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ABSTRACT. This paper deals with the existence of multiple positive periodic solutions to a

nonautonomous scalar difference equation subjected to Allee effects. Existence is established using

Leggett-Williams multiple fixed point theorem. This result is employed to find the minimum number

of positive periodic solutions admitted by a model representing dynamics of a renewable resource

that is subjected to Allee effects in a seasonally varying environment.
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1. Introduction

In this paper, we use Leggett-Williams fixed point theorem to study the exis-

tence of multiple positive periodic solutions of a certain type of first order difference

equation. This result is used to find the minimum number of positive periodic solu-

tions admitted by some models representing dynamics of a renewable resource that

is subjected to Allee effects in a seasonally varying environment.

There has been considerable contribution in recent years on the existence of

periodic solutions of difference equations having periodic casual functions, see [12,

28, 33, 40, 41, 42, 43, 49, 50], and the references cited therein. Many authors [1,

20, 23, 31, 37] have argued that the discrete time models governed by difference

equation are more appropriate than the continuous ones when the populations have

non overlapping generations.
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Motivated by the above observation and by the work of Padhi, Srinivasu and

Kiran Kumar [39], in this paper we investigate the existence of multiple periodic so-

lutions of a first order nonlinear difference equation representing growth of a renewable

resource that is subjected to Allee effects in a seasonally varying environment.

Let a, b be given integers and a < b. We denote discrete sets such as

Z[a, b] = {a, a+ 1, . . . , b} , Z[a, b) = {a, . . . , b− 1} , Z[a,∞) = {a, a+ 1, . . .} ,

etc. Let T ∈ Z[1,∞) be fixed.

The difference equation representing dynamics of a renewable resource y(n), that

is subjected to Allee effects is

(1.1) ∆y(n) = ay(n)(y(n) − b)(c− y(n)), n ∈ Z(−∞,∞),

where a > 0, 0 < b < c and the constants a, c and b represent respectively intrinsic

growth rate, carrying capacity of the resource and the threshold value below which

the growth rate of the resource is negative. It is well known that equation (1.1)

admits two positive solutions given by yn = b and yn = c, and one trivial solution as

its equilibrium solution.

Since we are interested in the dynamics of a renewable resource in a seasonally

varying environment we assume the coefficients a, b and c to be positive T-periodic

functions of the same period, and study the existence of T-periodic solutions. Thus,

we consider

(1.2) ∆y(n) = a(n)y(n)(y(n)− b(n))(c(n) − y(n)), n ∈ Z(−∞,∞),

where the positive real sequences c(n) and b(n) stand for seasonal dependent carrying

capacity and threshold function of the species respectively satisfying

(1.3) 0 < b(n) < c(n) and 0 < a(n)b(n)c(n) < 1,

where a(n) represents time dependent intrinsic growth rate of the resource. Clearly,

we have the trivial solution (y(n) ≡ 0) to be a periodic solution of equation (1.2).

Since the study deals with resource dynamics, we are interested in the existence of

positive periodic solutions of the equation (1.2).

Equation (1.2) can be rewritten as

(1.4) ∆y(n) = −a(n)b(n)c(n)y(n) + a(n)(b(n) + c(n) − y(n))y2(n).

Clearly (1.4) is a particular case of a general scalar difference equation of the form

(1.5) ∆y(n) = −A(n) + f(n, y(n)), n ∈ Z(−∞,∞),

where A(n) : Z(−∞,∞) → (0, 1), f : Z(−∞,∞) × [0,∞) → (0,∞) is continuous,

and A(n) = A(n + T ), f(n, u) = f(n+ T, u).
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Remark 1.1. We say a map f : Z(−∞,∞) × [0,∞) → [0,∞) is continuous if it is

continuous as a map of the topological space Z(−∞,∞)× [0,∞) onto the topological

space [0.∞). Throughout this paper the topology on Z(−∞,∞) will be the discrete

topology.

To conclude this section, we state a Leggett-Williams multiple fixed point theorem

(see Theorem 3.5 in [32]) which will be needed in this paper.

Theorem 1.2. Let X = (X, ‖ · ‖) be a Banach space and let K be a cone in X.

Suppose E : Kc3 → K (here Kc3 = {x ∈ K : ‖x‖ < c3}) is completely continuous,

and suppose there exists a concave nonnegative functional ψ with ψ(x) ≤ ‖x‖, x ∈ K

and numbers c1 and c2 with 0 < c1 < c2 < c3 satisfying the following conditions:

(i) {x ∈ K(ψ, c2, c3) : ψ(x) > c2} 6= ∅ and ψ(Ex) > c2 if x ∈ K(ψ, c2, c3) = {x ∈ K :

ψ(x) ≥ c2, ‖x‖ < c3};

(ii) ‖Ex‖ < c1 if x ∈ Kc3;

(iii) ψ(Ex) > c2
c3
‖Ex‖ for each x ∈ Kc3 such that ‖Ex‖ > c3.

Then E has at least two fixed points in Kc3.

Now, for any positive bounded T -periodic sequence p(n), we set

p∗ = min
0≤n≤T−1

p(n) and p∗ = max
0≤n≤T−1

p(n).

2. Existence of Positive Periodic Solutions

In this section we establish the existence of positive periodic solutions to equation

(1.5). Since 0 < A(n) < 1, we can define

(2.1) δ =

(

T−1
∏

θ=0

(1 −A(θ))

)−1

.

Finding a T-periodic solutions of equation (1.5) is equivalent to finding a T-periodic

solutions of the equation

(2.2) y(n) =

n+T−1
∑

s=n

G(n, s)f(s, y(s)),

where

G(n, s) =

∏n+T−1
θ=s+1 (1 −A(θ))

1 −
∏T−1

θ=0 (1 − A(θ))
, s ∈ [n, n+ T − 1].

