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ABSTRACT. Existence and comparison results of the linear and nonlinear Riemann-Liouville frac-

tional differential equations of order q, 0 < q < 1, are recalled and modified where necessary. Using

upper and lower solutions, an extension of the generalized quasilinearization method is developed

for decomposed nonlinear fractional differential equations of order q containing generalized convex,

concave, and nondifferentiable partitions. Quadratic convergence, and generalizations thereof, to

the unique solution is proved via weighted sequences.

AMS (MOS) Subject Classification. 34A08, 34A34, 34A45.

1. INTRODUCTION

Fractional differential equations have various applications in widespread fields of

science, such as in engineering [10], chemistry [11, 19, 20], physics [3, 4, 12], and others

[13, 14]. In the majority of the literature existence results for Riemann-Liouville

fractional differential equations are proven by a fixed point method. Initially we

will recall existence by lower and upper solution method, which will be useful to

developing our main results. Despite there being a number of existence theorems

for nonlinear fractional differential equations, much as in the integer order case, this

does not necessarily imply that calculating a solution explicitly will be routine, or

even possible. Therefore, it may be necessary to employ an iterative technique to

numerically approximate a needed solution. In this paper we construct such a method.

The iterative technique we construct is an extension of the generalized quasilin-

earization method for the nonlinear Riemann-Liouville fractional differential equation

of order q, where 0 < q < 1. The quasilinearization method was first developed in

[1, 2, 18], but the method we construct is more closely related to those found in [17],

that is a generalized quasilinearization method via lower and upper solutions. This
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method is very similar to the monotone method in that we construct monotone se-

quences from linear equations based on upper and lower solutions, which converge

uniformly to the unique solution of the nonlinear equation. The difference is that

the quasilinearization method employs a stronger hypothesis, but this results in a

stronger result than the monotone method. In particular, for the quasilinearization

method we require the nonlinear forcing function to be convex (or concave) as op-

posed to merely one-sided Lipschitzian. In the process, we are guaranteed that the

constructed sequences converge quadradically to the unique solution. Note, unique-

ness is not implied generally with the monotone method.

There are notable complications that arise when developing the quasilineariza-

tion method for Riemann-Liouville fractional differential equations. First of all, the

iterates of the constructed sequences are solutions to the linear fractional differential

equation with variable coefficients. The solution of this equation is quite unwieldy,

therefore we will recall existence, comparison, and inequality results for this case,

including a generalized Gronwall type inequality, which will be paramount to our

main result. Another complication that stems from using the Riemann-Liouville de-

rivative is that, in general, the sequences we construct, {αn}, {βn} do not converge

uniformly to the unique solution, but the weighted sequences {t1−qαn}, {t
1−qβn} con-

verge uniformly and quadratically to t1−qx, where x is the unique solution of the

original equation.

We note that basic quasilinearization techniques have been established for the

standard nonlinear Riemann-Liouville fractional differential equation in [5], that is,

the cases where the nonlinear function f is convex, concave, and a final case where f

is neither convex nor concave but where there exists a function φ such that f + φ is

convex. The further case where the nonlinear function is not necessarily convex nor

concave, but can be split into two functions, say f + g, such that f is convex and g

is concave was considered in [9]. In this paper we take this generalization one step

further and split the nonlinear function into three functions f + g+h, where f and g

can be made convex and concave respectively. Much like in [5] this means there exist

functions φ and ψ such that f + φ and g + ψ are convex and concave respectively.

What makes our method an extension of the generalized quasilinearization method

seen in [9] is that the function h is neither concave, convex, nor even differentiable.

In our main results we assume that h is only Lipschitz, which fundamentally changes

the typical quasilinearization method described above. In our first method the iter-

ates are not even constructed by linear solutions, which is contrary to both methods

described above, but ensures that convergence to the unique solution is quadratic. In

our second method we are able to construct linear iterates, but at the cost of quadratic

convergence, in this case convergence is only semi-quadratic. In our final case, we
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relax the hypothesis on h and assume it is only nonincreasing. In doing so we intro-

duce intertwined sequences and convergence is only weakly quadratic. Due to these

complexities, the methods we construct herein are not strictly quasilinearizations,

but can instead be seen as bridging generalizations of both the quasilinearization and

monotone methods.

2. PRELIMINARY RESULTS

In this section we consider results regarding the Riemann-Liouville (R-L) differ-

ential equations of order q, 0 < q < 1. Specifically, we recall existence and comparison

results which will be used in our main result. In the next section, we will apply these

preliminary results to develop extensions of the generalized quasilinearization method

for R-L fractional differential equations of order q. Note, for simplicity we only con-

sider results on the interval J = (0, T ], where T > 0. Further, we will let J0 = [0, T ],

that is J0 = J̄ .

