sin ω(t− s)f2(x1(s), x2(s), x3(s))]ds

+

∫

t

t0

exp(ρ(t − s))[cos ω(t − s)f3(x1(s), x2(s), x3(s))]ds.
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3. The geometrical properties of homoclinic orbit to saddle focus point

for system (2.5)

In order to obtain some properties of the solutions of the system (2.5) in the

ε-neighbourhood of E, we consider the linearized system of (2.5) at E as follows:

(3.1)

ẏ1(t) = λy1

ẏ2(t) = ρy2 − ωy3

ẏ3(t) = ωy2 + ρy3

Naturally one has

y1(t) = exp(λ(t − t0))y1(t0)(3.2)

y2(t) = exp(ρ(t − t0))y2(t0) cos ω(t− t0) − exp(ρ(t − t0))y3(t0) sinω(t − t0)

y3(t) = exp(ρ(t − t0))y2(t0) sin ω(t− t0) + exp(ρ(t − t0))y3(t0) cos ω(t− t0)

by (2.6).

Therefore

(3.3) y1(t)y1(t0) > 0, |y1(t)| = exp(λ(t − t0))|y1(t0)|.

In addition it follows from (3.2) that

(3.4) y2(t0)y2(t) + y3(t0)y3(t) = exp(ρ(t − t0))(y
2
2(t0) + y2

3(t0)) cos ω(t− t0),

(3.5) y2(t0)y3(t) − y3(t0)y2(t) = exp(ρ(t − t0))(y
2
2(t0) + y2

3(t0)) sin ω(t − t0).

Consequently, we have

(3.4)2 + (3.5)2 = (y2
2(t0) + y2

3(t0))(y
2
2(t) + y2

3(t)) = exp(2ρ(t − t0))(y
2
2(t0) + y2

3(t0))
2

so that

(3.6) y2
2(t) + y2

3(t) = exp(2ρ(t − t0))(y
2
2(t0) + y2

3(t0)).

By the assumption that E is a saddle focus point, system (2.5) is topologically

equivalent to the system (3.1) in the ε-neighbourhood of E as ε is small enough.

Therefore we obtain the following lemma by (3.3) and (3.6).

Lemma 3.1. For any solution x(t) = (x1(t), x2(t), x3(t))
T of the system (2.5) in the

ε-neighbourhood of E where ε is small enough, the followings hold

(1) x1(t)x1(t0) > 0, |x1(t)| = O(exp(λ(t − t0))|x1(t0)|)

and

|x1(t)| ≤ |x1(t0)| for t ≥ t0

|x1(t)| ≥ |x1(t0)| for t ≤ t0;
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(2) |x2
2(t) + x2

3(t)| = O(exp(2ρ(t − t0))|x
2
2(t0) + x2

3(t0)|)

and
x2

2(t) + x2
3(t) ≥ x2

2(t0) + x2
3(t0) for t ≥ t0

x2
2(t) + x2

3(t) ≤ x2
2(t0) + x2

3(t0) for t ≤ t0.

In the following discussion notated a homoclinic orbit of the system (2.5) by

h(t) = (h1(t), h2(t), h3(t))
T , and let ε be small enough and T (ε) be such that

(3.7) |hi(t)| ≤ ε, ∀ |t| ≥ T (ε).

Lemma 3.2. If h(t) is a homoclinic orbit to E for the system (2.5), then

(1) it will cross the plane x1 = 0 as t → −∞ and then stay on it;

(2) it will cross the x1-axis as t → +∞ and then stay on it.

Proof. It would be noted that for t0 < −T (ε) and t < t0, h(t) is in the ε-neighbourhood

of E. For h1(t0) 6= 0, one can see that on the one hand h1(t) → 0 as t → −∞ by (2.7),

on the other hand |h1(t)| ≥ |h1(t0)| as t < t0 based on Lemma 3.1. Hence it must be

held that h1(t0) = 0. This implies that h(t) cross the plane x1 = 0 as t → −∞.

We assert that h1(t) = 0 for t < t0. Otherwise there exists t̄0 < t0 such that

h1(t̄0) 6= 0. Using the same argument in proving h1(t0) = 0, we can also obtain

h1(t̄0) = 0. Consequently, the conclusion (1) in this lemma is valid.