It is easy to see that, for θ ∈ [n, n+ T − 1], we have

0 <
1

δ − 1
≤ G(n, s) ≤

δ

δ − 1
,
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where δ is given as in (2.1). Let X = {y(n) : y(n) ∈ C(Z(−∞,∞),R), y(n + T ) =

y(n)} and define

‖y‖ = sup
θ∈Z[0,T−1]

{y(θ) : y ∈ X}.

Then X with the norm ‖ · ‖ is a Banach space. Now solving (2.2) is equivalent to

solving

y = Ey,

where E is defined by

(2.3) (E(y))(n) =
n+T−1
∑

s=n

G(n, s)f(s, y(s))

for y ∈ X. Clearly, E is well defined. Let

K = {y ∈ X : y(n) ≥ 0}.

Then it is not difficult to verify that K is a cone in X.

Theorem 2.1. Suppose that there exists a positive constant c3 such that
∑T−1

s=0 f(s, y(s)) >

0 holds when 0 < y(n) ≤ c3 for all s ∈ [0, T − 1], and

(H1)
∑T−1

s=0 f(s, y(s)) ≤
(

δ−1
δ

)

c3 for c3
δ
≤ y(s) ≤ c3, s ∈ [0, T − 1]

and

(H2) lim‖y‖→0
1

‖y‖

∑T−1
s=0 f(s, y(s)) < δ−1

δ

hold. Then equation (1.5) has at least two positive T-periodic solutions in Kc3.

Proof. Consider the Banach space X defined above, and the cone K ⊆ X. Let c3

be the constant satisfying the conditions laid in the hypothesis. Define the operator

E : Kc3 → K as (2.3). We shall apply Leggett-Williams multiple fixed point theorem

to the operator E to prove the existence of at least two positive periodic solutions for

equation (1.5).

It can be easily verified that E is completely continuous and E(Kc3) ⊂ K. Now,

let us consider a nonnegative concave continuous functional ψ defined on K as

ψ(y) = min
0≤n≤T−1

y(n).

For c2 = c3
δ

and φ0 = 1
2
(c2 + c3), we have c2 < φ0 < c3 and the set

{y ∈ K(ψ, c2, c3) : ψ(y) > c2} 6= ∅.

For y(n) ∈ K(ψ, c2, c3), consider

ψ(Ey) = min
0≤n≤T−1

n+T−1
∑

s=n

G(n, s)f(s, y(s))

>
1

δ − 1

T−1
∑

s=0

f(s, y(s)) ≥

(

1

δ − 1

)(

δ − 1

δ

)

c3
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=
c3

δ
.

Hence the condition (i) of Theorem 1.2 is satisfied. Since lim‖y‖→0

∑T−1
s=0 f(s, y(s)) <

( δ−1
δ

) (from (H2 )), there exists a real ξ, 0 < ξ < c2 such that

T−1
∑

s=0

f(s, y(s)) <

(

δ − 1

δ

)

‖y‖ for 0 ≤ ‖y‖ ≤ ξ.

Choose c1 = ξ. Then, we have 0 < c1 < c2 and for 0 ≤ y(n) ≤ c1, we have

‖Ey‖ = sup
0≤n≤T−1

n+T−1
∑

s=n

G(n, s)f(s, y(s))

<

(

δ

δ − 1

) T−1
∑

s=0

f(s, y(s)) ≤ ‖y‖ ≤ c1.

Hence condition (ii) of Theorem 1.2 is satisfied. Now consider

ψ(Ey) = min
0≤n≤T−1

T−1
∑

s=n

G(n, s)f(s, y(s))

<
1

δ − 1

T−1
∑

s=0

f(s, y(s)).

Let 0 < y(n) < c3 be such that ‖Ey‖ > c3. For such a choice of y(n), we have

c3 < ‖Ey‖ = sup
0≤n≤T−1

n+T−1
∑

s=n

G(n, s)f(s, y(s))

<

(

δ

δ − 1

) T−1
∑

s=0

f(s, y(s))

< δψ(Ey).

Therefore ψ(Ey) > 1
δ
‖Ey‖, and this implies that ψ(Ey) > c2‖Ey‖

c3
for each y with

0 < y(n) < c3 satisfying ‖Ey‖ > c3. Hence condition (iii) of Theorem 1.2 is satisfied.

Therefore by Theorem 1.2, the operator (2.3) has at least two fixed point in Kc3. One

may observe that the existence of a fixed point of E is equivalent to the existence of a

positive periodic solution of equation (1.5). Hence under the hypothesis of theorem,

equation (1.5) admits at least two positive T- periodic solutions. This completes the

proof.

Corollary 2.2. Suppose that there exists a positive constant c3 such that

(H∗
1)

∑T−1
s=0 f(s, y(s)) > 0 for 0 < y ≤ c3.

Furthermore, for the above choice of c3, assume that

T−1
∑

s=0

f(s, y(s)) >

(

δ

δ − 1

)

c3 for
c3

δ
≤ y < c3
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and

T−1
∑

s=0

f(s, y(s)) =

(

δ

δ − 1

)

y for y = c3,

and

(H∗
2) limy→0

1
y

∑T−1
s=0 f(s, y(s)) < δ−1

δ

hold. Then equation (1.5) has at least two positive T-periodic solutions in Kc3.