Definition 2.1. Let p = 1 − q, a function φ(t) ∈ C(J,R) is a Cp function if tpφ(t) ∈

C(J0,R). The set of Cp functions is denoted Cp(J,R). Further, given a function

φ(t) ∈ Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2. Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
tφ(t) =

1

Γ(1 − q)

d

dt

∫ t

0

(t− s)−qφ(s)ds,

and Iq
t φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iq
t φ(t) =

1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different, or ambiguous, we

will write out the definition explicitly. The next definition is related to the solution

of linear R-L fractional differential equations and is also of great importance in the

study of the R-L derivative.

Definition 2.3. The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β,

is defined as

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

The next result gives us that the q-th R-L integral of a Cp continuous function

is also a Cp continuous function. This result will give us that the solutions of R-L

differential equations are also Cp continuous.
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Lemma 2.4. Let f ∈ Cp(J,R), then Iq
t f(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp

continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R
+ can be found in [8]. Now we consider

results for the nonhomogeneous linear R-L differential equation,

(2.1) Dq
tx(t) = y(t)x(t) + z(t),

with initial condition

tpx(t)
∣∣
t=0

= x0/Γ(q),

where x0 is a constant, y ∈ C(J0,R), and z ∈ Cp(J,R).

Theorem 2.5. If y ∈ C(J0,R) and z ∈ Cp(J,R) then equation (2.1) has a unique

solution x ∈ Cp(J,R), given explicitly by

x(t) =
∞∑

k=0

x0

Γ(q)
T k

y

[
tq−1

]
+ T k

y

[
Iq
t z(t)

]
,

which converges uniformly on J and where Ty is the operator defined by

Tyφ(t) = Iq
t y(t)φ(t).

The proof of this theorem can be found in [6, 7], with the current refinements

found in [5]. Note that if z(t) = 0 for all t ∈ J then we get that

x(t) =
x0

Γ(q)

∞∑

k=0

T k
y

[
tq−1

]
.

In many cases we may have an explicit form of y that may prove too unwieldy to

place in a subscript. In this case we will use the following notation

E(y, f) =
∞∑

k=0

T k
y

[
f
]
,

and since the case where f = tq−1 occurs so often we will define E with a single

parameter to be this case. That is E(y) = E(y, tq−1). Therefore the solution of (2.1)

can be written as

(2.2) x(t) =
x0

Γ(q)
E(y) + E(y, Iq

t z).

Further, if y is identically a constant, say λ, it can be shown that (2.2) can be

expressed as

x(t) = x0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

This is the result discussed in [16]; hence Theorem 2.5 generalizes the constant coef-

ficient case, as expected.

Next, we recall a result we will utilize extensively in our proceeding compari-

son and existence results, and likewise in the construction of the quasilinearization
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method. We note that this result is similar to the well known comparison result found

in literature, as in [16], but we do not require the function to be Hölder continuous

of order λ > q.

Lemma 2.6. Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and

m(t) ≤ 0 for t ∈ (0, t1]. Then

Dq
tm(t)

∣∣
t=t1

≥ 0.

The proof of this lemma can be found in [8], along with further discussion as to

why and how we weaken the Hölder continuous requirement of this known comparison

result. We use this lemma in the proof of the later main comparison result, which

will be critical in the construction of the quasilinearization method. First, we recall

the nonlinear R-L fractional differential equation.

Dq
tx = f(t, x),(2.3)

tpx(t)
∣∣
t=0

= x0/Γ(q),

where f ∈ C(J0 × R,R) and x0 is a constant. Note that a solution x ∈ Cp(J,R) of

(2.3) also satisfies the equivalent R-L integral equation

(2.4) x(t) =
x0

Γ(q)
tq−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds.

Thus, if f ∈ C(J0 × R,R) then (2.3) is equivalent to (2.4). See [13, 16] for details.

Now we will recall a Peano type existence theorem for equation (2.3).

Theorem 2.7. Suppose f ∈ C(R0,R) and |f(t, x)| ≤M on R0, where

R0 = {(t, x) : |tpx(t) − x0| ≤ η, t ∈ J0}

Then the solution of (2.3) exists on J .

This result is presented in [16], and in [8] it was proven that the solution can be

extended to all of J , and the set R0 was modified for our succeeding results regarding

existence by method of upper and lower solutions. In the direction of this result

we will consider the following comparison result, which will in turn yield a general

Gronwall type inequality.

Theorem 2.8. Let f ∈ C(J0 × R,R) and let v, w ∈ Cp(J,R) be lower and upper

solutions of (2.3), i.e.

Dq
t v ≤ f(t, v),

tpv(t)
∣∣
t=0

= v0/Γ(q) ≤ x0/Γ(q),

and

Dq
tw ≥ f(t, w),
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tpw(t)
∣∣
t=0

= w0/Γ(q) ≥ x0/Γ(q).

If f satisfies the following Lipschitz condition

f(t, x) − f(t, y) ≤ L(x− y), when x ≥ y,

where L > 0, then v(t) ≤ w(t) on J .