Similarly, for t0 > T (ε) and t > t0, h(t) is also in the ε-neighbourhood of E. For

h2
2(t0) + h2

3(t0) 6= 0, according to Lemma 3.1,

h2
2(t) + h2

3(t) ≥ h2
2(t0) + h2

3(t0) as t > t0.

Meanwhile h2
2(t) + h2

3(t) → 0 as t → +∞ by (2.7). Consequently, it must be held

that h2(t0) = h3(t0) = 0. This implies that h(t) cross the x1-axis as t → +∞.

We can also assert that h2(t) = h3(t) = 0 for t > t0. Otherwise there exists t̄0 > t0

such that h2
2(t̄0)+h2

3(t̄0) 6= 0. Using the same argument in proving h2
2(t0)+h2

3(t0) = 0,

we can obtain h2
2(t̄0) + h2

3(t̄0) = 0. So, the proof of this lemma is finished.

Based on Lemma 3.2, it is easy to obtain the following

Corollary 3.3. If h(t) is a homoclinic orbit to E for the system (2.5) then it will

not cross plane x1 = 0 as t → +∞ and the x1-axis as t → −∞.

4. The main theorem and its applications

Theorem 4.1. Assume that

(4.1) fi(x1, x2, x3) = f
(1)
i

(x1)f
(2)
i

(x2, x3), i = 2.3

where

(4.2) f
(1)
i

(0) = 0, i = 2, 3
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Then no homoclinic orbit to E exists for the system (2.5).

Proof. Suppose that the conclusion of the theorem 1 is not true, one can assume that

there exists a homoclinic orbit h(t) to E for the system (2.5). Noting that (2.8) holds

and fi ∈ C2 (i = 1, 2, 3) we can assume

(4.3) |fi(h1(t), h2(t), h3(t))| ≤ M1 i = 1, 2, 3.

where M1 is a constant and t ∈ (−∞, +∞).

According to Lemma 3.2, we can assume that h1(t̄0) = 0 here t̄0 < −T (ε) is fixed.

Let t0 < t̄0 satisfying

(4.4) t0 + δ < t̄0

where δ = (2K̄+1)π
ω

, and K̄ is some positive integer satisfying

(4.5) exp

(

ρ

(

(2K̄ + 1)π

ω

))

−
8MM1

ρ
> 0.

Set q(t) = h2(t0)h2(t) + h3(t0)h3(t). It is obviously that

(4.6) q(t) → 0 as t → ±∞

by (2.7). And we have q(t) = q1(t) + q2(t) where

(4.7)
q1(t) = exp(ρ(t − t0))(h

2
2(t0) + h2

3(t0)) cos ω(t − t0)

q2(t) = h2(t0)g2(t) + h3(t0)g3(t)

with hi(t) = xi(t), (i = 1, 2, 3).

Let k be a positive integer and tk be

(4.8) tk − t0 = 2kπ/ω.

In such case, we have

(4.9) q1(tk) = exp(ρ(2kπ/ω))(h2
2(t0) + h2

3(t0)).

Suppose that h2
2(t0) + h2

3(t0) 6= 0. One can see that

q2(tk) = h2(t0)

∫

tk

t0

exp(ρ(tk − s))[cos ω(t0 − s)f2 + sin ω(t0 − s)f3]ds(4.10)

+ h3(t0)

∫

tk

t0

exp(ρ(tk − s))[cos ω(t0 − s)f3 − sin ω(t0 − s)f2]ds,

where f2 = f2(h1(s), h2(s), h3(s)) and f3 = f3(h1(s), h2(s), h3(s)).

Let t̄k = tk + δ. It can be deduced that

(4.11) q1(t̄k) = − exp(ρ(t̄k − t0))(h
2
2(t0) + h2

3(t0)),
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and

q2(t̄k) = −h2(t0)

∫

t̄k

t0

exp(ρ(t̄k − s))[cos ω(t0 − s)f2 + sin ω(t0 − s)f3]ds(4.12)

− h3(t0)

∫

t̄k

t0

exp(ρ(t̄k − s))[cos ω(t0 − s)f3 − sin ω(t0 − s)f2]ds.

Set s = τ + δ in (4.12) one has

q2(t̄k) = h2(t0)

∫

tk

t0−δ

exp(ρ(tk − τ))[cos ω(t0 − τ)f2) + sin ω(t0 − τ)f3]dτ(4.13)

+ h3(t0)

∫

tk

t0−δ

exp(ρ(tk − τ))[cos ω(t0 − τ)f3) − sin ω(t0 − τ)f2]dτ.