Proof. Assume that there exists a positive constant c3 such that
∑T−1

s=0 f(s, y(s)) > 0

for 0 < y ≤ c3. Now, let y(n) ∈ K be such that 0 < y(n) ≤ c3. From the above

assumption it clearly follows that
∑T−1

s=0 f(s, y(s)) > 0 when 0 < y(s) ≤ c3 for all

s ∈ [0, T − 1]. Further, let us assume that

T−1
∑

s=0

f(s, y) =

(

δ − 1

δ

)

y for y = c3

and

T−1
∑

s=0

f(s, y) >

(

δ − 1

δ

)

c3 for
c3

δ
≤ y < c3.

This assumption implies that

T−1
∑

s=0

f(s, y(s)) ≥

(

δ − 1

δ

)

c3 for
c3

δ
≤ y(s) ≤ c3, s ∈ [0, T − 1]

and hence the condition (H∗
1 ) implies (H1). Now assume that

lim
y→0

T−1
∑

s=0

f(s, y)

y
<

(

δ − 1

δ

)

.

We have

1

‖y‖

T−1
∑

s=0

f(s, y(s)) =

T−1
∑

s=0

f(s, y(s))

‖y‖
≤

T−1
∑

s=0

f(s, y(s))

y(s)

for s ∈ [0, T − 1]. Observe that ‖y‖ → 0 if and only if y(s) also tends to zero for all

s ∈ [0, T − 1]. Therefore, in view of (H∗
2) we have

lim
y→0

1

‖y‖

T−1
∑

s=0

f(s, y(s)) ≤ lim
y(s)→0

T−1
∑

s=0

f(s, y(s))

y(s)
<

(

δ − 1

δ

)

for all s ∈ [0, T − 1]. Hence condition (H∗
2 ) implies (H2). The proof is now complete.
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3. Application to Renewable Resource Dynamics-I

In this section, we shall apply the results developed in the previous section to

investigate the existence of positive T-periodic solutions for the difference equation

(1.2) representing dynamics of a renewable resource that is subjected to Allee effects.

Allee effects refer to a reduction in individual fitness at low population density

that can lead to extinction [2, 3, 4, 5, 9, 14, 15, 19, 21, 31, 36, 38, 46]. It is a

phenomenon in Biology characterized by a positive interaction between population

density and the per-capita population growth rate in small populations. A strong

Allee effect, where a population exhibits “Critical size density”, below which the

population declines on average, and above which it may increase. It is strongly

related to the extinction vulnerability of populations. Any ecological mechanism that

can lead to a positive relationship between a component of individual fitness and

either the number or density of conspecifics can be termed a mechanism of the Allee

effect [29, 45], or depensation [13, 18, 34], or negative competition effect [47]. A few

mechanisms generating Allee effects in species dynamics have been suggested in the

literature [5, 15]. There are several real world examples exhibiting the presence of

Allee effects [8, 16, 25, 27]. Hence, system analysis in the presence of Allee effects

has gained importance in real world problems in various fields such as population

management [5], interacting species [7], biological invasions [11], marine systems [22],

conservation biology [24], pest control, biological control [26], sustainable harvesting

[35], and meta population dynamics [51]. A critical review of single species models

subject to Allee effects can be found in [6].

Studying the consequences of Allee effects on a renewable resource under the

influence of seasonal variations is a vital problem with real world applications. Re-

cently, Padhi et al. [39] applied the Leggett-Williams multiple fixed point theorem to

obtain sufficient conditions for the existence of at least two positive periodic solutions

of a differential equation governing the dynamics of a renewable resource subject to

Allee effects in a seasonally varying environment. The results obtained in [39] give

estimates on the number of periodic solutions admitted by the model.

Describing species dynamics using periodic differential equations enables us to

study the influence of seasonal variations on the species of interest. Periodicity and

almost periodicity play important roles in problems associated with real world ap-

plications. In trying to analyze the consequences of such periodic or almost periodic

variations in the environment, it is reasonable, as a first approximation, to consider

the parameters involved to be periodic of the same period. Thus, a natural approach

might then be to study the effects of periodic variations in the appropriate parameters
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of the model equations that have been used to describe the growth dynamics in con-

stant environments such as in [10, 17, 39]. We note that an Allee effect refers to a de-

crease in a population growth rate at low population densities [4, 9, 19, 21, 36, 38, 46].

Classifications of the effects can be found in [5, 6].

Consider the transformation

y(n) = c(n)x(n).

The equation (1.2) is transformed to

(3.1)

∆x(n) = −

(

a(n)c3(n)k(n)

c(n + 1)
+

∆c(n)

c(n + 1)

)

x(n) +
a(n)c3(n)

c(n+ 1)
(1 + k(n) − x(n))x2(n),

where

k(n) =
b(n)

c(n)
.

Comparing (3.1) with (1.5) we have

(3.2) A(n) =
a(n)c3(n)k(n) + ∆c(n)

c(n+ 1)
,

and

(3.3) f(n, x) =
a(n)c3(n)

c(n+ 1)
(1 + k(n) − x)x2.

Let us consider the Banach space X defined earlier. From (3.3), we have f(n, 0) =

0, f(n, x(n)) > 0 for 0 < x(n) < 1 + km and f(n, x(n)) < 0 for x(n) > 1 + kM , where

km = min0≤n≤T−1 k(n) and kM = max0≤n≤T−1 k(n). Hereafter we denote

M =

T−1
∑

n=0

a(n)c3(n)

c(n+ 1)
and N =

T−1
∑

n=0

a(n)c3(n)k(n)

c(n + 1)
.

Since (1.3) holds, then 0 < k(n) < 1, and hence M > N > 0. From (3.3) we observe

that limx→0
1
x

∑T−1
n=0 f(n, x) = 0 and hence (H∗

2 ) of Corollary 2.2 is satisfied by the

equation (3.1). We have the following theorem.

Theorem 3.1. If

(3.4)
(M +N) +

√

(M +N)2 − 4M( δ−1
δ

)

2M
>

δ2 − 1
δ

M +N

then equation (1.2) has at least two positive T-periodic solutions.