The proof follows as in [16] with appropriate modifications, specifically we use

Lemma 2.6 and do not require local Hölder continuity of order λ > q. Next, we

present a Gronwall type inequality for R-L fractional differential equations. A similar

result in terms of fractional integral equations can be found in [7].

Theorem 2.9. Let v, z ∈ Cp(J,R) and y ∈ C(J0,R
+), and suppose that

Dq
t v ≤ y(t)v(t) + z(t).

Then

v(t) ≤
v0

Γ(q)
E(y) + E(y, Iq

t z).

The proof follows directly from Theorem 2.5 and Theorem 2.8. If y is identically

a constant λ ≥ 0, then we get the following corollary.

Corollary 2.10. Let v, z ∈ Cp(J,R) and let λ ≥ 0 be a constant, and suppose that

Dq
t v ≤ λv(t) + z(t),

then

v(t) ≤ v0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

Now, we will recall a result that gives us existence of a solution to (2.3) via lower

and upper solutions.

Theorem 2.11. Let v, w ∈ Cp(J,R) be lower and upper solutions of (2.3) such that

v(t) ≤ w(t) on J and let f ∈ C(Ω,R), where Ω is defined as

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J0}.

Then there exists a solution x ∈ Cp(J,R) of (2.3) such that v(t) ≤ x(t) ≤ w(t) on J .

The proof of this Theorem can be found in [8]. We also note a uniqueness result

here which is comparable to the analogous result for ordinary differential equations.

As one might expect, if f satisfies the Lipschitz condition found in Theorem 2.8,

then the solution x of (2.3) is unique. We mention this result here since it will be

necesessary in the construction of the quasilinearization method.
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3. EXTENSION OF GENERALIZED QUASILINEARIZATION

In this section we develop iterative techniques that extend the generalized quasi-

linearization method. Our methods will construct iterates that will converge uni-

formly to the solution of the following nonlinear IVP,

Dq
tx = f(t, x) + g(t, x) + h(t, x),(3.1)

tpx(t)
∣∣
t=0

= x0/Γ(q).

For convenience we will denote N(t, x) = f(t, x) + g(t, x) + h(t, x). For our purposes

we will assume that f, g are twice differentiable in x and can be made convex and

concave respectively. Here we further extend the method by supposing that h is not

twice differentiable in x, but is merely Lipschitz.

For our first iterative method we consider the case where h only attains a right-

sided Lipschitz condition. In this case we construct sequences from solutions of non-

linear fractional IVPs. From here we inductively show monotonicity, then that con-

vergence of the tp-weighted sequences is uniform and quadratic. Though it is contrary

to the typical procedure to use nonlinear iterates for the quasilinearization method, in

this case it ensures the weighted sequences converge quadratically, which is an integral

precept of quasilinearization. With these nonlinear sequences comes a more involved

procedure as we must use Theorem 2.11 at almost every step to prove existence as we

proceed, which will not be necessary in our later methods as we will construct linear

iterates there, but we will also lose quadradic convergence.

Theorem 3.1. Assume that

(A1) α0, β0 ∈ Cp(J,R) are lower and upper solutions of (3.1) with α0 ≤ β0 on J .

(A2) N ∈ C(J0×Ω,R), fx, fxx, gx, gxx, exist, are continuous for (t, x) ∈ J0×Ω, where

Ω = {x ∈ Cp(J,R) |α0 ≤ x ≤ β0}.

Further suppose h satisfies the Lipschitz condition

h(t, x) − h(t, y) ≤ k(x− y),

whenever x ≥ y.

Then there exist monotone sequences {αn}, {βn}, such that {tpαn} and {tpβn}

converge uniformly and quadradically to tpx, where x is the unique solution of (3.1).

Proof. A main construct of this method is that we need two functions that when

added to f and g yield convex and concave functions respectively. So let φ, ψ be in

C0,2(J0 × Ω,R) such that φxx ≥ 0, ψxx ≤ 0 and satisfy

(3.2) fxx(t, x) + φxx(t, x) ≥ 0, gxx(t, x) + ψxx(t, x) ≤ 0.

We note, that due to (A2) it is always possible to find such functions, and in Remark

3.2 below we will describe how one can construct such functions.
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For convenience let F (t, x) = f(t, x) + φ(t, x) and G(t, x) = g(t, x) + ψ(t, x). In

light of (3.2) we have that

f(t, x) ≥ f(t, y) + Fx(t, y)(x− y) + φ(t, y) − φ(t, x),

g(t, x) ≤ g(t, y) +Gx(t, y)(x− y) + ψ(t, y) − ψ(t, x),(3.3)

for x ≥ y and x, y ∈ Ω. It also follows that

N(t, x) −N(t, y) ≤ L(x− y),

for (t, x) ∈ J0 × Ω. Further, since N is Lipschitz (3.1) has a unique solution x ∈ Ω.