According to (4.6),

(4.14) q(tk) − q(t̄k) → 0 as k → +∞.

This implies that

(4.15) lim
K→+∞

[q1(tk) − q1(t̄k) − (q2(t̄k) − q2(tk))] = 0.

It follows from (4.9) and (4.11) that

(4.16) q1(tk) − q1(t̄k) = exp(ρ(tk − t0))(exp(δ) + 1)(h2
2(t0) + h2

3(t0)).

Based on (4.10) and (4.13) we can estimate for q2(t̄k) − q2(tk) that

(4.17) |q2(t̄k) − q2(tk)| ≤
8M1M

ρ
exp(ρ(tk − t0)) + |G(tk)|

by (2.8) and (4.3) where

G(tk) = h2(t0)

∫

t0

t0−δ

exp(ρ(tk − τ))[cos ω(t0 − τ)f̄2 + sin ω(t0 − τ)f̄3]dτ

+ h3(t0)

∫

t0

t0−δ

exp(ρ(tk − τ))[cos ω(t0 − τ)f̄3 − sin ω(t0 − τ)f̄2]dτ,

here f̄2 = f2(h1(τ̄ ), h2(τ̄), h3(τ̄ )), f̄3 = f3(h1(τ̄ ), h2(τ̄), h3(τ̄ )) and τ̄ = τ + δ.

One can see that τ̄ ∈ (t0, t0 + δ), it implies that h1(τ̄) = 0 by (4.4) as Lemma 3.2

is employed. Hence G(tk) = 0 due to (4.1) and (4.2).

Now we have

(4.16) − (4.17) ≥ exp(ρ(tk − t0))(h
2
2(t0) + h2

3(t0))

[

exp(ρδ) −
8MM1

ρ

]

(4.18)

→ +∞ as k → +∞

in terms of (4.5).

It is obviously that (4.18) contradicts (4.15). Consequently, the conclusion of the

Theorem 4.1 is held.
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From the proof of the Theorem 4.1 it is easy to obtain the following:

Corollary 4.2. If f2 = f3 = 0 then the system (2.5) has no homoclinic orbit to E.

Now consider Lorenz-type system

(4.19)

ẋ1 = a(x2 − x1)

ẋ2 = cx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

with a = −3, c = 28 and b = 8/3. The Jacobi matrix at equilibrium E = (0, 0, 0)T of

the system (4.19) is

J =







3 −3 0

28 −1 0

0 0 −8/3







The computation results show that the eigenvalues of J are −2.6667, 1±8.9443i.

Hence E is a saddle focus point. Set x = (x1, x2, x3)
T and y = (y1, y2, y3)

T .

Let y = Wx where

W =







0 0.744 0

2.3292 −0.1664 0

0 0 1







We can obtain

(4.20)

ẏ1 = y1 + 8.9443y2 − 0.744y3(0.096y1 + 0.4293y2)

ẏ2 = −8.9443y1 + y2 + 0.1664y3(0.096y1 + 0.4293y2)

ẏ3 = −2.6667y3 + 1.344y1(0.096y1 + 0.4293y2)

Reset y3 = x1, y1 = x2 and y2 = x3, the system (4.20) takes into the form of the

system (2.5) with λ = −2.6667, ρ = 1 and ω = 8.9443. In particular,

f2(x1, x2, x3) = −0.744x1(0.096x2 + 0.4293x3),

f3(x1, x2, x3) = 0.1664x1(0.096x2 + 0.4293x3).

It is easy to see that f2 and f3 satisfy the assumptions of the theorem 4.1. Con-

sequently the system (4.20) has no homoclinic orbit.

From Theorem 4.1, we can give the following:

Corollary 4.3. The necessary conditions for the system (2.5) to have homoclinic

orbit to E are that fi (i = 2, 3) cannot be taken into the form given by (4.1) and

(4.2).
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5. Conclusion

In this paper, the conditions for third-order ODE systems with C2 vector field to

have homoclinic orbit to saddle focus are studied. The relative result is given in the

Corollary 4.3.

Meanwhile the result is applied to Lorenz-type system with saddle focus point.

It would be noted that any Lorenz-type system with saddle focus point can be trans-

formed into the form like (4.20). So, we can assert that any Lorenz-type system

satisfied 4.1 has no homoclinic orbit to saddle focus. This conclusion is also suitable

to Chen-type system and so on.
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