Proof. We shall use Corollary 2.2 to prove the theorem. From (3.2), it is easy to see

that 1 − A(n) = c(n)
c(n+1)

(1 − a(n)b(n)c(n)) > 0. To complete the proof of theorem, it

is enough to find the existence of a positive constant c3 > 0 such that (H∗
1 ) holds.

Let us take

c3 =
(M +N) +

√

(M +N)2 − 4M( δ−1
δ

)

2M
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and define c2 = c3
δ
. Clearly 0 < c2 < c3. It is easy to verify that p = c3 is a solution

of

(3.5) −Mp2 + (M +N)p− (
δ − 1

δ
) = 0

which is equivalent to

(1 − p)p
T−1
∑

s=0

a(s)c3(s)

c(s+ 1)
+ p

T−1
∑

s=0

a(s)c3(s)k(s)

c(s+ 1)
=

(

δ − 1

δ

)

.

The above equation can be written as
∑T−1

s=0 f(s, p) =
(

δ−1
δ

)

p, that is, p = c3 satisfies

T−1
∑

s=0

f(s, c3) =

(

δ − 1

δ

)

c3.

Next, we consider the inequality

(3.6)

T−1
∑

s=0

f(s,
c3

δ
) >

(

δ − 1

δ

)

c3.

Then we have
T−1
∑

s=0

a(s)c3(s)

c(s+ 1)
(1 + k(s) −

c3

δ
)
c23
δ2
>

(

δ − 1

δ

)

c3.

The above inequality is equivalent to

−Mc23 + (M +N)δc3 − δ2(δ − 1) > 0.

Since p = c3 is a solution of (3.5), the last inequality yields

(3.7) c3 >
δ2 − 1

δ

M +N
.

Therefore (3.6) will be satisfied if the root p = c3 of (3.5) satisfies the inequality (3.7).

Thus (H∗
1 ) will be satisfied if the parameters of the associated equation (3.1) satisfies

(3.7) which is nothing but (3.4). This completes the proof.

Remark 3.2. Note that Theorem 3.1 is verified only ifM and N satisfy the inequality

(M +N)2 − 4M(
δ − 1

δ
) > 0.

Example 3.3. Consider the difference equation (1.2) with

(3.8) a(n) = (1.2 + (−1)n)2, b(n) =
(1.2 + (−1)n)

12
, c(n) =

1

(1.2 + (−1)n)
.

Then a(n), b(n) and c(n) are 2-periodic functions. Now we have

k(n) =
b(n)

c(n)
=

(1.2 + (−1)n)2

12
< 1

and

a(n)b(n)c(n) =
(1.2 + (−1)n)2

12
< 1.
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Further, we have

M =
122

11
, N =

11

150
, and δ = 1.68.

Clearly M > N > 0, and

(M +N) +
√

(M +N)2 − 4M( δ−1
δ

)

2M
= 0.9689

and
δ2− 1

δ

M+N
= 0.1994948. Therefore (3.4) is satisfied and hence (1.2) admits at least

two positive periodic solutions with a(n), b(n) and c(n) as given in (3.8).

Now, we provide a sufficient condition different from Eq. (3.4) for the existence

of at least two positive T -periodic solution of (1.2). Since (1.2) can be rewritten as

(1.4), we set

A1(n) = a(n)b(n)c(n) and f(n, y(n)) = a(n)(b(n) + c(n) − y(n))y2(n).

Further, (1.3) implies that 0 < A1(n) < 1. Set

δ1 =

(

T−1
∏

θ=0

(1 −A1(θ))

)−1

> 1

and

G(n, s) =

∏n+T−1
θ=s+1 (1 −A1(θ))

1 −
∏T−1

θ=0 (1 − A1(θ))
, θ ∈ [n, n+ T − 1].

Lemma 3.4.
n+T−1
∑

s=n

G1(n, s)A1(s) = 1.

Proof. Let

µ =

n+T−1
∑

s=n

G1(n, s)A1(s) =

n+T−1
∑

s=n

A1(s)

∏n+T−1
θ=s+1 (1 −A1(θ))

1 −
∏T−1

θ=0 (1 − A1(θ))
.

Setting 1 − A1(n) = B(n), we can express µ as

µ =

n+T−1
∑

s=n

(1 − B(s))

∏n+T−1
θ=s+1 B(θ)

1 −
∏T−1

θ=0 B(θ)
.

The proof of the lemma will be completed if we can show that

(3.9)
n+T−1
∑

s=n

(1 −B(s))
n+T−1
∏

θ=s+1

B(θ) = 1 −
T−1
∏

θ=0

B(θ)

holds. Indeed,

n+T−1
∑

s=n

(1 −B(s))
n+T−1
∏

θ=s+1

B(θ) =
n+T−1
∑

s=n

(

n+T−1
∏

θ=s+1

B(θ) −
n+T−1
∏

θ=s

B(θ)

)
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=

(

n+T−1
∏

θ=n+1

B(θ) −
n+T−1
∏

θ=n

B(θ)

)

+

(

n+T−1
∏

θ=n+2

B(θ) −
n+T−1
∏

θ=n+1

B(θ)

)

+

(

n+T−1
∏

θ=n+3

B(θ) −
n+T−1
∏

θ=n+2

B(θ)

)

+ · · ·

+

(

n+T−1
∏

θ=n+T

B(θ) −
n+T−1
∏

θ=n+T−1

B(θ)

)

.

= 1 −
n+T−1
∏

θ=n

B(θ) = 1 −
T−1
∏

θ=0

B(θ)

implies that (3.9) holds. The proof is complete.