In the direction of constructing the monotone sequences consider the fractional

differential equation

Dq
tu = f(t, α0) + g(t, α0) + h(t, u)

+ [Fx(t, α0) +Gx(t, β0) − φx(t, β0) − ψx(t, α0)](u− α0)

= U(t, u;α0, β0),(3.4)

tpu(t)
∣∣
t=0

= x0/Γ(q).

For simplicity we introduce the following notation, for any α, β ∈ Ω let

Λ(α, β) = [Fx(t, α) +Gx(t, β) − φx(t, β) − ψx(t, α)].

We wish to show that a solution to (3.4) exists on Ω, so consider

Dq
tα0 ≤ N(t, x) = U(t, α0;α0, β0).

Thus, α0 is a lower solution of (3.4). Considering a similar argument for β0 and

utilizing (3.3), the Mean Value Theorem, and the monotonicity of φx, ψ yields,

Dq
tβ0 ≥ f(t, α0) + g(t, α0) + h(t, β0) + [Fx(t, α0) −Gx(t, β0)](β0 − α0)

+ φ(t, α0) − φ(β0) − ψ(t, β0) + ψ(t, α0)

= f(t, α0) + g(t, α0) + h(t, β0)

+ [Fx(t, α0) −Gx(t, β0) − φ(t, ξ) − ψ(t, η)](β0 − α0)

≥ U(t, β0;α0, β0),

where α0 ≤ ξ, η ≤ β0. Thus, β0 is an upper solution of (3.4), and therefore, by

Theorem 2.11, (3.4) has a solution α1 existing on J with α0 ≤ α1 ≤ β0, which is

unique since U(t, u;α0, β0) is Lipschitz in u.

Next, we consider the following fractional differential equation, which will also

aid in the construction of our sequences.

Dq
t v = f(t, β0) + g(t, β0) + h(t, v) + Λ(α0, β0)(v − β0)

= V (t, v;α0, β0),(3.5)

tpv(t)
∣∣
t=0

= x0/Γ(q).
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We note that one can show that (3.5) has a unique solution β1, with α0 ≤ β1 ≤ β0

on J in the same manner as the previous case.

Now we will show that α1 ≤ x ≤ β1 on J . Once again utilizing (3.3), the Mean

Value Theorem, and the monotonicity of φx, ψ, and Gx we obtain

Dq
tα1 ≤ N(t, α1) + [Gx(t, β0) −Gx(t, α1) − φx(β0) − ψ(t, α0)](α1 − α0)

+ φ(t, α1) − φ(t, α0) + ψ(t, α1) − ψ(t, α0)

≤ N(t, α1) + [φx(t, ξ) − φx(β0) + ψ(t, η) − ψ(t, α0)](α1 − α0)

≤ N(t, α1),

where α0 ≤ ξ, η ≤ α1. Implying that α1 is a lower solution of (3.1). Further note

by a similar argument we can show that β1 is an upper solution of (3.1); thus, by

Theorem 2.8, α0 ≤ α1 ≤ x ≤ β1 ≤ β0 on J . For the construction of the sequences in

our iterative technique we will define each iterate to be the solution of the fractional

differential equations

Dq
tαn+1 = U(t, αn+1;αn, βn),(3.6)

Dq
tβn+1 = V (t, βn+1;αn, βn).(3.7)

tpαn+1

∣∣
t=0

= tpβn+1

∣∣
t=0

= x0/Γ(q).

Letting the previous work be our basis step, suppose that up to some k ≥ 1, that

αk and βk exist, are unique, and that αk−1 ≤ αk ≤ x ≤ βk ≤ βk−1 on J . Now

we will show that αk+1 and βk+1 exist on J . Note that uniqueness follows from the

Lipschitzian nature of M and K. To do so note that

Dq
tαk ≤ N(t, αk) + [φx(t, ξ) − φx(t, βk−1) + ψx(t, η) − ψx(t, αk−1)](αk − αk−1)

≤ N(t, αk) = U(t, αk;αk, βk),

where αk−1 ≤ ξ, η ≤ αk. Implying αk is a lower solution of (3.6). Next, we can show

that x is an upper solution of (3.6). To do so we use similar arguments to the ones

used above,

Dq
tx ≥ f(t, αk) + g(t, αk) + h(t, x)

+ [Fx(t, αk) +Gx(t, x) − φx(ξ) − ψx(η)](x− αk)

≥ f(t, αk) + g(t, αk) + h(t, x) + Λ(αk, βk)(x− αk)

= U(t, x;αk, βk),

where αk ≤ ξ, η ≤ x. Thus, by Theorem 2.11 the solution of (3.6) for k + 1 exists, is

unique, and is such that αk ≤ αk+1 ≤ x on J . By a similar argument we can show

that x ≤ βk+1 ≤ βk on J ; thus by induction we have that αn−1 ≤ αn ≤ x ≤ βn ≤ βn−1

on J for all n ≥ 1.
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Now we will show that the weighted sequences of continuous extensions {tpαn},

{tpβn} converge uniformly to tpx by an application of the Arzelá-Ascoli Theorem. We

have that these sequences are uniformly bounded since

|tpαn| ≤ |tp(αn − α0)| + |tpα0| ≤ |tp(β0 − α0)| + |tpα0|,

for all n ≥ 1, which is also true for {tpβn}. Then we get that the sequences are

equicontinuous by following the same process as found in [21]. Therefore {tpαn} and

{tpβn} converge monotonically and uniformly on J0. We claim that both sequences

converge to tpx. To show this suppose tpαn → tpα on J0, then we have that αn → α

pointwise on J . Now, if we consider the integral form of αn+1 we have that

tpαn+1 =
x0

Γ(q)
+

tp

Γ(q)

∫ t

0

(t− s)q−1
[
f(s, αn) + g(s, αn) + h(s, αn+1)

]
ds

+
tp

Γ(q)

∫ t

0

(t− s)q−1Λ(αn, βn)(αn+1 − αn)ds,

which will converge uniformly to

tpα =
x0

Γ(q)
+

tp

Γ(q)

∫ t

0

(t− s)q−1
[
f(s, α) + g(s, α) + h(s, α)

]
ds

on J0. Implying that α = x, and similarly we can show that tpβn → tpx.

Finally, we will show that {tpαn}, {t
pβn} converge quadradically on J0. To do

so, first let An = x − αn, and Bn = βn − x. Then by the continuity of F,G, φ

and ψ on C(J0 × Ω,R), there exist continuous functions F ,G,Φ, and Ψ such that

F(t, tpx) = F (t, x), G(t, tpx) = G(t, x), Φ(t, tpx) = φ(t, x), and Ψ(t, tpx) = ψ(t, x)

which gives us that

Fxx(t, x) = t2pFxx(t, t
px),

and the same result for the remaining three functions. Using (3.3), the monotonicity

of F,G, φ, ψ, and the Mean Value theorem we obtain

Dq
tAn+1 ≤ h(t, x) − h(t, αn+1) + [Gx(t, αn) + Fx(t, x)]An − φ(t, x) + φ(t, αn)

+ ψ(t, αn) − φ(t, x) − Λ(αn, βn)(αn+1 − αn)

≤ (K + Λ(αn, βn))An+1 + [Fx(t, x) − Fx(αn) +Gx(t, αn) −Gx(t, βn)]An

+ [φx(t, βn) − φx(t, ξ1) + ψ(t, αn) − ψ(t, η1)]An

≤ (k +m)An+1 + Fxx(t, ξ2)A
2
n −Gxx(t, η2)An(An +Bn)

+ [φx(t, βn) − φx(t, αn) + ψ(t, αn) − ψ(t, x)]An

= (k +m)An+1 + [Fxx(t, t
pξ2) − Ψxx(t, t

pη3)]t
2pA2

n

+ [Φxx(t, t
pξ3) − Gxx(t, t

pη2)]t
2pAn(An +Bn)

≤ (k +m)An+1 +Rt2pA2
n + (S/2)t2p(3A2

n +B2
n),
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where αn ≤ ξ1, ξ2, η1, η3 ≤ x and αn ≤ ξ3, η2 ≤ βn. Further, m, R, and S are bounds

of Λ, Fxx − Ψxx and Φxx − Gxx on J respectively. Thus, by Theorem 2.10 we have

that,

tpAn+1 ≤
tp

2

∫ t

0

(t− s)q−1Eq,q

(
[k +m](t− s)q

)
s2p

[
(2R + 3S)A2

n + SB2
n

]
ds

≤
tp

2

[
(2R + 3S)‖tpAn‖

2 + S‖tpBn‖
2
] ∫ t

0

∞∑

i=0

(k +m)i(t− s)qi+q−1

Γ(qi+ q)
ds

≤
tpEq,1([k +m]tq)

2(k +m)

[
(2R + 3S)‖tpAn‖

2 + S‖tpBn‖
2
]
.

Here ‖·‖ is the uniform norm on C(J0,R). Thus we have that {tpαn} converges

quadradically in the following way,

‖tp(x− αn+1)‖ ≤
T pẼ

2(k +m)

[
(2R+ 3S)‖tp(x− αn)‖2 + S‖tp(βn − x)‖2

]
,

where

Ẽ = Eq,1([k +m]T q).

Similarly, we can show that

‖tp(βn+1 − x)‖ ≤
T pẼ

2(k +m)

[
(2S + 3R)‖tp(βn − x)‖2 +R‖tp(x− αn)‖2

]
.

Thus finishing the proof.

Remark 3.2. We note that it is always possible to find a φ and ψ to satisfy (3.2).

For example if f(t, x) is not convex, then as we did previously, we note there exists a

continuous function such that f̃(t, tpx) = f(t, x). Now let A > 0 be such that

max
J0×Ω

{f̃xx(t, t
px)} = −A < 0.