Theorem 3.5. Let the sequences b(n), c(n) be bounded and

(3.10) (b∗ + c∗)
2 > 4δ3

1b
∗c∗

hold. Then (1.2) has at least two positive T -periodic solutions.

Proof. We consider a Banach space X and a cone K on X as in Theorem 3.1. Choose

c2 =
(b∗ + c∗) +

√

(b∗ + c∗)2 − 4δ3
1b

∗c∗

2δ2
1

and c3 = δ1c2.

Then 0 < c2 < c3 and c2+c3
2

∈ {y(n) ∈ K(ψ, c2, c3); ψ(y(n)) > c2} is not empty.

Further, for y ∈ K(ψ, c2, c3) we have, using Lemma 3.4

ψ(A1y) = min
n∈[0,T−1]

n+T−1
∑

s=n

G1(n, s)a(s)[b(s) + c(s) − y(s)]y2(s)

≥
(b∗ + c∗)c

2
2 − (δ1c2)

3

b∗c∗

n+T−1
∑

s=n

G1(n, s)A1(s)

=
(b∗ + c∗)c

2
2 − (δ1c2)

3

b∗c∗
= c2.

Further,

lim
y→0

a(n)[b(n) + c(n) − y(n)]y2(n)

a(n)b(n)c(n)y(n)
= 0

implies the existence of a constant c1 ∈ (0, c2). Observe that for the above choice of

c3, we have that f1(n, y) > 0 for 0 ≤ y ≤ c3. The Green’s kernel G1(n, s) is bounded

by

0 ≤
1

δ1 − 1
≤ G1(n, s) ≤

δ1

δ1 − 1
, s ∈ [n, n+ T − 1].
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Then

ψ(A1y) ≥
1

δ1 − 1

n+T−1
∑

s=n

a(s)[b(s) + c(s) − y(s)]y2(s)

implies that

c3 < ‖A1y‖

≤
δ1

δ1 − 1

n+T−1
∑

s=n

a(s)[b(s) + c(s) − y(s)]y2(s)

≤ δ1ψ(A1y).

Consequently,

ψ(A1y) ≥
1

δ1
‖A1y‖ =

c2

c3
‖A1y‖

holds. Hence, by Theorem 1.2, Eq. (1.2) has at least two positive T -periodic solutions.

The theorem is proved.

Consider Eq. (1.2) with a(n), b(n) and c(n) as given in (3.8). Clearly, A1(n) =
(1.2+(−1)n)2

12
and T = 2 implies that δ1 = 1.035067, δ3

1 = 1.108935. It is easy to verify

that

(b∗ + c∗)
2 = 0.385904499 < 4.060095 = 4δ3

1b
∗c∗

holds. Consequently, Theorem 3.5 cannot be applied to this example.

Example 3.6. We consider Eq. (1.2) with

a(n) =
1

10

(

0.999999 +
1

1.000000
(−1)n

)

,

b(n) =
1

10

(

0.9999999 +
1

1.0000000
(−1)n

)

and

c(n) =
1

10

(

1.9999999 +
1

1.0000000
(−1)n

)

.

Here T = 2, a∗ = 1
10

, b∗ = 1
10

, c∗ = 2
10

, a∗ = 0.999998
10

, b∗ = 0.9999998
10

and c∗ = 1.9999998
10

.

A simple calculation shows that δ1 = 1.0004012, (b∗ + c∗)
2 = 0.08999 and 4δ3

1b
∗c∗ =

0.08009. This in turn implies that (3.10) holds. Hence, by Theorem 3.5, Eq. (1.2) with

a(n), b(n) and c(n) considered in this example, has at least two positive T -periodic

solutions.

On the other hand, δ = 1.0041, M = 0.0079 and N = 0.0039 implies that

(M +N) +
√

(M +N)2 − 4M( δ−1
δ

)

2M
= 0.94936708 and

δ2 − 1
δ

M +N
= 1.0423786

hold. Thus, the condition (3.4) fails to hold and hence Theorem 3.1 cannot be applied

to (1.2) with the above considered a(n), b(n) and c(n).
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4. Application to Renewable Resource Dynamics-II

This section deals with the existence of at least two positive T -periodic solutions

of the equations

(4.1) ∆y(n) = y(n)

[

a(n) −
b(n)y(n− τ)

1 + c(n)y(n− τ)

]

,

(4.2) ∆y(n) = y(n)

[

a(n) −
b(n)y(n− τ)

1 + c(n)y(n− τ)

]

− qEy(n)

and

(4.3) ∆y(n) = y(n)

[

a(n) −
b(n)y(n)

1 + c(n)y(n)

]

− qEy(n),

where a(n), b(n) and c(n) are positive T -periodic sequences and τ > 0 is a real

number.

Equations (4.1)–(4.3) are discrete analogue of the Michaelis Menton models of

the forms

(4.4) y′(t) = y(n)

[

a(t) −
b(t)y(t− τ)

1 + c(t)y(t− τ)

]

,

(4.5) y′(t) = y(t)

[

a(t) −
b(t)y(t− τ)

1 + c(t)y(t− τ)

]

− qEy(t),

and

(4.6) y′(t) = y(t)

[

a(t) −
b(t)y(t)

1 + c(t)y(t)

]

− qEy(t)

respectively, where a(t), b(t) and c(t) are positive T -periodic real valued functions

and τ > 0, and T > 0 is a real number.

Equation (4.4) is a Generalized Michaelis Menton type single species growth

model [30, 44] where as (4.5) is a Generalized Michaelis Menton model with harvesting

and (4.6) is a Generalized Michaelis Menton model with harvesting but no delay.

Equations (4.4)–(4.6) has been studied extensively in the literature, see for example

[30, 37, 44] and the references cited there.