Then we need only choose

φ(t, x) = At2px2,

in order to meet the requirements of (3.2).

In our next method we construct iterates from solutions of linear fractional IVPs;

in doing so, we develop a method that more closely resembles the quasilinearization

method, but we also lose quadratic convergence for semi-quadratic convergence. In

this case we must also strengthen the condition of h and assume it attains a two-sided

Lipschitz condition. Though convergence will not be as fast in this case, in practice

it should be far easier to implement as the iterates will be linear, and thus can be

computed explicitly, which may not be the case in Theorem 3.1. This method also

acts as a generalization of both the quasilinearization and monotone methods. We

will discuss this in more detail following the proof.
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Theorem 3.3. Suppose hypotheses (A1) and (A2) from Theorem 3.1 are satisfied. If

h satisfies the two-sided Lipscitz condition

−k(x − y) ≤ h(t, x) − h(t, y) ≤ k(x− y),

for x ≥ y, then there exist monotone sequences {αn}, {βn}, such that {tpαn} and

{tpβn} converge uniformly and semi-quadradically to tpx, where x is the unique solu-

tion of (3.1).

Proof. The proof of this theorem follows in much the same way as Theorem 3.1. The

sequences constructed in this case are solutions of the linear fractional differential

equations

Dq
tαn+1 = N(t, αn) + [Λ(αn, βn) − k](αn+1 − αn),

Dq
tβn+1 = N(t, βn) + [Λ(αn, βn) − k](βn+1 − βn),

tpαn+1

∣∣
t=0

= tpβn+1

∣∣
t=0

= x0/Γ(q),

where Λ is defined as previously. Monotonicity and uniform convergence are proved

in much the same way as the previous theorem, but we will show an example of where

the two-sided Lipschitz condition is required. We shall consider the proof showing

that α1 ≤ x. To do so note that (3.3) is still true in this case, using this with

monotonicity, the Lipschitian nature of h, and the Mean Value Theorem we have

that

Dq
tx ≥ f(t, α0) + g(t, α0) + h(t, x)

+ [Fx(t, α0) +Gx(t, x) − φ(t, ξ) − ψ(t, η)](x− α0)

≥ N(t, α0) + h(t, x) − h(t, α0) + Λ(α0, β0)(x− α0)

≥ N(t, α0) + [Λ(α0, β0) − k](x− α0),

where A0 ≤ ξ, η ≤ x. This implies by Theorem 2.8 that α1 ≤ x.

Now we will show that convergence is semi-quadratic. To do so, let An, Bn, F ,

G, Φ, Ψ be defined as previously. Then using (3.3), monotonicity, the Lipschitzian

nature of h, and the Mean Value theorem we obtain

Dq
tAn+1 ≤ [Fx(t, x) +Gx(t, αn) − φx(t, ξ1) − φx(t, η1) + k]An

− [Λ(αn, βn) − k](An+1 −An)

≤ Fxx(t, ξ2)A
2
n −Gxx(t, η2)An(An +Bn) + [Λ(αn, βn) − k]An+1

+ [φ(t, βn) − φ(t, αn) + φ(t, αn) − φ(t, x) + 2k]An

≤ [Fxx(t, ξ2) − Ψxx(t, η3)]t
2pA2

n + [Φ(t, ξ3) − Gxx(t, η2)]t
2pAn(An +Bn)

+ [m− k]An+1 + 2kAn

≤ Rt2pA2
n + (S/2)t2p(3A2

n +B2
n) + [m− k]An+1 + 2kAn.
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Where αn ≤ ξ1, ξ2, η1, η3 ≤ x and αn ≤ ξ3, η2 ≤ βn, and where m, R, and S are

bounds of Λ, Fxx − Ψxx and Φxx − Gxx on J respectively. By Theorem 2.10 we have

tpAn+1 ≤ tp
∫ t

0

(t − s)q−1Eq,q

(
[m − k](t − s)q

)[
s2p[(R + 3

2
S)A2

n + 1
2
SB2

n] + 2kAn

]
ds

≤
tpEq,1([m − k]tq)

2(m − k)

[
(2R + 3S)‖tpAn‖

2 + S‖tpBn‖
2
]

+ 2ktp‖tpAn‖
∞∑

ℓ=0

(m − k)ℓ

Γ(ℓq + q)

∫ t

0

(t − s)ℓq+q−1sq−1ds

≤
T pĒ

2(m − k)

[
(2R + 3S)‖tpAn‖

2 + S‖tpBn‖
2
]
+

2ktp‖tpAn‖

m − k

∞∑

ℓ=1

(m − k)ℓΓ(q)

Γ(ℓq + q)
tℓq+q−1

≤
T pĒ

2(m − k)

[
(2R + 3S)‖tpAn‖

2 + S‖tpBn‖
2
]
+

2k‖tpAn‖

m − k
Eq,q([m − k]tq),

where

Ē = Eq,1([m− k]T q).