It seems that few results exist in the literature for the existence of at least one

positive T -periodic solutions of (4.3). Let c(n) ≡ c be a constant. The Zeng [48] used

Krasnoselskii fixed point theorem to prove that, if

(4.7) 0 < qE <
1 − σ

T
and

b∗

c
+ qE >

1 − σ

σ2T

hold, then (4.3) has at least one positive T -periodic solution, where σ =
∏T−1

k=0 (1 +

a(k))−1.

It follows from (4.7), that qE 6= 0 and hence the result cannot be applied to

Eq. (4.1) with no delay.
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In this section, we have made an attempt to find sufficient conditions for the

existence of at least two positive T -periodic solutions of (4.1)–(4.3).

Remark 4.1. We note that Eqs. (4.2) and (4.3) can be rewritten as

(4.8) ∆y(n) = −qEy(n) +

[

a(n) −
b(n)y(n− τ)

1 + c(n)y(n− τ)

]

y(n)

and

(4.9) ∆y(n) = −qEy(n) +

[

a(n) −
b(n)y(n)

1 + c(n)y(n)

]

y(n)

respectively.

Setting f1(n, y) =
[

a(n) − b(n)y(n)
1+c(n)y(n)

]

y(n) we observe that f1(n, 0) = 0, f1(n, y) >

0 for some y ∈ (0, µ), µ ∈ R and f1(n, y) → −∞ as y → ∞ if b∗ > a∗c∗. In a similar

way, if we set f2(n, y) =
[

a(n) − b(n)y(n−τ)
1+c(n)y(n−τ)

]

y(n), then f2(n, 0) = 0 and f2(n, y) > 0

for some y ∈ (0, µ1), µ1 ∈ R and f2(n, y) → −∞ as y → ∞. The above calculation

shows that the models (4.8) and (4.9) exhibit Allee effect if b∗ > a∗c∗.

Equation (4.1) is equivalent to

y(n+ 1) = (1 + a(n))y(n) −
b(n)y(n− τ)y(n)

1 + c(n)y(n− τ)
.

Assuming that y(n) is a positive T -periodic sequence, we observe that (4.1) is equiv-

alent to

y(n) =
n+T−1
∑

s=n

G2(n, s)

[

b(s)y(s− τ)y(s)

1 + c(s)y(s− τ)

]

,

where

G2(n, s) =

∏n+T−1
θ=s+1 (1 + a(θ))

∏T−1
θ=0 (1 + a(θ)) − 1

, s ∈ [n, n + T − 1]

is the Green’s kernel satisfying the property

0 < α =
δ2

1 − δ2
≤ G2(n, s) ≤

1

1 − δ2
= β and δ2 =

(

T−1
∏

θ=0

(1 + a(θ))

)−1

< 1.

Lemma 4.2.
n+T−1
∑

s=n

G2(n, s)a(s) = 1.

Proof. Let

µ =
n+T−1
∑

s=n

G2(n, s)a(s) =
n+T−1
∑

s=n

a(s)

∏n+T−1
θ=s+1 (1 + a(θ))

∏T−1
θ=0 (1 + a(θ)) − 1

.

Set 1 + a(n) = B(n). Then µ can be written as

µ =
n+T−1
∑

s=n

(B(s) − 1)

∏n+T−1
θ=s+1 B(θ)

∏T−1
θ=0 B(θ) − 1

.
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To complete the proof of the lemma, it is enough to show that

n+T−1
∑

s=n

(B(s) − 1)
n+T−1
∏

θ=s+1

B(θ) =
T−1
∏

θ=0

B(θ) − 1.

Clearly

n+T−1
∑

s=n

(B(s) − 1)

n+T−1
∏

θ=s+1

B(θ) =

n+T−1
∑

s=n

(

n+T−1
∏

θ=s

B(θ) −
n+T−1
∏

θ=s+1

B(θ)

)

=

(

n+T−1
∏

θ=n

B(θ) −
n+T−1
∏

θ=n+1

B(θ)

)

+

(

n+T−1
∏

θ=n+1

B(θ) −
n+T−1
∏

θ=n+2

B(θ)

)

+

(

n+T−1
∏

θ=n+2

B(θ) −
n+T−1
∏

θ=n+3

B(θ)

)

+ · · ·

+

(

n+T−1
∏

θ=n+T−1

B(θ) −
n+T−1
∏

θ=n+T

B(θ)

)

.

=

n+T−1
∏

θ=n

B(θ) − 1 =

T−1
∏

θ=0

B(θ) − 1

holds. The proof is complete.

Theorem 4.3. Suppose that a(n), b(n) and c(n) are bounded sequences and

b∗ > a∗c∗

holds. Then (4.1) has at least two positive T -periodic solutions.

Proof. Let X be the space of all positive T -periodic sequences under the norm

‖y‖ = max
0≤n≤T−1

|y(n)|.

Then X forms a Banach space. On the space X, we define a cone K by

K = {y ∈ X; y ≥ δ2‖y‖, n ∈ [0, T − 1]}.

On the cone K, we define an operator A2 by

(A2y)(n) =
n+T−1
∑

s=n

G2(n, s)
b(s)y(s− τ)y(s)

1 + c(s)y(s− τ)
.

We consider the nonnegative concave function ψ as in Theorem2.1.

Setting f(n, y) = b(n)y(n−τ)y(n)
1+c(n)y(n−τ)

, we observe that lim supy→∞
f(n,y)

a(n)y(n)
> b∗

a∗c∗
, which

in turn implies that there exists a positive constant c2 > 0 such that

b(n)y(n− τ)y(n)

1 + c(n)y(n− τ)
>

b∗

a∗c∗
c2 ≥ c2,
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holds for c2 ≤ y ≤ c3 and 0 ≤ n ≤ T − 1, where c3 = c2
δ2

. Hence, for y ∈ K(ψ, c2, c3),

we have

ψ(A2y) = min
0≤n≤T−1

n+T−1
∑

s=n

G2(n, s)
b(s)y(s− τ)y(s)

1 + c(s)y(s− τ)

≥ c2

n+T−1
∑

s=n

G2(n, s)a(s) = c2.

To complete the proof of the theorem, it suffices to show, in view of the Leggett-

Williams multiple fixed point theorem, Theorem 1.2, that the existence of a positive

constant c1, c1 ∈ (0, c2) such that the condition (ii) of Theorem 1.2 holds. Since

lim supy→0
f(n,y)
a(n)y

= 0, then there exists 0 < ǫ < 1 and δ1 ∈ (0, c2) such that f(n, y) <

ǫa(n)y for 0 < y < δ1. Now choosing, δ1 = c1 and using Lemma 4.2, we can prove

the condition (ii) of Theorem 1.2. This completes the proof of the theorem.

Theorem 4.4. Let c(n) ≡ c > 0 be a constant, qET < 1 − δ2 and

δ2
2(1 − δ2)

T−1
∑

s=0

b(s) > c

(

1

δ2
(1 − δ2) − qET

)

hold. Then (4.2) has at least two positive T -periodic solutions.

Proof. Consider the Banach space X and a cone K and a non negative concave

functional ψ as in Theorem 4.3. We define an operator A3(y) on K by

(A3y)(n) =

n+T−1
∑

s=n

G2(n, s)

[

b(s)y(s)y(s− τ)

1 + cy(s− τ)
+ qEy(s)

]

Choose positive constants c1, c2 and c3 be such that

c1 ∈

(

0,
1 − δ2 − qET
∑T−1

s=0 b(s)

]

, c2 =
1

δ2
2

1
∑T−1

s=0 b(s)

(

1 − δ2

δ2
− qET

)

and c3 =
c2

δ2
.

Since δ2 < 1, then 0 < c1 < c2 < c3. It is easy to verify that A3(K) ⊆ K and is

completely continuous. For y ∈ Kc1 , we have

‖A3y‖ = max
0≤n≤T−1

n+T−1
∑

s=n

G2(n, s)

[

b(s)y(s)y(s− τ)

1 + cy(s− τ)
+ qEy(s)

]

≤
1

1 − δ2

T−1
∑

s=0

[b(s)y(s)y(s− τ) + qEy(s)]

≤
c1

1 − δ2

[

c1

T−1
∑

s=0

b(s) + qE

]

≤ c1.

Hence A3y ∈ Kc1.
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Next, for each y ∈ K with c2 ≤ ψ(y) and ‖y‖ ≤ c3, we have c2 ≤ ‖y‖ ≤ c3 and

δ2c2 ≤ y(n− τ) ≤ c2
δ2

, n ∈ [0, T − 1]. Then for y ∈ K(ψ, c2, c3), we have

ψ(A3y) ≥
δ2

1 − δ2

T−1
∑

s=0

[

b(s)y(s)y(s− τ)

1 + cy(s− τ)
+ qEy(s)

]

≥
δ2

1 − δ2

T−1
∑

s=0

[

b(s)c2δ2c2
1 + c c2

δ2

+ qEc2

]

≥
c2δ2

1 − δ2

[

δ2
2c2

δ2 + cc2

T−1
∑

s=0

b(s) + qEc2

]

≥ c2.

Now, consider

ψ(A3y) = min
0≤n≤T−1

n+T−1
∑

s=n

G2(n, s)

[

b(s)y(s)y(s− τ)

1 + cy(s− τ)
+ qEy(s)

]

≥
δ2

1 − δ2

T−1
∑

s=0

[

b(s)y(s)y(s− τ)

1 + cy(s− τ)
+ qEy(s)

]

.

Then for c3 < ‖A3y‖, we have

c3 ≤ ‖A3y‖ ≤
1

1 − δ2

T−1
∑

s=0

[

b(s)y(s)y(s− τ)

1 + cy(s− τ)
+ qEy(s)

]

The above two inequalities yield

ψ(A3y) ≥ δ2‖A3y‖ =
c2

c3
‖A3y‖.

Hence by Theorem 1.2, Eq. (4.2) has at least two positive T -periodic solutions. The

theorem is proved.

Now, we consider the equation

∆y(n) = y(n)

[

a(n) −
b(n)y(n)

1 + c(n)y(n)

]

whose growth law obeys Michaelis-Menton type growth equation. Moreover, we as-

sume that the population is subject to harvesting. Then, under the catch-per-unit-

effort hypothesis, the harvest population’s growth equation can be expressed as (4.3),

where a(n), b(n) and c(n) are positive T -periodic real sequences, q and E are positive

constants denoting the catch-ability-coefficient and the harvesting effort, respectively.

As pointed earlier, Zeng [48] assumed the condition (4.7) to obtain one positive

T -periodic solution of (4.3). In the following theorem, we use the Leggett-Williams

multiple fixed point theorem, Theorem 1.2 to obtain a new easily verifiable sufficient

condition different from (4.7), for the existence of at least two positive T -periodic

solutions of (4.3).



368 S. PATI, S. PADHI, AND E. THANDAPANI

Theorem 4.5. Let a(n), b(n) and c(n) be bounded sequences. If

a∗ > qE and b∗ ≥ c∗(a∗ − qE)

hold, then (4.3) has at least two positive T -periodic solutions.

Proof. We can express Eq. (4.3) in the form

∆y(n) = A(n)y(n) −
b(n)y2(n)

1 + c(n)y(n)
,

where A(n) = a(n) − qE. Clearly, a∗ > qE implies that A(n) > 0, n ∈ [0, T − 1].