Thus, {tpαn} converges semi-quadratically in the following sense

‖tp(x− αn+1)‖ ≤ E1

[
(2R + 3S)‖tp(x− αn)‖2 + S‖tp(βn − x)‖2

]
+ 2kE2‖t

p(x− αn)‖,

where

E1 =
T pĒ

2(m− k)
, and E2 =

Eq,q([m− k]T q)

m− k
.

Similarly, we can show that {tpβn} converges semi-quadratically in the following sense,

‖tp(βn+1 − x)‖ ≤ E1

[
(2S + 3R)‖tp(βn − x)‖2 +R‖tp(x− αn)‖2

]
+ 2kE2‖t

p(βn − x)‖.

This finishes the proof.

We note that if h = 0 in the previous method, then convergence will be quadratic

and we will have the quasilinearization method as seen in [9]. Likewise, if f + g = 0,

we will have a special case of the monotone method where convergence to the unique

solution is linear. Therefore, Theorem 3.3 can be seen as a generalization of both the

quasilinearization and monotone methods.

In the next technique we extend this idea a little further. Here, we assume that

h is only nonincreasing in x. The iterates are still constructed from the solution of

linear fractional IVPs, but the sequences will be intertwined. That is,

α2n ≤ β2n+1 ≤ x ≤ α2n+1 ≤ β2n

on J for all n ≥ 0. For this method to work we must add the assumption that

α0 ≤ β1 and α1 ≤ β0. Further, while convergence of the weighted sequences will

still be uniform, it will only be weakly quadratic. This method will act as a further

generalization of both the quasilinearization and monotone methods.
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Theorem 3.4. Suppose hypotheses (A1) and (A2) from Theorem 3.1 are satisfied. If

h is nonincreasing in x, then there exist intertwined sequences {αn} and {βn}, such

that

α0 ≤ β1 ≤ α2 ≤ ... ≤ β2n−1 ≤ α2n ≤ x ≤ β2n ≤ α2n−1 ≤ · · · ≤ β2 ≤ α1 ≤ β0,

provided α0 ≤ β1 and α1 ≤ β0. The weighted sequences {tpα2n, t
pβ2n+1}, {t

pβ2n, t
pα2n+1}

converge uniformly and monotonically to tpx, where x is the unique solution of (3.1).

Further, convergence of these tp-weighted sequences is weakly quadratic.

Proof. The sequences we construct in this case are unique solutions of the linear

fractional differential equations,

Dq
tα2n = N(t, α2n−1) + Λ(α2n−1, β2n−1)(α2n − α2n−1)

Dq
tα2n+1 = N(t, α2n) + Λ(β2n, α2n)(α2n+1 − α2n)

Dq
tβ2n = N(t, β2n−1) + Λ(α2n−1, β2n−1)(β2n − β2n−1)

Dq
tβ2n+1 = N(t, β2n) + Λ(β2n, α2n)(β2n+1 − β2n),

tpαn

∣∣
t=0

= tpβn

∣∣
t=0

= x0/Γ(q),

where α0, β0 are given in the hypothesis. First, note that N is still Lipschitz in this

case, implying that (3.1) has a unique solution, x, on J . Further, (3.3) is true in this

case as well. We also note that Λ has a mixed monotonicity property, that is, if ξ ≤ η

then by the monotonicity properties of Fx, Gx, φx, and ψx we get

(3.8) Λ(ξ, y) ≤ Λ(η, y), and Λ(y, ξ) ≥ Λ(y, η).

This property will simplify some of our following arguments.

We will begin by showing that x ≤ α1, to do so using similar arguments employed

previously and the fact that h is nonincreasing in x we can show that

Dq
tx ≤ N(t, α0) + Λ(β0, α0)(x− α0),

which by Theorem 2.8 implies that x ≤ α1 on J . Similarly we can show that β1 ≤ x

on J , giving us that α0 ≤ β1 ≤ x ≤ α1 ≤ β0 on J . Using this as a basis step suppose

α2k ≤ β2k+1 ≤ x ≤ α2k+1 ≤ β2k on J is true up to some k ≥ 0. Using previous

arguments, we can show that α2k+2 ≤ x ≤ β2k+2 on J . To show β2k+1 ≤ α2k+2, we

use previous arguments along with (3.8) to obtain

Dqβ2k+1 ≤ N(t, α2k+1) + Λ(β2k+1, α2k+1)(β2k+1 − β2k)

+ [Fx(t, β2k) +Gx(t, α2k+1) − φx(t, ξ) − ψx(t, η)](β2k − α2k+1)

≤ N(t, α2k+1) + Λ(β2k+1, α2k+1)(β2k+1 − α2k+1),

where α2k+1 ≤ ξ, η ≤ β2k, which by Theorem 2.8 implies that β2k+1 ≤ α2k+2 on

J . Similarly, we can show that β2k+2 ≤ α2k+1 on J . Further, we can show that
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β2k+3 ≤ x ≤ α2k+3 on J , and using similar arguments as before we have that