We consider a Banach space X as in previous theorems and a cone K in X as in

Theorem 4.3. On the cone K, we define an operator A4 by

(A4y)(n) =

n+T−1
∑

s=n

G3(n, s)

[

b(s)y2(s)

1 + c(s)y2(s)

]

,

where

G3(n, s) =

∏n+T−1
θ=s+1 (1 + A(θ))

∏T−1
θ=0 (1 + A(θ)) − 1

is the Green’s Kernel bounded by

δ3

1 − δ3
= α ≤ G3(n, s) ≤

1

1 − δ3
= β, s ∈ [n, n + T − 1]

and

δ3 =

T−1
∏

θ=0

(1 + A(θ))−1 < 1.

It is easy to prove that A4(K) ⊂ K and A4 is completely continuous on K. We

consider a nonnegative continuous concave functional ψ as in Theorem 4.3.

Since

lim
y→∞

b(n)y(n)

A(n)(1 + c(n)y(n))
= lim

y→∞

b(n)y(n)

(a(n) − qE)(1 + c(n)y(n))
>

b∗

c∗(a∗ − qE)
,

then there exists a positive constant c2 >
a∗−qE

b∗
> 0 such that

b(n)y2(n)

(a(n) − qE)(1 + c(n)y(n))
>

b∗

c∗(a∗ − qE)
≥ c2

holds. Set c3 = c2
δ3

. Then 0 < c2 < c3. For y ∈ K(ψ, c2, c3), we have, using Lemma 4.2,

that

ψ(A4y) = min
n∈[0,T−1]

n+T−1
∑

s=n

G3(n, s)

[

b(s)y2(s)

1 + c(s)y(s)

]

≥ c2.
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Next, we choose a constant c1 ∈ (0, a∗−qE

b∗
). Then 0 < c1 < c2. Further, for y ∈ Kc1,

we have, again using Lemma 4.2, that

‖A4y‖ = max
n∈[0,T−1]

n+T−1
∑

s=n

G3(n, s)

[

b(s)y2(s)

1 + c(s)y(s)

]

<
b∗c21

(a∗ − qE)

n+T−1
∑

s=n

G3(n, s)A(s)

=
b∗c1

(a∗ − qE)
.c1 < c1.

Further,

c3 < ‖A4y‖ ≤
1

1 − δ3

n+T−1
∑

s=n

b(s)y2(s)

1 + c(s)y(s)

implies that

ψ(A4y) ≥ δ3‖A4y‖ =
c2

c3
‖A4y‖,

which in view of the Theorem 1.2, assures that (4.3) has at least two positive T -

periodic solutions. Hence the theorem is proved.

Example 4.6. Consider Eq. (4.3) with a(n) = 3 + (−1)n, b(n) = 3 + (−1)n, c(n) =
3+(−1)n

8
and qE = 1. Here T = 2, a∗ = 4, a∗ = 2, b∗ = 4, b∗ = 2, c∗ = 1

2
and c∗ = 1

4
.

Then

σ =

1
∏

θ=0

(1 + a(θ)) =
1

15
< 1.

Observe that a∗ = 2 > 1 = qE and c∗(a∗ − qE) = 1
2
(4 − 1) = 3

2
< 2 = b∗ implies, by

Theorem 4.5 that (4.3) has at least two positive T -periodic solutions with the above

choice of a(n), b(n) and c(n). On the other hand,

1 − σ

T
=

1 − 1
15

2
=

1

2
.
14

15
=

7

15
< 1 = qE

implies that (4.7) fails to hold and hence the result due to Zeng [48] cannot be applied

to this example.

Our final result give a sufficient condition for the nonexistence of positive T -

periodic solution of (4.3).

Corollary 4.7. Let a(n) be a bounded sequence. If a∗ < qE < 1, then (4.3) has no

positive T -periodic solutions.

Proof. We can rewrite Eq. (4.3) as (4.9). We consider the Banach space X as in

previous theorem where as a cone K in X by

K = {y; y ∈ X, y(n) ≥ (1 − qE)T‖y‖}.
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Further, we define an operator A5 on X by

(A5y)(n) =
n+T−1
∑

s=n

G5(n, s)

[

a(s) −
b(s)y(s)

1 + c(s)y(s)

]

y(s),

where

G5(n, s) =
(1 − qE)n+T−s−1

1 − (1 − qE)T

is the Green’s Kernel satisfying the property
∑n+T−1

s=n G(n, s) = 1
qE

.

Notice that the existence of a positive T -periodic solution of (4.3) is equivalent to

the existence of a fixed point of A5 in K. If possible, suppose that y(n) is a positive

T -periodic solution of (4.3). Then y(n) = (A5y)(n) for all y ∈ K. This in turn, we

have

‖y‖ = ‖A5y‖ = max
0≤n≤T−1

n+T−1
∑

s=n

G5(n, s)

[

a(s) −
b(s)y(s)

1 + c(s)y(s)

]

y(s)

≤ max
n∈[0,T−1]

n+T−1
∑

s=n

G5(n, s)a
∗‖y(n)‖

≤ ‖y‖ max
n∈[0,T−1]

n+T−1
∑

s=n

G5(n, s)qE

≤ ‖y‖,

a contradiction. Hence (4.3) has no eventually positive T -periodic solutions. This

proves the corollary.

5. Remark

In this article, we have examined the existence of at least two positive T -periodic

solutions for a scalar difference equation which represents dynamics of a renewable

resource that is subjected to Allee effects. It would be interesting to develop re-

sults that identify the exact number of positive periodic solutions admitted by the

considered model and study their stability nature.
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