Dq
tβ2k+3 ≥ N(t, α2k+1) + Λ(α2k+1, β2k+1)(β2k+3 − β2k+2)

+ [Fx(t, α2k+1) +Gx(β2k+1) − φx(t, ξ) − ψx(t, η)](β2k+2 − α2k+1)

≥ N(t, α2k+1) + Λ(α2k+1, β2k+1)(β2k+3 − α2K+1),

where β2k+2 ≤ ξ, η ≤ α2k+1. So by Theorem 2.8, we have that α2k+2 ≤ β2k+3 on J .

Similarly, we can show that α2k+3 ≤ β2k+2 on J , thus finally giving us that

α2k ≤ β2k+1 ≤ α2k+2 ≤ β2k+3 ≤ x ≤ α2k+3 ≤ β2k+2 ≤ α2k+1 ≤ β2k

on J , which inductively implies that α2n ≤ β2n+1 ≤ x ≤ α2n+1 ≤ β2n on J for all

n ≥ 0.

That each weighted subsequence {tpα2n}, {t
pα2n+1}, {t

pβ2n}, and {tpβ2n+1} con-

verges uniformly to tpx where x is the unique solution to (3.1) is proved in a similar

manner as in Theorem 3.1 using the Arzelá-Ascoli Theorem. Thus, we will instead

consider the weakly quadratic convergence. Let F ,G,Φ, and Ψ be defined as previ-

ously. Let

An = (−1)n(x− αn), and Bn = (−1)n(βn − x),

then using previous arguments we have

Dq
tA2n ≤ Λ(α2n−1, β2n−1)A2n + [Λ(α2n−1, β2n−1) − Λ(x, α2n−1)]A2n−1 + 2k

≤ mA2n + [Fxx(t, ξ1) − Φxx(t, η2)]t
2pA2

2n−1

+ [Ψxx(t, ξ2) − Gxx(t, η1)]t
2p(A2n−1 +B2n−1)A2n−1 + 2k

≤ mA2n +Rt2pA2
2n−1 + (S/2)t2p(3A2

2n−1 +B2
2n−1) + 2k,

where x ≤ ξ1, η2 ≤ α2n−1 and β2n−1 ≤ ξ2, η1 ≤ α2n−1; further m, R, S, and k are

bounds of Λ, Fxx − Ψxx and Φxx − Gxx, and h on J respectively. Following the same

lines as before we can show that

tpA2n ≤
tp

2m
Eq,1(mt

q)
[
(2R + 3S)‖tpA2n−1‖

2 + S‖tpB2n−1‖
2 + 4k

]
.

Therefore, the uniform convergence of {tpα2n} is weakly quadratic in the following

sense

‖tp(x− α2n)‖ ≤
T pÊ

2m

[
(2R + 3S)‖tp(α2n−1 − x)‖2 + S‖tp(x− β2n−1)‖

2 + 4k
]
,

where Ê = Eq,1(mT
q). We can also show that the convergence of the three remaining

weighted subsequences is weakly quadratic as

‖tp(α2n+1 − x)‖ ≤ T p bE
2m

[
(2S + 3R)‖tp(x− α2n)‖2 +R‖tp(β2n − x)‖2 + 4k

]

‖tp(x− β2n+1)‖ ≤ T p bE
2m

[
(2R + 3S)‖tp(β2n − x)‖2 + S‖tp(x− α2n)‖2 + 4k

]

‖tp(β2n − x)‖ ≤ T p bE
2m

[
(2S + 3R)‖tp(x− β2n−1)‖

2 +R‖tp(α2n−1 − x)‖2 + 4k
]
,
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which completes the proof.

We remark that a similar result can be constructed from intertwined iterates of

just alphas as solutions to the linear IVPs

Dq
tα2n = N(α2n−1) + Λ(α2n−1, α0)(α2n − α2n−1)(3.9)

Dq
tα2n+1 = N(α2n) + Λ(β0, α2n)(α2n+1 − α2n),

with only having to assume α0 ≤ α2. This will generate intertwined sequences of the

type

α0 ≤ α2n ≤ x ≤ α2n+1 ≤ β0.

A similar result can also be constructed with just betas as well, assuming only β2 ≤ β0.

We note this because in practice it may prove difficult to construct sequences with

the added assumptions found in Theorem 3.4, and in certain circumstances may be

more achievable to do so using (3.9).

Finally, we note that if h = 0 in Theorem 3.4 then, as previously, convergence will

be quadratic, and we will have the generalized quasilinearization method. Likewise

if f + g = 0, then Theorem 3.4 will collapse into a generalized monotone method as

found in [15]. Therefore, as claimed, the methods we constructed in this paper act as

generalizations of both the quasilinearization and monotone methods.
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